Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9352
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張宏浩(Hung-Hao Chang)
dc.contributor.authorLing-Yi Hungen
dc.contributor.author洪綾憶zh_TW
dc.date.accessioned2021-05-20T20:18:45Z-
dc.date.available2010-07-30
dc.date.available2021-05-20T20:18:45Z-
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-06-24
dc.identifier.citation中文部分
王碧如,2004。「宜蘭地區臺灣鮑生產效率之分析」。碩士論文,國立臺灣海洋大學海洋資源管理研究所。
行政院農業委員會,2007。『中華民國九十六年農業統計年報』。臺北:行政院農業委員會。
行政院農業委員會漁業署,2007a。『中華民國九十六年漁業年報』。臺北:行政院農業委員會漁業署。
行政院農業委員會漁業署,2007b。『中華民國九十六年漁業統計年報』。臺北:行政院農業委員會漁業署。
行政院農業委員會漁業署,1999-2006。『中華民國八十八年至九十七年臺灣地區沿近海與養殖漁家經濟調查報告』。臺北:行政院農業委員會漁業署。
行政院主計處,2007。『中華民國九十四年農林漁牧業普查報告』。臺北:行政院主計處。
李朝賢、李宜謙,1995。「臺灣虱目魚養殖技術效率之分析」,『農業經濟半年刊』。58期,103-128。
李武忠、詹滿色、陳郁蕙、陳雅惠、廖一久,2005。「臺灣草蝦養殖產業之技術效率:追蹤資料分析」,『臺灣水產學會刊』,32卷4期,383-390頁。
余金妹,2002。「臺灣虱目魚生產技術效率之分析--隨機性邊界生產函數之應用」,『農業金融論叢』,48期,129-159。
林永德,2002。「臺灣養殖漁業發展現況」,『中國水產』。595期,32-47。
林惠玲、陳正倉,2004。『應用統計學』。台北:雙葉書廊有限公司。

洪培勳,2002。「臺灣吳郭魚生產技術效率之分析--隨機性邊界生產函數之應用」。碩士論文,國立臺灣海洋大學應用經濟研究所。
胡興華,2008。「開創臺灣養殖漁業的新局」,『漁業推廣』。263期,6-19。
施惠文,2003。「臺灣石斑魚產業經濟結構與生產技術效率之分析」。碩士論文,國立臺灣海洋大學應用經濟研究所。
秦啟文,1999。「臺灣地區地層下陷防治之執行成效—節約地下水源 防止地層下陷」,『節約用水季刊』。15期。
莊琦婷,2006。「臺灣鯛養殖場生產技術效率分析--隨機性邊界生產函數之應用」。碩士論文,國立臺灣海洋大學應用經濟研究所。
陳郁蕙、林呈旭、李武忠,2001。「臺灣鰻魚產業之養殖技術效率分析」,『中華農學會報』。2卷,5期,377-386。
陳郁蕙、溫祖康,2001。「臺灣地區草蝦養殖產業技術效率之研究」,『農業金融論叢』。46期,289-304。
陳志偉,2001。「臺灣吳郭魚產業之技術效率分析」。碩士論文,國立海洋大學漁業經濟研究所。
陳薏卉,2004。「臺灣箱網水產養殖產業之技術效率分析」。碩士論文,國立臺灣海洋大學應用經濟研究所。
陳智遠,2003。「疫病發生對臺灣地區草蝦養殖技術效率之影響」。碩士論文,國立臺灣大學農業經濟學研究所。
郭仁杰,2005。「臺灣地區文蛤養殖生產效率分析」。碩士論文,國立臺灣海洋大學應用經濟研究所。
黃貴民、王金利,1997。「臺灣九孔養殖技術效率之分析」,『臺灣水產學會刊』。24卷,3期,251-259。
 
英文部分
Balcombe, K., I. Fraser, and J. H. Kim, 2006. “Estimating Technical Efficiency of Australian Dairy Farms Using Alternative Frontier Methodologies.” Applied Economics 38: 2221–2236.
Balcombe, K., I. Fraser, M. Rahman, and S. Laurence, 2007a. ”'Examining the Technical Efficiency of Rice Producers in Bangladesh.” Journal of International Development 19 (1): 1–16.
Bezemer, D., K. Balcombe, J. Davis, and I. Fraser, 2005.” Livelihoods and Farm Efficiency in Rural Georgia” Applied Economics 37(15) : 1737–1745.
