請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93515完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧南佑 | zh_TW |
| dc.contributor.advisor | Nan-You Lu | en |
| dc.contributor.author | 曹恂如 | zh_TW |
| dc.contributor.author | Hsun-Ju Tsao | en |
| dc.date.accessioned | 2024-08-05T16:18:41Z | - |
| dc.date.available | 2024-08-06 | - |
| dc.date.copyright | 2024-08-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-12 | - |
| dc.identifier.citation | [1] Skamarock, W. C., et al. (2019). A description of the advanced research WRF version 4. NCAR Tech. Note ncar/tn-556+ str, 145.
[2] 行政院國家永續發展委員會,. “臺灣2050淨零排放路徑及策略總說明”. Retrieved 1 June, 2024,, from https://ncsd.ndc.gov.tw/ [3] Islam, T., et al. (2015). Tracking a tropical cyclone through WRF–ARW simulation and sensitivity of model physics. Natural Hazards, 76, 1473-1495. [4] Wang, Z., et al. (2013). Extreme dynamic responses of mw-level wind turbine tower in the strong typhoon considering wind-rain loads. Mathematical Problems in Engineering, 2013. [5] Cao, S., et al. (2009). Wind characteristics of a strong typhoon. Journal of Wind Engineering and Industrial Aerodynamics, 97(1), 11-21. [6] Li, L., et al. (2015). A comparative study of field measurements of the turbulence characteristics of typhoon and hurricane winds. Journal of Wind Engineering and Industrial Aerodynamics, 140, 49-66. [7] Kim, E., and Manuel, L. (2014). Hurricane-induced loads on offshore wind turbines with considerations for nacelle yaw and blade pitch control. Wind Engineering, 38(4), 413-423. [8] Hasselmann, K., et al. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A. [9] Wang, L., et al. (2019). Numerical Simulation of the Aeroelastic Response of Wind Turbines in Typhoons Based on the Mesoscale WRF Model. Sustainability, 12(1), 34. [10] Grell, G. A., et al. (1994). A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). [11] Done, J., et al. (2004). The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmospheric Science Letters, 5(6), 110-117. [12] Kain, J. S., et al. (2006). Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Weather and Forecasting, 21(2), 167-181. [13] Osuri, K. K., et al. (2012). Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean. Natural Hazards, 63, 1337-1359. [14] Wu, Z., et al. (2019). Sensitivity of WRF simulated typhoon track and intensity over the South China Sea to horizontal and vertical resolutions. Acta Oceanologica Sinica, 38, 74-83. [15] Group, T. W. (1988). The WAM model—A third generation ocean wave prediction model. Journal of Physical Oceanography, 18(12), 1775-1810. [16] Tolman, H. L. (1991). A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. Journal of Physical Oceanography, 21(6), 782-797. [17] Benoit, M., et al. (1997). Development of a third generation shallow-water wave model with unstructured spatial meshing Coastal Engineering 1996 (pp. 465-478). [18] Booij, N., et al. (1999). A third‐generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4), 7649-7666. [19] Ou, S.-H., et al. (2002). Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan. Ocean Engineering, 29(8), 947-971. [20] Suh, S. W., et al. (2015). An efficient early warning system for typhoon storm surge based on time-varying advisories by coupled ADCIRC and SWAN. Ocean Dynamics, 65, 617-646. [21] Sian, L. K., et al. (2020). Effects of model coupling on Typhoon Kalmaegi (2014) simulation in the South China sea. Atmosphere, 11(4), 432. [22] Li, J., et al. (2021). Impact of typhoons on floating offshore wind turbines: A case study of typhoon Mangkhut. Journal of Marine Science and Engineering, 9(05), 543. [23] 譚風, et al. (2012). 基於 WRF-SWAN 模式的韋帕颱風波浪場模擬. 水道港口, 33(1), 14-18. [24] Wang, Z., et al. (2019). Effect of the drag coefficient on a typhoon wave model. Journal of Oceanology and Limnology, 37(6), 1795-1804. [25] Luo, C., et al. (2023). Evaluation of the Effect of WRF Physical Parameterizations on Typhoon and Wave Simulation in the Taiwan Strait. Water, 15(8), 1526. [26] 4C Offshore. "Global Offshore Wind Speeds Rankings.". 