請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93518完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖英志 | zh_TW |
| dc.contributor.advisor | Ying-Chih Liao | en |
| dc.contributor.author | Puttakhun Meemai | zh_TW |
| dc.contributor.author | Puttakhun Meemai | en |
| dc.date.accessioned | 2024-08-05T16:19:36Z | - |
| dc.date.available | 2024-08-06 | - |
| dc.date.copyright | 2024-08-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-18 | - |
| dc.identifier.citation | [1] J. K. Igbo, L. O. Chukwu, E. O. Oyewo, J. L. Blum, A. Schanzer, I. Wirgin, G. Y. Meltzer, N. K. Roy, and J. T. Zelikoff, “The chemistry and health outcomes of electronic waste (E-Waste) leachate: exposure to e-waste is toxic to Atlantic killifish (Fundulus Heteroclitus) embryos,” Sustainability, vol. 14, no. 18, pp. 11304, 2022.
[2] P. Yadav, H. Yadav, V. G. Shah, G. Shah, and G. Dhaka, “Biomedical biopolymers, their origin and evolution in biomedical sciences: a systematic review,” J Clin Diagn Res, vol. 9, no. 9, pp. 21-25, 2015. [3] S. Lavania, J. Mehta, P. Bhardwaj, A. Tripathi, N. Gupta, and P. Gupta, “Biocomposites: prospects and manifold applications for human and environmental sustainability,” ECS Journal of Solid State Science and Technology, vol. 12, no. 037002, 2023. [4] G. Konwar, P. Saxena, S. Rahi, and S. P. Tiwari, “Edible dielectric composite for the enhancement of performance and electromechanical stability of eco-friendly flexible organic transistors,” ACS Appl. Electron. Mater., vol. 4, no. 10, pp. 5055–5064, 2022. [5] E. Ercan, Y.-C. Lin, Y. Sakai-Otsuka, R. Borsali, and W.-C. Chen, “Harnessing biobased materials in photosynaptic transistors with multibit data storage and panchromatic photoresponses extended to near-infrared band,” Advanced Optical Materials, vol. 10, no. 21, 2022. [6] J. T. McNamara, J. L. W. Morgan, and J. Zimmer, “A molecular description of cellulose biosynthesis,” Annu Rev Biochem., vol. 84, pp. 895-921, 2015. [7] P. H. Pongsak Jittauta , Sasiporn Audtaratb and Thananchai Dasri, “Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus BNKC 19 using agricultural waste products as nutrient source,” ARUB Journal of Basic and applied science, vol. 30, pp. 221-230, 2023. [8] A. Mensah, Y. Chen, C. Narh, and Q. Wei, “Membrane technological pathways and inherent structure of bacterial cellulose composites for drug delivery,” Bioengineering, vol. 9, no. 3, 2022. [9] M. K. a. P. K. D. Poddar, “Recent development in bacterial cellulose production and synthesis of cellulose based conductive polymer nanocomposites.,” Nano Select, vol. 2, no. 9, pp. 1605-1628, 2021. [10] R. Mehrotra, S. Sharma, N. Shree, and K. Kaur, “Bacterial cellulose: an ecological alternative as a biotextile,” Biosci Biotech Res Asia, vol. 20, no. 2, pp. 449-463, 2023. [11] H. Nawaz, W. Tian, J. Zhang, R. Jia, T. Yang, and J. Yu, “Visual and precise detection of ph values under extreme acidic and strong basic environments by cellulose-based superior sensor,” Anal Chem, vol. 91, pp. 3085-3092, 2019. [12] H. Yu, Y. Shao, C. Luo, and Y. Li, “Bacterial cellulose nanofiber triboelectric nanogenerator based on dielectric particles hybridized system,” Composites Part A-applied Science and