Balcombe, K., H. Doucouliagos, and I. Fraser, 2007b. “Input Usage, Output Mix and Industry Deregulation: An Analysis of the Australian Dairy Manufacturing Industry.” Australian Journal of Agricultural and Resource Economics 51(2) : 137 – 156.
Brümmer, B. 2001. “Estimating Confidence Intervals for Technical Efficiency: the Case of Private Farms in Slovenia” European Review of Agriculture Economics 28 (3) : 285–306.
Coelli, T.J., D.S.P. Rao, C.J. O'Donnell, and G.E. Battese, 2005. An Introduction to Efficiency and Productivity Analysis, 2nd Edition. N.Y.: Springer.
Chiang, F.S., C.H. Sun, and J. M. Yu, 2004.” Technical Efficiency Analysis of Milkfish(Chanos chanos) Production in Taiwan—An Application of the Stochastic Frontier Production Function.” Aquaculture. 230: 99– 116.
Cinemre, H.A., V. Ceyhan, M. Bozoğlu, K. Demiryürek, and O. Kılıç, 2006.” The Cost Efficiency of Trout Farms in the Black Sea Region, Turkey.” Aquaculture. 251( 2-4): 324–332.
Dorfman, J.H., and G. Koop, 2005 ”Current Developments in Productivity and Efficiency Measurement.” Journal of Econometrics 126: 233–240.

Dey, M.M., F.J. Paraguas, G.B. Bimbao, and P.B. Regapsi,2000. ”Technical Efficiency of Tilapia Growout Pond Operations in the Philippines.”Aquaculture Economics and Management 4 (1/2): 33– 47. (Special Issue: Socioeconomics of tilapia culture in Asia).
Ennsfellner, K.C., D. Lewis, and R. I. Anderson, 2004. “Production Efficiency in the Austrian Insurance Industry: A Bayesian Examination.” Journal of Risk and Insurance 71(1): 135–159.
Emrouznejad , A., B.R. Parker, and G. Tavares, 2008. “Evaluation of Research in Efficiency and Productivity: A Survey and Analysis of the First 30 Years of Scholarly Literature in DEA.” Socio-Economic Planning Sciences 42(3) :151–157.
Fernández , C., E. Ley, and M.F. J. Steel, 2002a. “Bayesian Modelling of Catch in A North-west Atlantic Fishery.” Journal of the Royal Statistical Society: Series C (Applied Statistics) 51(3): 257 – 280.
Fernández, C., G. Koop, and M.F.J. Steel, 2002b. “Multiple-output Production with Undesirable Outputs: An Application to Nitrogen Surplus in Agriculture.' Journal of the American Statistical Association 97: 432–442.
Food and Agriculture Organization of the United Nations (FAO), 2008. The State of World Fisheries and Aquaculture. Rome: FAO.
Gunarantne, L.H.P., and P.S. Leung,1996.” Asian Black Tiger Shrimp Industry: A Meta-productivity Analysis.” In Chapter 5, Economics and Management of Shrimp and Carp farming in Asia, 2001, Network of Aquaculture Centers in Asia-Pacific, Bangkok, Thailand.
Gunarantne, L.H.P., and P.S. Leung, 1997. “Productivity Analysis of Malaysian Cultured Shrimp Industry.” In: Leung, P.S., Sharma, K.R., (Eds.), World Aquaculture ’97, February 19–23, Seattle, Washington, and in: Chapter 6, Economics and Management of Shrimp and Carp farming in Asia, 2001, Network of Aquaculture Centers in Asia-Pacific, Bangkok, Thailand.
Griffin, J. and M.F.J. Steel, 2007 'Bayesian Stochastic Frontier Analysis Using WinBUGS.' Journal of Productivity Analysis 27(3):163–176.
Huang, H.C. 2004. “Estimation of Technical Inefficiencies with Heterogeneous Technologies” Journal of Productivity Analysis 21: 277–296.
Huang, M.Y., C.J. Huang, and T.T. Fu, 2002.”Cultivation Arrangements and the Cost Efficiency of Rice Farming in Taiwan.” Journal of Productivity Analysis 18: 223–239.
Iinuma, M., K.R. Sharma, and P.S. Leung, 1999. “Technical Efficiency of Carp Pond Culture in Peninsula Malaysia: An Application of Stochastic Production Frontier and Technical Inefficiency Model.” Aquaculture 175:199–213.
Kaliba, A.R., and R.C. Engle, 2004. “Cost Efficiency of Catfish Farms in Chicot County, Arkansas: The Impact of Extension Purposes.” Selected Paper Prepared for Presenting at the Southern Agricultural Economics Association Annual Meeting, February 18, Oklahoma.