4C Offshore. 4C Offshore. Retrieved 1 June,2024,, 2024, from https://www.4coffshore.com [27] Ooyama, K. V. (1990). A thermodynamic foundation for modeling the moist atmosphere. Journal of Atmospheric Sciences, 47(21), 2580-2593. [28] Arakawa, A., and Lamb, V. R. (1977). Computational design of the basic dynamical processes of the UCLA general circulation model. General Circulation Models of the Atmosphere, 17(Supplement C), 173-265. [29] Laprise, R. (1992). The Euler equations of motion with hydrostatic pressure as an independent variable. Monthly Weather Review, 120(1), 197-207. [30] Park, S.-H., et al. (2013). Evaluation of global atmospheric solvers using extensions of the Jablonowski and Williamson baroclinic wave test case. Monthly Weather Review, 141(9), 3116-3129. [31] Ke, S., et al. (2019). Aerodynamic performance and wind-induced responses of large wind turbine systems with meso-scale typhoon effects. Energies, 12(19), 3696. [32] Ko, M.-Y., et al. (2023). “Simulation Study of a Realistic Typhoon Event in Taiwan using a WRF-LES Coupled Model,”. Paper presented at the 10th PAAMES/AMEC 2023,, Kyoto, Japan. [33] de Leon, S. P., et al. (2011). Simulation of irregular waves in an offshore wind farm with a spectral wave model. Continental Shelf Research, 31(15), 1541-1557. [34] Team, S. (2009). SWAN, Scientific and Technical Documentation, SWAN Cycle III version 40.72 ABC. [35] Komen, G. (1994). Dynamics and modelling of ocean waves. Dynamics of Atmosphere and Oceans, 25(4), 276. [36] Liu, W.-C., and Huang, W.-C. (2023). Hindcasting and predicting surge heights and waves on the Taiwan coast using a hybrid typhoon wind and tide-surge-wave coupled model. Ocean Engineering, 276, 114208. [37] National Centers for Environmental Prediction, NCEP,. Retrieved 1 June, 2024, from https://www.ncep.noaa.gov/ [38] Gridded Bathymetry Data, GEBCO,. Retrieved 1 June, 2024,, from https://www.gebco.net/data_and_products/gridded_bathymetry_data/ | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93515 | - |
| dc.description.abstract | 隨著環境保護意識抬頭,各國接連宣布欲於2050年達到淨零碳排,加上能源需求仍不斷增加,再生能源因此蓬勃發展,臺灣也不例外。由於臺灣海峽擁有許多於世界名列前茅的優良風場,離岸風電於各種再生能源中更具有發展優勢,因此離岸風場的開拓勢在必行。不過臺灣位於易受颱風侵擾的中緯度西太平洋沿岸,颱風挾帶的極端風場及其對應生成之波浪會大幅提升離岸風機承受的負載,對離岸風電產業是一大威脅。
本研究建立一高可信度的颱風風浪模擬流程,以受廣泛使用的天氣研究與預報模式WRF (Weather Research and Forecasting)模擬颱風風場,並導入第三代近岸風浪模式SWAN (Simulating WAves Nearshore),針對臺灣鄰近海域進行颱風風浪模擬,結合兩個模擬模型以模擬出更貼近實際結果之波況變化。 研究中選定2017年之尼莎颱風為歷史案例分析,使用WRF模擬三種不同起始時間之颱風風場,並分別導入SWAN模型中,配合海床地形資料,計算不同極端風況變化下於臺灣附近海域生成之風浪。模擬結果分析所得波場中的重要指標如:示性波高、平均週期與平均波向,並將選定浮標及竹南海洋風場觀測塔位置之結果取出與實測資料進行比對,以驗證模擬結果準確度,並瞭解臺灣竹南海洋風場(Formosa 1)在受颱風影響下近岸海域風浪變化。 總結而言,本研究之模擬流程可成功模擬出極端風場侵襲下波場的變化,且捕捉之風場與波場特性與實際結果相近,於竹南觀測塔位置模擬所得之示性波高極值高估約0.5 m,週期則高估約1 s。綜合所有比對結果可發現整體模擬趨勢與各測站觀測結果相符,兩者間相關係數最高可達0.88,均方根誤差最低則是0.53。日後可將此流程之結果波場應用於離岸風機受力分析之環境參數,以將實際波況更佳的納入考量,提高分析結果的可靠度,降低實際工程可能遇到的風險。 | zh_TW |
| dc.description.abstract | With growing environmental awareness, many countries have announced their commitment to achieving net-zero carbon emissions by 2050. As the demand of energy has also increased with time, this leads to the significant development in renewable energy sources worldwide, with Taiwan being no exception. Since the Taiwan Strait has many excellent wind farms that are among the best in the world, offshore wind industry has more advantages in development among other renewable energy sources. Therefore, the development of offshore wind farms is imperative. However, Taiwan’s geographical location along the western Pacific coast poses many typhoon challenges for offshore wind farms. Extreme wind and extreme wave conditions generated by typhoons significantly increase the load on offshore wind turbines, posing a substantial threat to the offshore wind energy industry.