Manufacturing, vol. 151, no. 106646, 2021. [13] P. Danwanichakul, and B. Than-ardna, “Permeation of salicylic acid through skim natural rubber films,” Ind. Crops Prod., vol. 122, pp. 166-173, 2018. [14] A. T. N. Lehman, L. Songtipya, N. Uthaipan, K. Sengloyluan, J. Johns, Y. Nakaramontri, E. Kalkornsurapranee, “Influence of non-rubber components on the properties of unvulcanized natural rubber from different clones,” Polymers (Basel), vol. 14, pp. 1759, 2022. [15] H. S, M. Sajith, R. S. A, S. C, and S. Sambhudevan, “Natural Rubber and Gutta-Percha Rubber,” Handbook of Biopolymers pp. 1-35, 2023. [16] N. A. Sriring M, Dechnarong N, Kumarn S, Higaki Y, Kojio K, Takahara A, Ho CC, Sakdapipanich J, “Pre-vulcanization of large and small natural rubber latex particles: film-forming behavior and mechanical properties.,” Macromol Mater Eng vol. 304, no. 9, 2019. [17] X. K. Xiang Q, Dai L, Kang G, Li Y, Nie Z, Duan C, Zeng R, “Proteome analysis of the large and the small rubber particles of Hevea brasiliensis using 2D-DIGE.,” Plant Physiol Biochem, vol. 60, pp. 207–213, 2012. [18] R. Suksup, C. Imkaew, and W. Smitthipong, “Cream concentrated latex for foam rubber products. IOP Conference Series,” Materials Science and Engineering,, vol. 272, pp. 012025., 2017. [19] X. F. Zhang, et al.,, “Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches.,” Int J Mol Sci, vol. 17, no. 9, 2016. [20] Q. Zenaida Guerra, et al.,, “Application of silver nanoparticles for water treatment, in silver nanoparticles,,” IntechOpen: Rijeka, pp. Ch.5, 2018. [21] X.-F. Zhang, Z.-G. Liu, W. Shen, and S. Gurunathan, “Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches,” Int J Mol Sci, vol. 17, no. 9, pp. 1534, 2016. [22] B. F, M. Loessl, and A. J. Baeumner, “Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: considering their potential for the point-of-care,” Microchimica Acta, vol. 190, no. 3, 2023. [23] H. A. Hussein, and M. A. Abdullah, “Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment,” Applied Nanoscience, vol. 12, no. 11, pp. 3071-3096, 2022. [24] K. A, V. Sharma, D. A, J. K, and K. S, “A review on silver nanoparticles focusing on applications in biomedical sector,” Int J Pharm Sci Dev Res, vol. 8, no. 1, pp. 057-063, 2022. [25] I. S, and e. al., “Synthesis of silver nanoparticles: chemical, physical and biological methods,” Res Pharm Sci, vol. 9, no. 6, pp. 385-406, 2014. [26] D. V, “Effect of the type of reducing agents of silver ions in interpolyelectrolyte-metal complexes on the structure,morphology and properties of silver-containing nanocomposites,” Scientific Reports, vol. 10, no. 1, 2020. [27] P. Sintharm, A. Nimpaiboon, Y.-C. Liao, and M. Phisalaphong, “Bacterial cellulose reinforced with skim/fresh natural rubber latex for improved mechanical, chemical and dielectric properties,” Cellulose, vol. 29, pp. 1739-1758, 2022. [28] P. Danwanichakul, T. Suwatthanarak, C. Suwanvisith, and D. Danwanichakul, “The role of ammonia in synthesis of silver nanoparticles in skim natural rubber latex,” Journal of Nanoscience, vol. 2016, 2016. [29] L. Farhadi, M. Mohtashami, J. Saeidi, and M. A. Nezhad, “Green synthesis of chitosan-coated silver nanoparticle, characterization, antimicrobial activities, and cytotoxicity analysis in cancerous and normal cell lines,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 32, no. 2, pp. 1637–1649, 2022. [30] S. T. G. Supanakorn, M. Phisalaphong, “Multifunctional Cellulosic Natural Rubber and Silver Nanoparticle Films with Superior Chemical Resistance and Antibacterial Properties,” nanomaterials, vol. 13, pp. 521, 2023. [31] P.