Karagiannis, G., S.D. Katranidis , and V. Tzouvelekas, 2002. ” Measuring and Attributing Technical Inefficiencies of Seabass and Seabream Production in Greece.” Applied Economics Letters. 9: 519–522.
Kurkalova, L. A. ,and A. Carriquiry, 2002. “An Analysis of Grain Production Decline During the Early Transition in Ukraine: A Bayesian Inference.” American Journal of Agricultural Economics 84(5): 1256–1263.
Kurkalova, L. A., and A. Carriquiry, 2003. “Input- and output-orientated Technical Efficiency of Ukrainian Collective Farms, 1989–1992: Bayesian Analysis of A Stochastic Frontier Model.” Journal of Productivity Analysis 20: 191–211.
Kim, Y., and P. Schmdit, 2000.” A Review and Empirical Comparison of Bayesian and Classical Approaches to Inference on Efficiency Levels in Stochastic Frontier Models with Panel Data.” Journal of Productivity Analysis 14(2): 91–118.
Koop, G., J. Osiewalski, and M. F. J. Steel, 1994.” Bayesian Efficiency Analysis with A Flexible Form: the AIM Cost Function.” Journal of Business and Economic Statistics 12: 339–46.
Koop, G. J., M. F. J. Steel, and J. Osiewalski, 1995. “Posterior Analysis of Stochastic Frontier Models Using Gibbs Sampling.” Computational Statistics 10: 353–73.
Koop, R.J, and J. Mullahy,1990.”Moment-based Estimation and Testing of Stochastic Frontier Models.” Journal of Econometrics 46: 165–183.
Koop, G.J., and M.F.J. Steel, 2001. ” Bayesian Analysis of Stochastic Frontier Models” in A Companion to Theoretical Econometrics (Ed.) B. Baltagi, Balckwells, Mass., 520-537.
Lewis, D., T.M. Springer, and R.I. Anderson, 2003. “ The Cost Efficiency of Real Estate Investment Trusts: an Analysis with a Bayesian Stochastic Frontier Model.” The Journal of Real Estate Finance and Economics 26(1): 65–80.
Latruffe, L., K. Balcombe, S. Davidova, and K. Zawalinska, 2004.” Determinants of Technical Efficiency of Crop and Livestock Farms in Poland.”Applied Economics 36: 1255–1263.
Lunn, D.J., A. Thomas, N. Best, and D. Spiegelhalter, 2000. “WinBUGS - A Bayesian Modelling Framework: Concepts, Structure, and Extensibility.” Statistics and Computing 10 (4): 325–337.
Lancaster, T., 2004. An Introduction to Modern Bayesian Econometrics. U.K. : Wiley-Blackwell.
Martinez-Corderoa, F. J., and P.S. Leung,2004. “Sustainable Aquaculture and Producer Performance: Measurement of Environmentally Adjusted Productivity and Efficiency of a Sample of Shrimp Farms in Mexico.” Aquaculture. 241: 249–268.
Ören, M. N., and T. Alemdar, 2006.” Technical Efficiency Analysis of Tobacco Farming in Southeastern Anatolia.” Turkish journal of agriculture and forestry 30 : 165–172.
Osborne ,S., and M.A. Trueblood, 2006. “An Examination of Economic Efficiency of Russian Crop Production in the Reform Period.” Agricultural Economics 34 : 25–38.
Sharma, K.R., 1999. “Technical Efficiency of Carp Production in Pakistan.” Aquaculture Economics and Management 3: 131– 141.

Sharma, K.R., and P.S. Leung, 1998. “Technical Efficiency of Carp Production in Nepal: An Application of Stochastic Frontier Production Function Approach.” Aquaculture Economics and Management 2: 129–140.
Sharma, K.R., and P.S. Leung, 2000a. “Technical Efficiency of Carp Production in India: A Stochastic Frontier Production Function Analysis.” Aquaculture Research 31: 937– 948.
Sharma, K.R., and P.S. Leung, 2000b. “Technical Efficiency of Carp Pond Culture in South Asia: An Application of Stochastic Meta-production Frontier Model.” Aquaculture Economics and Management 4 (3/4) and in: Chapter 11, Economics and Management of Shrimp and Carp farming in Asia, 2001, Network of Aquaculture Centers in Asia-Pacific, Bangkok, Thailand., 169–189.
Sharma, K.R., and P.S. Leung, 2003. “A Review of Production Frontier Analyses for Aquaculture Management.” Aquaculture Economics and management 7 (1/2): 15– 34.
