請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93516完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉貴生 | zh_TW |
| dc.contributor.advisor | Guey-Sheng Liou | en |
| dc.contributor.author | 卓易如 | zh_TW |
| dc.contributor.author | Yi-Ju Cho | en |
| dc.date.accessioned | 2024-08-05T16:19:00Z | - |
| dc.date.available | 2024-08-06 | - |
| dc.date.copyright | 2024-08-05 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2024-07-17 | - |
| dc.identifier.citation | REFERENCES
(1) Staudinger, H. On polymerization. In A Source Book in Chemistry, 1900-1950, Henry, M. L. Ed.; Harvard University Press, 1968; pp 259-264. (2) Hill, R.; Walker, E. Polymer constitution and fiber properties. J. Polym. Sci. 1948, 3 (5), 609-630. (3) Reglero Ruiz, J. A.; Trigo-López, M.; García, F. C.; García, J. M. Functional aromatic polyamides. Polymers 2017, 9 (9), 414. (4) Yen, H. J.; Liou, G. S. Design and preparation of triphenylamine-based polymeric materials towards emergent optoelectronic applications. Prog. Polym. Sci. 2019, 89, 250-287. (5) Tashiro, K.; Kobayashi, M.; Tadokoro, H. Elastic moduli and molecular structures of several crystalline polymers, including aromatic polyamides. Macromolecules 1977, 10 (2), 413-420. (6) García, J. M.; García, F. C.; Serna, F.; de la Peña, J. L. High-performance aromatic polyamides. Prog. Polym. Sci. 2010, 35 (5), 623-686. (7) Ogata, N.; Tanaka, H. Synthesis of polyamide by phosphoroxidation. Polym. J. 1971, 2 (5), 672-674. (8) Yamazaki, N.; Higashi, F. Studies on reactions of the N-phosphonium salts of pyridines—VII: Preparation of peptides and active esters of amino acids by means of diphenyl and triphenyl phosphites in the presence of tertiary amines. Tetrahedron 1974, 30 (11), 1323-1326. (9) Yamazaki, N.; Matsumoto, M.; Higashi, F. Studies on reactions of the N‐phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci., Polym. Chem. Ed. 1975, 13 (6), 1373-1380. (10) Higashi, F.; Akiyama, N.; Ogata, S. I. Further study of polyamide synthesis by direct polycondensation reaction with triphenyl phosphite and metal salts. J. Polym. Sci., Polym. Chem. Ed. 1983, 21 (3), 913-916. (11) Eastmond, G.; Paprotny, J.; Irwin, R. 1, 2-Bis(carboxyphenoxy)arylenes and aramids and polyarylates therefrom: synthesis and properties. Polymer 1999, 40 (2), 469-486. (12) Imai, Y. Synthesis of novel organic-soluble high-temperature aromatic polymers. High Perform. Polym. 2016, 7 (3), 337-345. (13) Ghaemy, M.; Nasab, S. M. A.; Alizadeh, R. Synthesis and characterization of new soluble polyamides from an unsymmetrical diamine bearing a bulky triaryl pyridine pendent group. J. Appl. Polym. Sci. 2010, 116 (6), 3725-3731. (14) Oishi, Y.; Takado, H.; Yoneyama, M.; Kakimoto, M. A.; Imai, Y. Preparation and properties of new aromatic polyamides from 4, 4'‐diaminotriphenylamine and aromatic dicarboxylic acids. J. Polym. Sci., Part A: Polym. Chem. 1990, 28 (7), 1763-1769. (15) Hsiao, S. H.; Peng, S. C.; Kung, Y. R.; Leu, C. M.; Lee, T. M. Synthesis and electro-optical properties of aromatic polyamides and polyimides bearing pendent 3, 6-dimethoxycarbazole units. Eur. Polym. J. 2015, 73, 50-64. (16) In, I.; Kim, S. Y. Soluble wholly aromatic polyamides containing unsymmetrical pyridyl ether