-J. Li, J.-J. Pan, L.-J. Tao, X. Li, D.-L. Su, Y. Shan, and H.-Y. Li, “Green synthesis of silver nanoparticles by extracellular extracts from Aspergillus Japonicus PJ01,” Molecules, vol. 26, no. 15, pp. 4479, 2021. [32] A. A. Tehrani, M. M. Omranpoor, A. Vatanara, M. Seyedabadi, and V. Ramezanicorresponding, “Formation of nanosuspensions in bottom-up approach: theories and optimization,” DARU Journal of Pharmaceutical Sciences, vol. 27, no. 1, pp. 451-473, 2019. [33] Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, and G. Zou, “The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles,” Materials Letters vol. 60, no. 29-30, pp. 3548-3552, 2006. [34] O. D. P. Alexis, Y. Guang, and M. N. Guiaro, “New approach for skin repair by using bacterial cellulose altered with paraffin and porous bacterial cellulose based scaffold with alginate,” Journal of analytical & pharmaceutical research, vol. 5, no. 3, 2017. [35] S. Pal, R. Nisi, M. Stoppa, and A. Licciulli, “Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications,” ACS Omega, vol. 2, no. 7, pp. 3632-3639, 2017. [36] K. Potivara, and M. Phisalaphong, “Development and characterization of bacterial cellulose reinforced with natural rubber,” Materials, vol. 12, no. 14, 2019. [37] L. Z. Yongjian Xu, Tao Lin, Jiayong Wang, Xiaopeng Yue, “Preparation and characterization of cellulose/Ag nanocomposites,” Polymer Composite, vol. 36, no. 12, pp. 2220-2229, 2014. [38] Y. H. Lee, S. S. Han, Y. A. Kang, and E. J. Shin, “Study on the preparation and characteristics of cellulose/silver Iodide nanocomposite film,” Journal of Nanoscience and Nanotechnology, vol. 16, no. 6, pp. 6107-6013, 2016. [39] L. Muthulakshmi, N. Rajini, H. Nellaiah, T. Kathiresan, M. Jawaid, and A. V. Rajulu, “Experimental investigation of cellulose/silver nanocomposites using in situ generation method,” Journal of Polymers and the Environment vol. 25, no. 4, pp. 1021-1032, 2016. [40] B. Villaa, E. Garcíab, M. Pradenab, P. Floresc, C. Medinac, V. H. Campos-Requenaa, and B. F. Urbanoa, “Surface modification of rubber from end-of-life tires for use in concrete: A design of experiments approach,” Journal of the Chilean Chemical Society, 2020. [41] E. G. Bárbara Villa, Mauricio Pradena, Paulo Flores, Carlos Medina, Victor Campos, Bruno F. Urbano, “Surface Modification of Rubber from end-of-life tires for use in concrete: A Design of experiments appoach,” The Journal of the Chilean Chemical Society, vol. 65, no. 4, 2020. [42] A. J. Padman, J. Henderson, S. N. B. Hodgson, and P. K. S. M. Rahman, “Biomediated synthesis of silver nanoparticles using Exiguobacterium mexicanum,” Biotechnol Lett, vol. 10, pp. 2079-2084, 2014. [43] K. Ik-Sik, L. Bok-Won, S. Kyung-Suk, Y. Joohoe, and L. Jung-Hun, “Characterization of the UV Oxidation of Raw Natural Rubber Thin Film Using Image and