Sharma, K.R., P.S. Leung, C. Hailiang, and A. Peterson, 1999. “Economic Efficiency and Optimum Stocking Densities in Fish Polyculture: An Application of Data Envelopment Analysis (DEA) to Chinese Fish Farms.” Aquaculture 180: 207–221.
Sharma, K.R., P.S. Leung, and H.M. Zaleski, 1997. “Productive Efficiency of the Swine Industry in Hawaii: Stochastic Frontier vs. Data Envelopment Analysis.” Journal of Productivity Analysis 8: 447–459.
Sedik, D., M. Trueblood, and C. Arnade, 1999. ” Corporate Farm Performance in Russia, 1991-1995: An Efficiency Analysis.” Journal of Comparative Economics 27: 514–533.
Stauffer, H.B. 2007. Contemporary Bayesian and Frequentist Statistical Research Methods for Natural Resource Scientists U.K.: Wiley-Blackwell.
Tveteras, R., and G.E. Battese, 2000.” Technical Change and Productive Inefficiency Change in Norwegian Salmon Farming: The Influence of Regional Agglomeration Externalities.” Paper Presented at the 10th Biennial Conference of the International Institute of Fisheries Economics and Trade, Oregon, July 10– 14.
Tveteras, R., and G.E. Battese, 2006. ”Agglomeration Externalities, Productivity, and Technical Inefficiency.” Journal of Regional Science 46(4) : 605–625.
Tingley, D., S. Pascoe, and L. Coglan, 2005. “Factors Affecting Technical Efficiency in Fsheries: Stochastic Production Frontier Versus Data Envelopment Analysis Approaches.” Fisheries Research 73 : 363–376.
Van den Broeck, J., G. Koop, J. Osiewalski, and M.F.J. Steel, 1994. “Stochastic Frontier Models: A Bayesian Perspective.” Journal of Econometrics 61: 273–303.
Wadud, A., and B. White, 2000.” Farm Household Efficiency in Bangladesh: A Comparison of Stochastic Frontier and DEA Methods .” Applied Economics 32: 1665–1673.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9352-
dc.description.abstract本研究應用三種不同方法,分別是:資料包絡法、傳統隨機邊界法以及貝氏隨機邊界法來計算各養殖魚種的生產技術效率。首先比較傳統與貝氏隨機邊界法估計的係數值,結果顯示生產函數的估計係數結果一致。至於生產技術效率的機率分配方面,本研究發現不論是哪種魚種,資料包絡法所估計的技術效率的機率分配都較兩種隨機邊界模型估計之技術效率的機率分配來得扁平且右偏。本文進一步利用Kruskal-Wallis檢定法來比較三種不同方法所估計的生產技術效率值的機率分配,結果顯示不同方式所得到的技術效率之分配在統計上是不同的。而各養殖漁戶的排序方面,本研究應用Spearman等級檢定,發現貝氏與傳統的隨機邊界模型都是顯著地高度相關、而資料包絡法與其他兩種隨機邊界法的相關程度則是:石斑魚、文蛤、牡蠣以及鱸魚為顯著高度相關、剩下的魚種為顯著地低度相關。
最後比較不同年間的生產技術效率變化,結果顯示不論是用哪種估計方法,1999年至2000年間有較大的差異,之後有起有落,但差距都不大。若僅使用貝氏的隨機邊界模型比較2000年以及2006年的技術效率差異,則可以發現除了在低技術效率的部分以外,2006年的技術效率在各百分位數都較2000年高;又2006年技術效率值的集中處在0.85以後,但是反觀2000年的技術效率集中處則是在0.5以及0.75之處,這就是造成兩年技術效率差異的原因。
zh_TW
dc.description.abstractThe objective of this paper is threefold. First, this paper applies three different methodologies, including Data Envelope Analysis (DEA), classical stochastic frontier analysis and Bayesian stochastic frontier analysis, to estimate technical efficiency of aquaculture farms in Taiwan. In what follows, we compare these three technical efficiencies estimated by these three different methodologies. We conduct the analysis in several steps. We first compare the estimated coefficient of the production function between Bayesian and stochastic production frontier models. In addition, we compare these distributions of technical efficiency by utilizing two different non-parametric methods. To test whether these distributions were the same, the Kruskal-Wallis test is conducted. To further test whether the relative rank of aquaculture farms were consistent between the estimation methods, we use the Spearman Rank test. The final objective of this study is to investigate if the technical efficiency has been changed between 1999 and 2006. First we compare the distribution of technical efficiency obtained from three different methodologies from 1999 to 2006. Finally, we use the results obtained from Bayesian stochastic frontier model to compare the distribution of technical efficiency between 2000 and 2006.