linkages. Polymer 2006, 47 (2), 547-552. (17) Kim, Y. H. Hyperbranched polymers 10 years after. J. Polym. Sci., Part A: Polym. Chem. 1998, 36 (11), 1685-1698. (18) Jikei, M.; Kakimoto, M. a. Hyperbranched polymers: a promising new class of materials. Prog. Polym. Sci. 2001, 26 (8), 1233-1285. (19) Flory, P. J. Molecular size distribution in three dimensional polymers. VI. Branched polymers containing A—R—Bf-1 type units. J. Am. Chem. Soc. 1952, 74 (11), 2718-2723. (20) Kim, Y. H.; Webster, O. W. Water soluble hyperbranched polyphenylene:" An unimolecular micelle?". J. Am. Chem. Soc. 1990, 112 (11), 4592-4593. (21) Hawker, C. J.; Fréchet, J. M. Monodispersed dendritic polyesters with removable chain ends: a versatile approach to globular macromolecules with chemically reversible polarities. J. Chem. Soc., Perkin Trans. 1992, (19), 2459-2469. (22) Thakur, S.; Karak, N. A tough, smart elastomeric bio-based hyperbranched polyurethane nanocomposite. New J. Chem. 2015, 39 (3), 2146-2154. (23) Jikei, M.; Fujii, K.; Yang, G.; Kakimoto, M. a. Synthesis and properties of hyperbranched aromatic polyamide copolymers from AB and AB2 monomers by direct polycondensation. Macromolecules 2000, 33 (17), 6228-6234. (24) Irfan, M.; Seiler, M. Encapsulation using hyperbranched polymers: from research and technologies to emerging applications. Ind. Eng. Chem. Res. 2010, 49 (3), 1169-1196. (25) Higashihara, T.; Segawa, Y.; Sinananwanich, W.; Ueda, M. Synthesis of hyperbranched polymers with controlled degree of branching. Polym. J. 2012, 44 (1), 14-29. (26) Hölter, D.; Burgath, A.; Frey, H. Degree of branching in hyperbranched polymers. Acta Polym. 1997, 48 (1‐2), 30-35. (27) Jeon, I. Y.; Noh, H. J.; Baek, J. B. Hyperbranched macromolecules: From synthesis to applications. Molecules 2018, 23 (3), 657. (28) Ishida, Y.; Sun, A. C.; Jikei, M.; Kakimoto, M. a. Synthesis of hyperbranched aromatic polyamides starting from dendrons as ABx monomers: effect of monomer multiplicity on the degree of branching. Macromolecules 2000, 33 (8), 2832-2838. (29) Voit, B. I.; Lederer, A. Hyperbranched and highly branched polymer architectures synthetic strategies and major characterization aspects. Chem. Rev. 2009, 109 (11), 5924-5973. (30) Mourey, T. H.; Turner, S.; Rubinstein, M.; Fréchet, J.; Hawker, C.; Wooley, K. Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers. Macromolecules 1992, 25 (9), 2401-2406. (31) Ohta, Y.; Sakurai, K.; Matsuda, J.; Yokozawa, T. Chain-growth condensation polymerization of 5-aminoisophthalic acid triethylene glycol ester to afford well-defined, water-soluble, thermoresponsive hyperbranched polyamides. Polymer 2016, 101, 305-310. (32) Yang, G.; Jikei, M.; Kakimoto, M. a. Synthesis and properties of hyperbranched aromatic polyamide. Macromolecules 1999, 32 (7), 2215-2220. (33) Platt, J. R. Electrochromism, a possible change of color producible in dyes by an electric field. J. Chem. Phys. 1961, 34 (3), 862-863. (34) Deb, S. A novel electrophotographic system. Appl. Opt. 1969, 8 (101), 192-195. (35) Yang, P.; Sun, P.; Mai, W. Electrochromic energy storage devices. Mater. Today 2016, 19 (7), 394-402. (36) Yu, X.; Chang, M.; Chen, W.; Liang, D.; Lu, X.; Zhou, G. Colorless-to-black electrochromism from binary electrochromes toward multifunctional displays. ACS Appl. Mater. Interfaces. 