FT-IR Analysis,” Elastomers and Composites, vol. 51, no. 1, pp. 1-9, 2016. [44] X. Zhang, X. Wang, and Z. Chen, “A novel nanocomposite as an efficient adsorbent for the rapid adsorption of Ni(II) from aqueous solution,” Materials, vol. 10, no. 1124, 2017. [45] R. Javed, S. Ijaz, H. Hameed, M. Nazish, M. S. Sharif, A. Afreen, K. M. Alarjani, M. S. Elshikh, S. Mehboob, S. A. Razak, and A. Waheed, “Phytochemical-mediated biosynthesis of silver nanoparticles from Strobilanthes glutinosus: exploring biological applications,” Micromachines (Basel), vol. 14, no. 7, pp. 1372, 2023. [46] S. Z. Tapdigov, N. A. Zeynalov, D. B. Taghiyev, U.M. Akhmedova, A. I. Mammadova, M. K. Hasanova, and M. A. Amirov, “Research into properties and structure of basic polysaccharidein prunus domestica (Cherry),” Agricultural and Food Sciences, vol. 1, pp. 35-43, 2018. [47] K. Łach, A. Kowal, M. Perek-Polnik, P. Jakubczyk, C. J. Arthur, W. Bal, M. Drogosiewicz, B. Dembowska-Bagińska, W. Grajkowska, J. Cebulski, and R. Chaber, “Infrared spectroscopy as a potential diagnostic tool for Medulloblastoma,” Molecules, vol. 28, no. 5, 2023. [48] C. Zhu, F. Li, X. Zhou, L. Lin, and T. Zhang, “Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation,” J Biomed Mater Res A, vol. 102, no. 5, pp. 1548-1557, 2014. [49] S. Song, Z. Liu, M. A. Abubaker, L. Ding, J. Zhang, S. Yang, and Z. Fan, “Antibacterial polyvinyl alcohol/bacterial cellulose/nano-silver hydrogels that effectively promote wound healing,” Materials Science and Engineering: C, vol. 126, pp. 112171, 2021. [50] D. Sarkar, C. K. Ghosh, S. Mukherjee, and K. K. Chattopadhyay, “Three dimensional Ag2O/TiO2 type-II (p–n) nanoheterojunctions for superior photocatalytic activity,” ACS Applied Materials & Interfaces, vol. 5, no. 2, pp. 331-337, 2013. [51] S. Phomrak, and M. Phisalaphong, “Reinforcement of Natural Rubber with Bacterial Cellulose via a Latex Aqueous Microdispersion Process,” Journal of Nanomaterials, vol. 2017, 2017. [52] C. Z, and K. J, “Bacterial cellulose/poly (ethylene glycol) composite: characterization and first evaluation of biocompatibility,” Cellulose, vol. 17, pp. 83-91, 2010. [53] E. Ebrahimi, V. Babaeipour, and S. Khanchezar, “Effect of down-stream processing parameters on the mechanical properties of bacterial cellulose,” Iranian Polymer Journal vol. 25, pp. 739-746, 2016. [54] M. P. Kornkamol Potivara, “Development and Characterization of Bacterial Cellulose Reinforced with Natural Rubber,” Materials, vol. 12, no. 14, pp. 2323, 2019. [55] M. U. W. Lee Chiau Yeng, Norhayani Othman, “Thermal and flexural properties of regenerated cellulose(RC)/poly(3- hydroxybutyrate)(PHB)biocomposites,” Latest Research Development in Mechanical Engineering, vol. 75, no. 11, pp. 107-112, 2015. [56] S. S. Veerapat Kitsawat, Muenduen Phisalaphong, “Electrically Conductive Natural Rubber Composite Films Reinforced with Graphite Platelets,” Polymers, vol. 16, no. 2, 2024. [57] A. B. Kristina Gelin , Paul Gatenholm , Albert Mihranyan , Katarina Edwards , Maria Strømme, “Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy,” Polymers, vol. 48, no. 26, pp. 7623-7631, 2007. [58] N. B. Khandoker Samaher Salem , Hasan Jameel , Lokendra Pal , Lucian Lucia “Computational and experimental insights into the molecular architecture of water-cellulose networks,” Matter, vol. 6, no. 5, pp. 1366-1381, 2023. [59] S. A. Ahmad, S. S. Das, A. Khatoon, M. T. Ansari, M. Afzal, M. S. Hasnain, and A. K. Nayak, “Bactericidal activity of silver nanoparticles: A mechanistic review,” Materials Science for Energy Technologies, vol. 3, pp. 756-769, 2020. [60] S. Saqib, S. Faryad, M. I. Afridi, and B. Arshad, “Bimetallic assembled silver nanoparticles impregnated in Aspergillus Fumigatus extract damage the bacterial membrane surface and release cellular contents,” Coatings, vol. 12, no. 10, pp. 1505, 2022. [61] L. Wang, L. Liu, X. Zhou, and K. Vasilev, “Bacitracin-Ag anoclusters as a novel antibacterial agent Combats Shigella flexneri by disrupting cell membrane and inhibiting biofilm formation,” Nanomaterials (Basel), vol. 11, no. 11, pp. 2928, 2021. [62] S. Fangary, M. Abdel-Halim, R. K. Fathalla, R. Hassan, N. Farag, M. Engel, S. Mansour, and S. N. Tammam, “Nanoparticle fraught liposomes: a platform for increased antibiotic selectivity in multidrug resistant bacteria,” Mol Pharm., vol. 19, no. 9, pp. 3163-3177, 2022. [63] W. K, T. M, M. Y, and Y. F, “Structural features and properties of bacterial cellulose produced in agitated culture,” Cellulose, vol. 5, pp. 187-200, 1998. [64] K. Watanabe, et al., , “Structural Features and Properties of Bacterial Cellulose Produced in Agitated Culture. ,” Cellulose, vol. 5, no. 3, pp. 187-200, 1998. [65] G. K., “Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy,” Polymer, vol. 48, no. 26, pp. 7623-7631, 2007. [66] J. Manolito G. Ybañez, and D. H. Camacho, “Designing hydrophobic bacterial cellulose film composites assisted by sound waves,” RSC Adv, vol. 11, no. 52, pp. 32873–32883, 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93518 | - |
| dc.description.abstract | 本論文開發了一種綠色合成方法來生產銀奈米顆粒(AgNPs)、脫脂天然橡膠(SNR)和細菌纖維素(BC)的生物基半導體複合材料。將40至160 mM的硝酸銀 (AgNO3) 溶液添加到脫脂天然橡膠乳膠 (SNRL) 中,可促進銀離子在50至80°C的溫度下還原為AgNPs。隨後,將BC薄膜浸入製備的AgNPs-SNRL懸浮液中48小時,然後洗滌並乾燥。經過處理後的複合薄膜,其斷裂拉伸率大幅提升至13.8 %。由於AgNPs的摻入,該薄膜對金黃色葡萄球菌和大腸桿菌表現出強烈的抗菌活性。此外,AgNPs的存在顯著提高了薄膜的電導率至4.09 × 10-7 S/cm。初步濕度敏感度測試顯示,反應時間與恢復時間之比為3/20秒,濕度感應範圍較廣,從30% RH到90% RH。這些結果證明了AgNPs/SNR/BC複合薄膜在濕度感測器應用中極具潛力。 | zh_TW |
| dc.description.abstract | A green synthesis method was developed to produce biobased semiconducting composites of silver nanoparticles (AgNPs), skim natural rubber (SNR), and bacterial cellulose (BC). A solution of silver nitrate (AgNO3) ranging from 40 to 160 mM was added to skim natural rubber latex (SNRL) to facilitate the reduction of silver ions to AgNPs at temperatures between 50 and 80 °C. Subsequently, BC pellicle was immersed in the prepared AgNPs-SNRL suspension for 48 hours, followed by washing and drying. The resulting AgNPs/SNR/BC films were then analyzed for their chemical, mechanical, antibacterial, and electrical properties. The strain at break of the films was significantly enhanced to 13.8% under treatment with 80 mM AgNO3 at 80 °C. The films exhibited strong antibacterial activity against Staphylococcus aureus and Escherichia coli, due to the incorporation of AgNPs. Additionally, the presence of AgNPs significantly increased