Empirical results show that the coefficients of two stochastic frontier models are almost the same. But when compare the production elasticity, the conclusion is that not only the sigh but the most important input exist slightly differences between two methodologies. In addition, the distribution of technical efficiency estimated by DEA is right-skewed, and flatter than the distribution of technical efficiency estimated by other two methods regardless of the fish types. With respect to the examination if the distributions of technical efficiency were the same, results show that at least two distributions are statistically different. In terms of the relative rank of these aquaculture farms, Bayesian and classical stochastic frontier analysis are statistically correlated, but DEA and two stochastic frontier methodologies are strongly correlated only in some kinds of fish and the others are weakly correlated.
This study analyses the change of technical efficiency across years, and results show that regardless of these different methodologies, there’s a significant differences between 1999 and 2000. After 2000 there’re some up and down in these years, but the scale is minor. Focusing on the change of technical efficiency between 2000 and 2006, results show that when it compares all percentiles, 2006 are higher than 2000. Most importantly, technical efficiencies are centralized around 0.85 in 2006, but centralized around 0.5 and 0.75 in 2000, that’s the reason why technical efficiencies are higher in 2006.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:18:45Z (GMT). No. of bitstreams: 1
ntu-98-R96627013-1.pdf: 798904 bytes, checksum: baf634aaf28bf86b1f55b4ad33e4307d (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要………………………………….…..………………………………i
英文摘要………………………………………………………………………………...ii
第一章 緒論…………………………………………………………………………..1
1.1研究動機與研究目的……………………………………………………...….1
1.2研究方法及步驟………………………………………………………………4
1.3論文架構……………………………………………………...……………….5
第二章 臺灣養殖漁業現況…………………………………………………………..6
2. 1臺灣養殖漁業重要性………………………………………..……………….6
2.2臺灣的養殖漁業現況…………………………………………...…………...13
第三章 文獻回顧……………………………………………………………………19
3.1養殖漁業技術效率分析回顧……………………………………..…………19
3.2估計技術效率方法之回顧……...…………………………………………...30
3.2.1貝氏隨機邊界模型文獻之回顧……………...………………………30
3.2.2資料包絡法和傳統隨機邊界模型的比較…………………………...30
3.2.3三種估計技術效率的方法之回顧…………………………………31
第四章 理論模型…………………………………………………………………...33
4.1資料包絡法……………………….…………………...……………………..33
4.2傳統隨機邊界模型………………………………………...……………...…37
4.3貝氏隨機邊界模型………………...……………………………………...…39
4.3.1貝氏定理……………………………………..……………………….40
4.3.1.1事前機率密度函數……………………………………………40
4.3.1.2概似函數………………………………………………………40
4.3.1.3事後機率密度函數………………………………………….41
4.3.1.4馬可夫鍊蒙特卡羅…………………………………………..41
4.3.2貝氏隨機邊界模型…………………………………………………...43
4.4 比較方法…………………………………………………………………………..45
4.4.1 Kruskal-Wallis檢定………………………………………………………45
4.4.2 Spearman等級檢定……………………………………………………….46
第五章 資料收集與介紹……………………………………...……….…………....48
5.1資料收集………………………….………………………..…..…………….48
5.2估計技術效率投入項…………………..……………………………………50
第六章 實證分析……………………………………………………………………54
6.1係數估計結果……………………………………………………………...54
6.2技術效率值之比較………………………………………………………...58
6.3年間比較………………………………………………...…………………...66