2020, 12 (35), 39505-39514. (37) Wang, Z.; Wang, X.; Cong, S.; Geng, F.; Zhao, Z. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development. Materials Science and Engineering: R: Reports 2020, 140, 100524. (38) Gu, C.; Jia, A. B.; Zhang, Y. M.; Zhang, S. X. A. Emerging electrochromic materials and devices for future displays. Chem. Rev. 2022, 122 (18), 14679-14721. (39) Higuchi, M. Recent progress on metallo-supramolecular polymers and the electrochromic devices fabrication. J. Synth. Org. Chem. Jpn. 2023, 81 (11), 1089-1095. (40) Thakoor, S.; Moopenn, A.; Daud, T.; Thakoor, A. Solid‐state thin‐film memistor for electronic neural networks. J. Appl. Phys. 1990, 67 (6), 3132-3135. (41) Neff, V. D. Electrochemical oxidation and reduction of thin films of Prussian blue. J. Electrochem. Soc. 1978, 125 (6), 886. (42) Michaelis, L.; Hill, E. S. The viologen indicators. J. Gen. Physiol. 1933, 16 (6), 859. (43) Stargardt, J. F.; Hawkridge, F. M. Computer decomposition of the ultraviolet-visible absorption spectrum of the methyl viologen cation radical and its dimer in solution. Anal. Chim. Acta 1983, 146, 1-8. (44) Li, X.; Wang, X.; You, L.; Zhao, K.; Mei, J. Improving electrochemical cycling stability of conjugated yellow-to-transmissive electrochromic polymers by regulating effective overpotentials. ACS mater. Lett. 2022, 4 (2), 336-342. (45) Yen, H. J.; Liou, G. S. Recent advances in triphenylamine-based electrochromic derivatives and polymers. Polym. Chem. 2018, 9 (22), 3001-3018. (46) Adachi, C.; Nagai, K.; Tamoto, N. Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes. Appl. Phys. Lett. 1995, 66 (20), 2679-2681. (47) Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy, D. W.; Adams, R. N. Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. J. Am. Chem. Soc. 1966, 88 (15), 3498-3503. (48) Chang, C. W.; Liou, G. S.; Hsiao, S. H. Highly stable anodic green electrochromic aromatic polyamides: synthesis and electrochromic properties. J. Mater. Chem. 2007, 17 (10), 1007-1015. (49) Robin, M. B.; Day, P. Mixed valence chemistry-A survey and classification. In Advances in inorganic chemistry and radiochemistry, Vol. 10; Elsevier, 1968; pp 247-422. (50) Hush, N. Distance dependence of electron transfer rates. Coord. Chem. Rev. 1985, 64, 135-157. (51) Szeghalmi, A. V.; Erdmann, M.; Engel, V.; Schmitt, M.; Amthor, S.; Kriegisch, V.; Nöll, G.; Stahl, R.; Lambert, C.; Leusser, D. How delocalized is N, N, N', N'-tetraphenylphenylenediamine radical cation? An experimental and theoretical study on the electronic and molecular structure. J. Am. Chem. Soc. 2004, 126 (25), 7834-7845. (52) Liou, G. S.; Lin, H. Y.; Yen, H. J. Synthesis and characterization of electroactive hyperbranched aromatic polyamides based on A2B-type triphenylamine moieties. J. Mater. Chem. 2009, 19 (41), 7666-7673. (53) Yen, H. J.; Liou, G. S. Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem. 2012, 3 (2), 255-264. (54) Pan, B. C.; Chen, W. H.; Hsiao, S. H.; Liou, G. S. A facile approach to prepare porous polyamide films with enhanced electrochromic performance. Nanoscale 2018, 10 (35), 16613-16620. (55) Chiu, Y. W.; Pai, M. H.; Liou, G. S. Facile approach of porous electrochromic polyamide/ZrO2 films for enhancing redox switching behavior. ACS Appl. Mater. Interfaces. 