A highly reliable simulation process for typhoon-induced wind and wave conditions was established in the study. The widely used Weather Research and Forecasting (WRF) model was employed to simulate typhoon wind fields and the results were imported into the third-generation nearshore wave model, Simulating WAves Nearshore (SWAN). In this way, the wave induced by conducted typhoon wind could be well simulated in the coast areas near Taiwan. With the combination of two simulation models, the wave conditions were more accurate. Typhoon Nesat (2017) was selected as a historical case in this study. Using the WRF model, typhoon wind fields was simulated with three different initial time. These wind fields were then imported into SWAN model separately, and the bathymetric data was also taken into consideration to calculate wave conditions under three different extreme wind scenarios near Taiwan. Some characteristic wave parameters were analyzed, including significant wave height, mean wave period, and mean wave direction. Additionally, the simulation results were also compared with the measurements from selected buoys and the observation tower in Zhunan in order to validate the accuracy of the simulations, especially for the simulated wave changes in Formosa 1 offshore wind farm. In summary, the simulation process successfully captured the variations in wave conditions under extreme wind events. The simulated wind and wave characteristics closely aligned with actual observations. Notably, at the Zhunan observation tower location, the simulated significant wave height was overestimated by approximately 0.5 meters, while the period is overestimated by around 1 second. Overall, the simulation trends correlated well with the observed data, with a maximum correlation coefficient of 0.88 and a lowest root mean square error (RMSE) of 0.53. In the future, we can apply the resulting wave fields as environmental parameters for offshore wind turbine load analysis, enhancing the reliability of engineering assessments and mitigating potential risks in practical projects. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:18:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-05T16:18:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目次 v 圖次 vii 表次 ix 縮寫表 x 1 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 論文架構 5 2 第二章 模擬方法與流程 7 2.1 竹南海洋觀測塔 7 2.2 WRF模式 7 2.2.1 WRF方程式概述 8 2.2.2 WRF參數設定 9 2.2.3 WRF起始點測試 10 2.3 SWAN模型 12 2.3.1 SWAN方程式概述 12 2.3.2 SWAN參數設定 14 2.3.3 SWAN網格測試 15 2.4 模擬流程 16 3 第三章 中尺度風場模擬結果 28 3.1 尼莎颱風模擬風場 28 3.2 觀測塔資料與模擬資料比對 29 3.3 不同起始時間之模擬結果比較 30 4 第四章 近岸波浪模擬結果 41 4.1 近岸波浪模擬模型驗證 41 4.2 近岸波浪模擬結果 42 4.2.1 示性波高與波向 42 4.2.2 方向波譜 43 4.3 觀測塔與模擬資料比對 45 4.3.1 風速與波高 45 4.3.2 不同觀測位置之資料 45 4.3.3 觀測資料與模擬結果差異分析 47 5 第五章 結論與建議 62 5.1 結果與討論 62 5.2 未來展望 62 參考文獻 64 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 離岸風場 | zh_TW |
| dc.subject | 颱風 | zh_TW |
| dc.subject | 風浪 | zh_TW |
| dc.subject | WRF | zh_TW |
| dc.subject | SWAN | zh_TW |
| dc.subject | WRF | en |
| dc.subject | SWAN | en |
| dc.subject | typhoon | en |
| dc.subject | wave | en |
| dc.subject | offshore wind farm | en |
| dc.title | 以WRF-SWAN模擬臺灣離岸風場於颱風下之近岸波場 | zh_TW |
| dc.title | Simulation of Nearshore Wave Field under Typhoon in a Taiwan Offshore Wind Farm with WRF-SWAN Modeling | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林宗岳;吳亦莊 | zh_TW |
| dc.contributor.oralexamcommittee | Tsung-Yueh Lin;Yi-Chuang Wu | en |
| dc.subject.keyword | WRF,SWAN,颱風,風浪,離岸風場, | zh_TW |
| dc.subject.keyword | WRF,SWAN,typhoon,wave,offshore wind farm, | en |
| dc.relation.page | 66 | - |
| dc.identifier.doi | 10.6342/NTU202401723 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2029-07-12 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 7.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