the electrical conductivity of the films to 4.09 × 10−7 S/cm. Preliminary humidity sensitivity tests revealed an excellent response time to recovery time ratio of 3/20 seconds, with a wide humidity-sensing range from 30% RH to 90% RH. These findings demonstrate the potential of AgNPs/SNR/BC composite films for use in humidity sensor applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:19:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-05T16:19:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgement ii
摘要 iii Abstract iv Table of Contents v List of Figures vii List of Tables ix Chapter 1 Introduction 1 1.1 Background 1 1.2 Research objectives 3 1.3 Scope and Limitations of the Study 3 Chapter 2 Literature review 4 2.1 Green synthesis of bio-polymeric composite 4 2.2 Bacteria cellulose (BC) 6 2.3 Skim natural rubber 9 2.4 Silver nanoparticles 11 2.4.1 Methods of silver reduction 11 2.5 Humidity sensor measurement 12 2.5.1 Resistive Humidity Sensors 13 2.5.2 Capacitance Humidity Sensors 13 2.6 Bio-base bacteria cellulose composite modification 14 2.7 Green synthesis of Silver nanoparticles 15 Chapter 3 Methodology 18 3.1 Materials 18 3.2 Preparation and purification of Bacteria cellulose 19 3.3 Synthesis of silver nanoparticles 20 3.4 Fabrication AgNps/natural rubber/nanocellulose biopolymeric composite 21 3.5 Physical and Chemical Characterization 22 3.6 Biological Characterization 24 3.7 Humidity sensitivity 24 Chapter 4 Results and Discussion 26 4.1 Synthesis of silver nanoparticles 26 4.2 Fabrication of composite films 30 4.2.1 Morphology of Ag-NB 30 4.3 Mechanical properties 38 4.4 Thermal properties 40 4.5 Water absorption 41 4.6 Electrical Properties 42 4.7 Antibacterial activity 44 4.8 Preliminary test for humidity sensitivity 46 Chapter 5 Conclusion 50 References 52 Vita 59 | - |
| dc.language.iso | en | - |
| dc.subject | 濕度感測器 | zh_TW |
| dc.subject | 奈米纖維素 | zh_TW |
| dc.subject | 脫脂天然橡膠 | zh_TW |
| dc.subject | 銀奈米顆粒 | zh_TW |
| dc.subject | 半導體生物聚合物複合材料 | zh_TW |
| dc.subject | Nanocellulose | en |
| dc.subject | Semiconducting | en |
| dc.subject | biopolymer composite | en |
| dc.subject | Humidity sensor | en |
| dc.subject | Skim natural rubber | en |
| dc.subject | Silver nanoparticles | en |
| dc.title | 奈米銀顆粒/天然橡膠/奈米纖維素生物高分子複合材料之綠色合成 | zh_TW |
| dc.title | Green synthesis for silver nanoparticle/ natural rubber/nanocellulose bio-polymeric composites | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | Muenduen Phisalaphong | zh_TW |
| dc.contributor.coadvisor | Muenduen Phisalaphong | en |
| dc.contributor.oralexamcommittee | 童世煌;Pongtorn Charoensuppanimit;Bunjerd Jongsomjit | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Huang Tung;Pongtorn Charoensuppanimit;Bunjerd Jongsomjit | en |
| dc.subject.keyword | 銀奈米顆粒,脫脂天然橡膠,奈米纖維素,半導體生物聚合物複合材料,濕度感測器, | zh_TW |
| dc.subject.keyword | Silver nanoparticles,Skim natural rubber,Nanocellulose,Semiconducting,biopolymer composite,Humidity sensor, | en |
| dc.relation.page | 59 | - |
| dc.identifier.doi | 10.6342/NTU202401908 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-07-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 2.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