2020, 12 (31), 35273-35281. (56) Chiu, Y. W.; Tan, W. S.; Yang, J. S.; Pai, M. H.; Liou, G. S. Electrochromic response capability enhancement with pentiptycene‐incorporated intrinsic porous polyamide films. Macromol. Rapid Commun. 2020, 41 (12), 2000186. (57) Pai, M. H.; Hu, C. C.; Liou, G. S. Enhancement of electrochromic switching properties with Tröger's base‐derived intrinsic microporous polyamide films. Macromol. Rapid Commun. 2021, 42 (23), 2100492. (58) Shao, Y. J.; Yen, T. C.; Hu, C. C.; Liou, G. S. Non-conjugated triarylamine-based intrinsic microporous polyamides for an electrochromic supercapacitor: diffusion dynamics and charge-discharge studies. J. Mater. Chem. A 2023, 11 (4), 1877-1885. (59) Choi, D.; Lee, M.; Kim, H.; Chu, W. S.; Chun, D. m.; Ahn, S. H.; Lee, C. S. Investigation of dry-deposited ion storage layers using various oxide particles to enhance electrochromic performance. Sol. Energy Mater. Sol. Cells. 2018, 174, 599-606. (60) Wang, X.; Chen, K.; de Vasconcelos, L. S.; He, J.; Shin, Y. C.; Mei, J.; Zhao, K. Mechanical breathing in organic electrochromics. Nat. Commun. 2020, 11 (1), 211. (61) Quy, V. H. V.; Kim, K. W.; Yeo, J.; Tang, X.; In, Y. R.; Jung, C.; Oh, S. M.; Kim, S. J.; Lee, S. W.; Moon, H. C. Tunable electrochromic behavior of biphenyl poly (viologen)-based ion gels in all-in-one devices. Org. Electron. 2022, 100, 106395. (62) Striepe, L.; Baumgartner, T. Viologens and their application as functional materials. Chem. - Eur. J. 2017, 23 (67), 16924-16940. (63) Liou, G. S.; Chang, C. W. Highly stable anodic electrochromic aromatic polyamides containing N, N, N', N'-tetraphenyl-p-phenylenediamine moieties: synthesis, electrochemical, and electrochromic properties. Macromolecules 2008, 41 (5), 1667-1674. (64) Liou, G. S.; Lin, K. H. Synthesis and characterization of a novel electrochromic aromatic polyamide from AB‐type triphenylamine‐based monomer. J. Polym. Sci., Part A: Polym. Chem. 2009, 47 (8), 1988-2001. (65) Murata, H.; Lahti, P. M. Synthesis and oxidation of triarylamine derivatives bearing hydrogen-bonding groups. J. Org. Chem. 2007, 72 (13), 4974-4977. (66) Wang, K. L.; Huang, S. T.; Hsieh, L. G.; Huang, G. S. Synthesis, optical and electrochemical properties of new hyperbranched poly(triphenylamine amide)s. Polymer 2008, 49 (19), 4087-4093. (67) Jeon, I. Y.; Noh, H. J.; Baek, J. B. Hyperbranched macromolecules: From synthesis to applications. Molecules 2018, 23 (3), 657. (68) Nabae, Y.; Mikuni, M.; Hayakawa, T.; Kakimoto, M. a. Synthesis of TEMPO functionalized polyimides by A2+B3 polymerization. J. Photopolym. Sci. Technol. 2014, 27 (2), 139-144. (69) Lobo, L. S.; Matsumoto, K.; Jikei, M.; Ikeda, S.; Okawa, H. Hyperbranched polyphenylene as an electrode for Li‐ion batteries. Energy Technol. 2021, 9 (10), 2100374. (70) Chao, D.; He, L.; Berda, E. B.; Wang, S.; Jia, X.; Wang, C. Multifunctional hyperbranched polyamide: synthesis and properties. Polymer 2013, 54 (13), 3223-3229. (71) Yen, H. J.; Guo, S. M.; Liou, G. S.; Chung, J. C.; Liu, Y. C.; Lu, Y. F.; Zeng, Y. Z. Mixed‐valence class I transition and electrochemistry of bis (triphenylamine)‐based aramids containing isolated ether‐linkage. J. Polym. Sci., Part A: Polym. Chem. 2011, 49 (17), 3805-3816. (72) Topal, S.; Ipek, O. S.; Sezer, E.; Ozturk, T. Electrochromic-hybrid energy storage material consisting of triphenylamine and dithienothiophene. Chem. Eng. J. 2022, 434, 133868. (73) Lv, X.; Yan, S.; Dai, Y.; Ouyang, M.; Yang, Y.; Yu, P.; Zhang, C. Ion diffusion and electrochromic performance of poly (4, 4', 4''-tris [4-(2-bithienyl)phenyl]amine) based on ionic liquid as electrolyte. Electrochim. Acta 2015, 186, 85-94. (74) Lu, Y.; Liang, J.; Deng, S.; He, Q.; Deng, S.; Hu, Y.; Wang, D. Hypercrosslinked polymers enabled micropore-dominant N, S Co-Doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy 2019, 65, 103993. (75) Huang, L. T.; Yen, H. J.; Liou, G. S. Substituent effect on electrochemical and electrochromic behaviors of ambipolar aromatic polyimides based on aniline derivatives. Macromolecules 2011, 44 (24), 9595-9610. (76) Fabretto, M.; Vaithianathan, T.; Hall, C.; Murphy, P.; Innis, P.; Mazurkiewicz, J.; Wallace, G. Colouration efficiency measurements in electrochromic polymers: The importance of charge density. Electrochem. Commun. 2007, 9 (8), 2032-2036. (77) Wu, J. T.; Liou, G. S. A novel panchromatic shutter based on an ambipolar electrochromic system without supporting electrolyte. Chem. Commun. 2018, 54 (21), 2619-2622. (78) Wang, M.; Fan, J.; Lu, H.; Huang, M.; Qiao, X.; Yang, J. Multiarm aniline oligomers: Molecular architecture, self-assembly, and electrochromic performance. J. Phys. Chem. C 2020, 124 (14), 7844-7852. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93516 | - |
| dc.description.abstract | 本研究設計與製備芳基胺單衍生物 (N, N-Bis(4-aminophenyl)-N′-(4-carboxyphenyl)-N′-(4-methoxyphenyl)-1,4-phenylenediamine) 之高原子經濟效應AB2型超支化聚醯胺(HPA)。合成的HPA以不同的封端劑進行修飾,以增加多段變色。這些具有固有微孔結構的電活性超支化聚醯胺HPA-TPA和HPA-B,電化學過程中能有效提升電解質的擴散性,並在不同施加電位下表現出多段的變色行為,縮短響應時間和高化學穩定性。值得注意的是HPA-TPA具有最大的固有微孔結構,表現出最突出的特性,如保持光學對比度、三段顏色變化、高著色效率、最短的響應時間和高穩定性。在這項研究中, HPA-TPA的電致變色在裝置表現出卓越的性能,最大著色效率(578 cm2/C)、最大響應速率(27.4% s-1)以及在經1000次切換後,仍保持優異的開關穩定性,具有高達99%的光學可逆性。 | zh_TW |
| dc.description.abstract | A high atomic efficiency AB2-type hyperbranched polyamide (HPA) derived from arylamine monomer (N, N-Bis(4-aminophenyl)-N′-(4-carboxyphenyl)-N′-(4-methoxy-phenyl)-1,4-phenylenediamine) is judiciously designed and prepared. Furthermore, the synthesized HPA is modified with different end-capping units to increase the intrinsic microporous structures. These electroactive HPAs (HPA-B and HPA-TPA) with intrinsic microporous structures exhibit increased counter-ion diffusivity in electrochemical processes, showing multicolored electrochromic behavior at various applied potentials, excellent electrochemical stability, and short switching response times. With the most significant intrinsic microporous structures, HPA-TPA showcased outstanding characteristics, such as a significant optical contrast ratio, three-stage color change, the highest coloration efficiency (CE), shortest switching response times, and high stability. In this investigation, electrochromic devices utilizing ECD-HPA-TPA exhibited remarkable performance, as evidenced by the maximum coloration efficiency (578 cm2/C), the rapid coloration (27.4% s-1), and remarkable switching stability, which persisted even after 1000 cycles, with a higher 99% reversibility in optical properties. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:19:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-05T16:19:00Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
ACKNOWLEDGEMENTS i ABSTRACT (in English) ii ABSTRACT (in Chinese) iii TABLE OF CONTENTS iv LIST OF FIGURES vii LIST OF SCHEMES xiv CHAPTER 1 Introduction 1 1.1 High-Performance Polymers (HPPs) 2 1.1.1 Aromatic Polyamide Synthesis 4 1.1.2 Purposeful Modification of Aromatic Polyamides 6 1.2 Hyperbranched Polymers (HBPs) 8 1.2.1 Degree of Branching 8 1.2.2 Properties of Hyperbranched Polymers 11 1.3 Electrochromism 13 1.3.1 A Brief History and Evolution of Electrochromism 13 1.3.2 Important Performance Parameters and Terminology for Electrochromism 15 1.3.3 Electrochromic Materials 18 1.3.4 Electrochromic Device Systems (ECDs) 29 1.4 Research Motivation 31 CHAPTER 2 Experimental Section 32 2.1 Materials 33 2.2 Monomer Synthesis 35 Synthesis of AB2-type Monomer (TPPA-AB2) 35 Synthesis of AB-type Monomer (TPPA-AB) 40 Model Compounds 46 2.3 Synthesis of Polyamides 48 Preparation of AB2 Hyperbranched Polyamide 48 Preparation of AB Linear Polyamide 49 2.4 Preparation of the Polymeric Films 50 2.5 Fabrication of the Electrochromic Devices (ECDs) 50 2.6 Measurement 51 CHAPTER 3 Results and Discussion 54 3.1 AB2 and AB Type Monomer Synthesis 55 3.2 Polyamide Synthesis 78 3.3 Polymer Characterization 89 Basic Characterization of Polyamides 89 Microporous Characteristics of the Polyamides 95 3.4 Electrochemical and Electrochromic Properties of Polymer Films 98 Electrochemical Properties 98 Spectroelectrochemistry and Electrochromic Properties 106 Measurement of n-Electrons Transferred for HPA-TPA 110 Electrochromic Switching Studies 116 3.5 Electrochromic Device 122 CHAPTER 4 Conclusion 132 REFERENCES 135 | - |
| dc.language.iso | en | - |
| dc.subject | 電致變色 | zh_TW |
| dc.subject | 固有微孔洞 | zh_TW |
| dc.subject | 芳基胺衍生物 | zh_TW |
| dc.subject | AB2超支化聚醯胺 | zh_TW |
| dc.subject | 響應速度提升 | zh_TW |
| dc.subject | switching capability enhancement | en |
| dc.subject | arylamine derivatives | en |
| dc.subject | electrochromism | en |
| dc.subject | intrinsic microporosity | en |
| dc.subject | AB2-type hyperbranched polyamide | en |
| dc.title | 新型芳香胺族AB2型超支化聚醯胺高分子之設計、合成與電致變色應用 | zh_TW |
| dc.title | Novel Arylamine-based AB2-type Hyperbranched Polyamide: Design, Synthesis, and Electrochromic Properties | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蕭勝輝;龔宇睿;張嘉文 | zh_TW |
| dc.contributor.oralexamcommittee | Sheng-Huei Hsiao;Yu-Ruei Kung;Cha-Wen Chang | en |
| dc.subject.keyword | 電致變色,響應速度提升,AB2超支化聚醯胺,芳基胺衍生物,固有微孔洞, | zh_TW |
| dc.subject.keyword | electrochromism,switching capability enhancement,AB2-type hyperbranched polyamide,arylamine derivatives,intrinsic microporosity, | en |
| dc.relation.page | 145 | - |
| dc.identifier.doi | 10.6342/NTU202401818 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| dc.date.embargo-lift | 2025-07-16 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 10.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