6.3.1三種方法之比較………………………………………………...……66
6.3.2使用貝氏隨機邊界模型比較前後兩年技術效率……………………70
第七章 結論與建議…………………………………………………………………73
7.1 結論…………………………………………………………...……………..73
7.2未來發展以及研究限制………………………………………..……………74
參考文獻……………………………………………….…………………………...…76
附錄一:各魚種貝式以及傳統隨機邊界模型結果…………………………………..84
附錄二:各魚種三種不同方法下之技術效率機率密度函數圖……………………..91
附錄三:不同年間三種技術效率的機率密度函數圖…………..……………………95
圖 目 錄
圖2-1:1998年至2007年漁業產值百分比……………………………………………10
圖2-2:1998年至2007年漁戶百分比…………………………………………………13
圖2-3:2007年養殖面積百分比………………………………………………………15
圖2-4:2007 年各魚種養殖產量百分比……………………………………………16
圖2-5:2007 年各魚種養殖產值百分比……………………………………………16
圖4-1:投入取向………………………………………………………………………34
圖4-2:產出取向………………………………………………………………………35
圖4-3:固定規模報酬與變動規模報酬………………………………………………36
圖4-4:隨機邊界模型…………………………………………………………………37
圖6-1:吳郭魚勞動投入係數項隨著更新次數變化的情形…………………………55
圖6-2:吳郭魚β3的機率密度函數圖………………………………………………55
圖6-3:吳郭魚β1的機率密度函數圖………………………………………………56
圖6-4:不同魚種三種不同估計方法的平均值………………………………………60
圖6-5:吳郭魚三種不同方法下之技術效率機率密度函數圖………………………62
圖6-6:2006 年三種不同方法技術效率的機率密度函數圖………………………66
圖6-7:1999 年至 2006 年間技術效率平均值的變化……………………………70
圖6-8:2000 年以及 2006 年貝氏隨機邊界模型技術效率機率密度函數圖……72
附圖2-1:虱目魚三種不同方法下之技術效率機率密度函數圖……………………92
附圖2-2:石斑魚三種不同方法下之技術效率機率密度函數圖……………………92
附圖2-3:文蛤三種不同方法下之技術效率機率密度函數圖………………………93
附圖2-4:牡蠣三種不同方法下之技術效率機率密度函數圖………………………93
附圖2-5:鱸魚三種不同方法下之技術效率機率密度函數圖………………………94
附圖3-1:1999年三種技術效率的機率密度函數圖………………………………96
附圖3-2:2000年三種技術效率的機率密度函數圖………………………………96
附圖3-3:2001年三種技術效率的機率密度函數圖………………………………97
附圖3-4:2002年三種技術效率的機率密度函數圖………………………………97
附圖3-5:2003年三種技術效率的機率密度函數圖………………………………98
附圖3-6:2004年三種技術效率的機率密度函數圖………………………………98
附圖3-7:2005年三種技術效率的機率密度函數圖………………………………….99
表 目 錄
表1-1:2002 年至 2006 年全世界漁業產量以及消費量……………………………1
表2-1:1998 年至 2007 年農業部門產值與百分比…………………………………7
表2-2:1998年至2007 年漁業產值…………………………………………………9
表2-3:1998 年至2007年漁業產量及其百分比……………………………………11
表2-4:1998年至2007 年漁戶數……………………………………………………12
表3-1:國外文獻有關養殖漁業技術效率的整理……………………………………21
表3-2:國內文獻有關養殖漁業技術效率的整理……………………………………27
表5-1:1999年至2006 年魚種以及樣本數…………………………………………49
表5-2:各魚種投入之比重……………………………………………………………50
表5-3:各魚種使用變數之基本統計量………………………………………………52
表6-1:吳郭魚隨機邊界模型之係數估計結果比較…………………………………57
表6-2:各魚種應用三種不同方法估計之技術效率比較……………………………58
表6-3:不同方法不同魚種之Spearman檢定結果…………………………………64
表6-4:不同年間不同方法所估計的技術效率比較…………………………………68
表6-5:2000年與 2006 年貝氏技術效率比較……………………………………71
附表1-1:鰻魚隨機邊界模型之係數估計結果………………………………………85
附表1-2:虱目魚隨機邊界模型之係數估計結果……………………………………86
附表1-3:石斑魚隨機邊界模型之係數估計結果……………………………………87
附表1-4:文蛤隨機邊界模型之係數估計結果………………………………………88
附表1-5:鱸魚隨機邊界模型之係數估計結果………………………………………89
附表1-6:牡蠣隨機邊界模型之係數估計結果………………………………………90
dc.language.isozh-TW
dc.title探討歷年台灣養殖漁業生產技術效率之變遷zh_TW
dc.titleInvestigating the Changes of the Technical Efficiencies of the Aquaculture Production in Taiwanen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.coadvisor蕭清仁(Chiang-Ren Show)
dc.contributor.oralexamcommittee傅祖壇,劉擎華
dc.subject.keyword技術效率,養殖漁業,資料包絡法,隨機邊界模型,貝氏定理,zh_TW
dc.subject.keywordtechnical efficiency,aquaculture,Data envelope analysis,Stochastic frontier analysis,en
dc.relation.page99
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-06-24
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業經濟學研究所zh_TW
顯示於系所單位:農業經濟學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf780.18 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved