Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93499
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳靜宜zh_TW
dc.contributor.advisorChing-Yi Chenen
dc.contributor.author徐銘駿zh_TW
dc.contributor.authorMing-Chun Hsuen
dc.date.accessioned2024-08-05T16:13:42Z-
dc.date.available2024-08-06-
dc.date.copyright2024-08-05-
dc.date.issued2024-
dc.date.submitted2024-07-21-
dc.identifier.citationLushchak, V.I., Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions, 2014. 224:164-175.
Dayem, A.A., M.K. Hossain, S.B. Lee, K. Kim, S.K. Saha, G.M. Yang, H.Y. Choi, and S.G. Cho, The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. International Journal of Molecular Sciences, 2017. 18(1):120.
Le Gal, K., E.E. Schmidt, and V.I. Sayin, Cellular redox homeostasis. Antioxidants, 2021. 10(9):1377.
Volk, N. and B. Lacy, Anatomy and physiology of the small bowel. Gastrointestinal Endoscopy Clinics of North America, 2017. 27(1):1-13.
Assimakopoulos, S.F., C. Triantos, I. Maroulis, and C. Gogos, The role of the gut barrier function in health and disease. Gastroenterology Res, 2018. 11(4):261-263.
Martínez-Miró, S., F. Tecles, M. Ramón, D. Escribano, F. Hernández, J. Madrid, J. Orengo, S. Martínez-Subiela, X. Manteca, and J.J. Cerón, Causes, consequences and biomarkers of stress in swine: an update. BMC Veterinary Research, 2016. 12(1):171.
Jensen, P., Observations on the maternal-behavior of free-ranging domestic pigs. Applied Animal Behaviour Science, 1986. 16(2):131-142.
Xiong, X., B. Tan, M. Song, P. Ji, K. Kim, Y.L. Yin, and Y.H. Liu, Nutritional intervention for the intestinal development and health of weaned pigs. Frontiers in Veterinary Science, 2019. 6:46.
Lallès, J.P., P. Bosi, H. Smidt, and C.R. Stokes, Nutritional management of gut health in pigs around weaning. Proceedings of the Nutrition Society, 2007. 66(2):260-268.
Zhu, L.H., K.L. Zhao, X.L. Chen, and J.X. Xu, Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs. Journal of Animal Science, 2012. 90(8):2581-2589.
Hu, C.H., K. Xiao, Z.S. Luan, and J. Song, Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. Journal of Animal Science, 2013. 91(3):1094-1101.
Elmore, S., Apoptosis: a review of programmed cell death. Toxicologic Pathology, 2007. 35(4):495-516.
Lossi, L., The concept of intrinsic versus extrinsic apoptosis. Biochemical Journal, 2022. 479(3):357-384.
Wu, C.C. and S.B. Bratton, Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxidants & Redox Signaling, 2013. 19(6):546-558.
Ruemmele, F.M., E.G. Seidman, and M.J. Lentze, Regulation of intestinal epithelial cell apoptosis and the pathogenesis of inflammatory bowel disorders. Journal of Pediatric Gastroenterology and Nutrition, 2002. 34(3):254-260.
Modina, S.C., L. Aidos, R. Rossi, P. Pocar, C. Corino, and A. Di Giancamillo, Stages of gut development as a useful tool to prevent gut alterations in piglets. Animals, 2021. 11(5):1412.
Nunes, T., C. Bernardazzi, and H.S. de Souza, Cell death and inflammatory bowel diseases: apoptosis, necrosis, and autophagy in the intestinal epithelium. Biomed Research International, 2014. 2014:218493.
Subramanian, S., H.F. Bu, P.M. Chou, X. Wang, H. Geng, S. Akhtar, C. Du, S.C. Tan, J.E. Ideozu, A. Tulluri, Y. Sun, W.X. Ding, I.G. De Plaen, and X.D. Tan, Scattered crypt intestinal epithelial cell apoptosis induces necrotizing enterocolitis via intricate mechanisms. Cellular and Molecular Gastroenterology and Hepatology, 2024. 18(3):101364.
Novais, A.K., K. Deschêne, Y. Martel-Kennes, C. Roy, J.P. Laforest, M. Lessard, J.J. Matte, and J. Lapointe, Weaning differentially affects mitochondrial function, oxidative stress, inflammation and apoptosis in normal and low birth weight piglets. PloS One, 2021. 16(2):e0247188.
Li, B.F., X.L. Zhang, Q.Z. Zhang, T.H. Zheng, Q.H. Li, S.W. Yang, J.Y. Shao, W.T. Guan, and S.H. Zhang, Nutritional strategies to reduce intestinal cell apoptosis by alleviating oxidative stress. Nutrition Reviews, 2024.
Parzych, K.R. and D.J. Klionsky, An overview of autophagy: morphology, mechanism, and regulation. Antioxidants & Redox Signaling, 2014. 20(3):460-473.
Wang, L.M., D.J. Klionsky, and H.M. Shen, The emerging mechanisms and functions of microautophagy. Nature Reviews Molecular Cell Biology, 2023. 24(3):186-203.
Kocot, A.M. and B. Wroblewska, Nutritional strategies for autophagy activation and health consequences of autophagy impairment. Nutrition, 2022. 130-104:111686.
Kim, J., M. Kundu, B. Viollet, and K.L. Guan, AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology, 2011. 13(2):132-U171.
Mijaljica, D., M. Prescott, and R.J. Devenish, The intriguing life of autophagosomes. International Journal of Molecular Sciences, 2012. 13(3):3618-3635.
Haq, S., J. Grondin, S. Banskota, and W.I. Khan, Autophagy: roles in intestinal mucosal homeostasis and inflammation. Journal of Biomedical Science, 2019. 26(1):19.
Nighot, P.K., C.A.A. Hu, and T.Y. Ma, Autophagy enhances intestinal epithelial tight junction barrier function by targeting Claudin-2 protein degradation. Journal of Biological Chemistry, 2015. 290(11):7234-7246.
Wang, H., H. Li, X.X. Chen, and K.H. Huang, ERK1/2-mediated autophagy is essential for cell survival under ochratoxin a exposure in IPEC-J2 cells. Toxicology and Applied Pharmacology, 2018. 360:38-44.
Zhang, S.J., X. Li, L. Li, and X.H. Yan, Autophagy up-regulation by early weaning in the liver, spleen and skeletal muscle of piglets. British Journal of Nutrition, 2011. 106(2):213-217.
Liao, S.M., S.G. Tang, M.N. Chang, M. Qi, J.J. Li, B. Tan, Q. Gao, S. Zhang, X.Z. Li, Y.L. Yin, P. Sun, and Y.L. Tang, Chloroquine downregulation of intestinal autophagy to alleviate biological stress in early-weaned piglets. Animals, 2020. 10(2):290.
Tang, W.J., J.L. Liu, Y.F. Ma, Y.S. Wei, J.X. Liu, and H.F. Wang, Impairment of intestinal barrier function induced by early weaning autophagy and apoptosis associated with gut microbiome and metabolites. Frontiers in Immunology, 2021. 12:804870.
Nolfi-Donegan, D., A. Braganza, and S. Shiva, Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol, 2020. 37:101674.
Zhao, R.Z., S. Jiang, L. Zhang, and Z.B. Yu, Mitochondrial electron transport chain, ROS generation and uncoupling (Review). International Journal of Molecular Medicine, 2019. 44(1):3-15.
Ho, G.T. and A.L. Theiss, Mitochondria and inflammatory bowel diseases: toward a stratified therapeutic intervention. Annual Review of Physiology, 2022. 84:435-459.
Chan, D.C., Mitochondrial dynamics and its involvement in disease. Annual Review of Pathology: Mechanisms of Disease, Vol 15, 2020, 2020. 15:235-259.
Sui, G.Y., F. Wang, J. Lee, and Y.S. Roh, Mitochondrial control in inflammatory gastrointestinal diseases. International Journal of Molecular Sciences, 2022. 23(23):14890.
Palikaras, K., E. Lionaki, and N. Tavernarakis, Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nature Cell Biology, 2018. 20(9):1013-1022.
Haque, P.S., N. Kapur, T.A. Barrett, and A.L. Theiss, Mitochondrial function and gastrointestinal diseases. Nature Reviews Gastroenterology & Hepatology, 2024.
Jackson, D.N., M. Panopoulos, W.L. Neumann, K. Turner, B.L. Cantarel, L. Thompson-Snipes, T. Dassopoulos, L.A. Feagins, R.F. Souza, J.C. Mills, R.S. Blumberg, K. Venuprasad, W.E. Thompson, and A.L. Theiss, Mitochondrial dysfunction during loss of prohibitin 1 triggers Paneth cell defects and ileitis. Gut, 2020. 69(11):1928-+.
Alula, K.M., Y. Delgado-Deida, R. Callahan, A. Till, L. Underwood, W.E. Thompson, R.F. Souza, T. Dassopoulos, J. Onyiah, K. Venuprasad, and A.L. Theiss, Inner mitochondrial membrane protein Prohibitin 1 mediates Nix-induced, Parkin-independent mitophagy. Scientific Reports, 2023. 13(1):18.
Cao, S.T., C.C. Wang, H. Wu, Q.H. Zhang, L.F. Jiao, and C.H. Hu, Weaning disrupts intestinal antioxidant status, impairs intestinal barrier and mitochondrial function, and triggers mitophagy in piglets. Journal of Animal Science, 2018. 96(3):1073-1083.
Qiao, L., X.N. Dou, X.F. Song, J.J. Chang, H.B. Yi, and C.L. Xu, Targeting mitochondria with antioxidant nutrients for the prevention and treatment of postweaning diarrhea in piglets. Animal Nutrition, 2023. 15:275-287.
Sharifi-Rad, M., E.M. Varoni, M. Iriti, M. Martorell, W.N. Setzer, M.D. Contreras, B. Salehi, A. Soltani-Nejad, S. Rajabi, M. Tajbakhsh, and J. Sharifi-Rad, Carvacrol and human health: a comprehensive review. Phytotherapy Research, 2018. 32(9):1675-1687.
Imran, M., M. Aslam, S.A. Alsagaby, F. Saeed, I. Ahmad, M. Afzaal, M.U. Arshad, M.A. Abdelgawad, A.H. El-Ghorab, A. Khames, M.A. Shariati, A. Ahmad, M. Hussain, A. Imran, and S. Islam, Therapeutic application of carvacrol: a comprehensive review. Food Science & Nutrition, 2022. 10(11):3544-3561.
Kachur, K. and Z. Suntres, The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition, 2020. 60(18):3042-3053.
van Alphen, L.B., S.A. Burt, A.K.J. Veenendaal, N.M.C. Bleumink-Pluym, and J.P.M. van Putten, The natural antimicrobial carvacrol inhibits motility and infection of epithelial cells. PloS One, 2012. 7(9):e45343.
Liu, F., P.P. Jin, Z.L. Sun, L.H. Du, D.Y. Wang, T. Zhao, and M.P. Doyle, Carvacrol oil inhibits biofilm formation and exopolysaccharide production of enterobacter cloacae. Food Control, 2021. 119:107473.
Gholijani, N., M. Gharagozloo, S. Farjadian, and Z. Amirghofran, Modulatory effects of thymol and carvacrol on inflammatory transcription factors in lipopolysaccharide-treated macrophages. Journal of Immunotoxicology, 2016. 13(2):157-164.
Somensi, N., T.K. Rabelo, A.G. Guimaraes, L.J. Quintans, A.A.D. Araújo, J.C.F. Moreira, and D.P. Gelain, Carvacrol suppresses LPS-induced pro-inflammatory activation in RAW 264.7 macrophages through ERK1/2 and NF-kB pathway. International Immunopharmacology, 2019. 75:105743.
Arigesavan, K. and G. Sudhandiran, Carvacrol exhibits anti-oxidant and anti-inflammatory effects against 1, 2-dimethyl hydrazine plus dextran sodium sulfate induced inflammation associated carcinogenicity in the colon of Fischer 344 rats. Biochemical and Biophysical Research Communications, 2015. 461(2):314-320.
Liu, M., G. Mao, X.L. Zhou, X.M. Wan, F. Zhang, L. Dai, Y. Chen, N. Dai, Y. Zhang, and Q. Du, Carvacrol ameliorates DSS-induced intestinal inflammation in rats by suppressing the TLR4/NF-κB pathway. Natural Product Communications, 2022. 17(10).
Slamenová, D., E. Horváthová, M. Sramková, and L. Marsálková, DNA-protective effects of two components of essential plant oils carvacrol. and thymol on mammalian cells cultured in vitro. Neoplasma, 2007. 54(2):108-112.
Chenet, A.L., A.R. Duarte, F.J.S. de Almeida, C.M.B. Andrade, and M.R. de Oliveira, Carvacrol depends on heme oxygenase-1 (HO-1) to exert antioxidant, anti-inflammatory, and mitochondria-related protection in the human neuroblastoma SH-SY5Y cells line exposed to hydrogen peroxide. Neurochemical Research, 2019. 44(4):884-896.
Sridhar, M., V. Thammaiah, and R.U. Suganthi, Evaluation of carvacrol in ameliorating aflatoxin induced changes with reference to growth and oxidative stress in broiler chickens. Animal Nutrition and Feed Technology, 2016. 16(2):283-296.
Gupta, R. and S. Sharma, Role of alternatives to antibiotics in mitigating the antimicrobial resistance crisis. Indian Journal of Medical Research, 2022. 156(3):464-477.
Wei, H.K., H.X. Xue, Z.X. Zhou, and J. Peng, A carvacrol-thymol blend decreased intestinal oxidative stress and influenced selected microbes without changing the messenger RNA levels of tight junction proteins in jejunal mucosa of weaning piglets. Animal, 2017. 11(2):193-201.
Huycke, M.M. and D.R. Moore, In vivo production of hydroxyl radical by colonizing the intestinal tract using aromatic hydroxylation. Free Radical Biology and Medicine, 2002. 33(6):818-826.
Sun, J., X.L. Hu, G.W. Le, and Y.H. Shi, Lactobacilli prevent hydroxy radical production and inhibit and growth in system mimicking colon fermentation. Letters in Applied Microbiology, 2010. 50(3):264-269.
Xu, C.C., S.F. Yang, L.H. Zhu, X. Cai, Y.S. Sheng, S.W. Zhu, and J.X. Xu, Regulation of N-acetyl cysteine on gut redox status and major microbiota in weaned piglets. Journal of Animal Science, 2014. 92(4):1504-1511.
Zhao, B.C., T.H. Wang, J. Chen, B.H. Qiu, Y.R. Xu, Q. Zhang, J.J. Li, C.J. Wang, Q.F. Nie, and J.L. Li, Effects of dietary supplementation with a carvacrol-cinnamaldehyde-thymol blend on growth performance and intestinal health of nursery pigs. Porcine Health Management, 2023. 9(1):24.
Vergauwen, H., The IPEC-J2 cell line, in The Impact of Food Bioactives on Health: in vitro and ex vivo models, K. Verhoeckx, et al., Editors. 2015: Cham (CH). 125-134.
Xu, Y.F., Y.X. Xie, Z.C. Wu, H.F. Wang, Z.H. Chen, J.N. Wang, and W.B. Bao, Protective effects of melatonin on deoxynivalenol-induced oxidative stress and autophagy in IPEC-J2 cells. Food and Chemical Toxicology, 2023. 177:113803.
Liang, J.H., Y. Zhou, X.Y. Cheng, J.Q. Chen, H.B. Cao, X.Q. Guo, C.Y. Zhang, Y. Zhuang, and G.L. Hu, Baicalin attenuates H2O2-induced oxidative stress by regulating the AMPK/Nrf2 signaling pathway in IPEC-J2 cells. International Journal of Molecular Sciences, 2023. 24(11):9435.
Wang, J., M.X. Chen, S.X. Wang, X. Chu, and H.F. Ji, Identification of phytogenic compounds with antioxidant action that protect porcine intestinal epithelial cells from hydrogen peroxide induced oxidative damage. Antioxidants, 2022. 11(11):2134.
Yuan, Z.H., M.R. Yang, Z.G. Liang, C.L. Yang, X.Y. Kong, Y. Wu, S.Q. Wang, H. Fan, C. Ning, W.G. Xiao, Z.L. Sun, and J. Wu, PI3K/AKT/mTOR, NF-ΚB and ERS pathway participated in the attenuation of H2O2-induced IPEC-J2 cell injury by koumine. Journal of Ethnopharmacology, 2023. 304:116028.
Hu, M.Y., L. Zhang, H.P. Jia, C.Y. Xue, L. Zhao, N. Dong, and A.S. Shan, Oleanolic acid attenuates hydrogen peroxide-induced apoptosis of IPEC-J2 cells through suppressing c-Jun and MAPK pathway. Journal of Biochemical and Molecular Toxicology, 2024. 38(1):e23538.
Aristatile, B., K.S. Al-Numair, A.H. Al-Assaf, C. Veeramani, and K.V. Pugalendi, Protective effect of carvacrol on oxidative stress and cellular DNA damage induced by UVB irradiation in human peripheral lymphocytes. Journal of Biochemical and Molecular Toxicology, 2015. 29(11):497-507.
Gunes-Bayir, A., E.M. Guler, M.G. Bilgin, I.S. Ergun, A. Kocyigit, and A. Dadak, Anti-inflammatory and antioxidant effects of carvacrol on N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) induced gastric carcinogenesis in wistar rats. Nutrients, 2022. 14(14):2848.
Wang, Y.J., Y. Chen, X.Y. Zhang, Y.P. Lu, and H.X. Chen, New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. Journal of Functional Foods, 2020. 75:104248.
Zou, Y., J. Wang, J. Peng, and H.K. Wei, Oregano essential oil induces SOD1 and GSH expression through Nrf2 activation and alleviates hydrogen peroxide-induced oxidative damage in IPEC-J2 cells. Oxidative Medicine and Cellular Longevity, 2016. 2016:5987183.
Shah, S., K. Pushpa Tryphena, G. Singh, A. Kulkarni, P. Pinjala, and D. Kumar Khatri, Neuroprotective role of carvacrol via Nrf2/HO-1/NLRP3 axis in rotenone-induced PD mice model. Brain Research, 2024. 1836:148954.
Arkali, G., M. Aksakal, and S.Ö. Kaya, Protective effects of carvacrol against diabetes-induced reproductive damage in male rats: modulation of Nrf2/HO-1 signalling pathway and inhibition of Nf-kB-mediated testicular apoptosis and inflammation. Andrologia, 2021. 53(2).
Hsu, J.E., Effects of essential oil mixtures on fecal odor and plasma healthy biomarkers of pigs, in Department of Animal Science and Technology. 2020, National Taiwan University.
Vona, R., L. Pallotta, M. Cappelletti, C. Severi, and P. Matarrese, The impact of oxidative stress in human pathology: focus on gastrointestinal disorders. Antioxidants, 2021. 10(2):201.
Liu, S., M. Song, W. Yun, J. Lee, C. Lee, W. Kwak, N. Han, H. Kim, and J. Cho, Effects of oral administration of different dosages of carvacrol essential oils on intestinal barrier function in broilers. Journal of Animal Physiology and Animal Nutrition, 2018. 102(5):1257-1265.
Mo, K.B., W.A. Yu, J. Li, Y.X. Zhang, Y. Xu, X.H. Huang, and H.J. Ni, Dietary supplementation with a microencapsulated complex of thymol, carvacrol, and cinnamaldehyde improves intestinal barrier function in weaning piglets. Journal of the Science of Food and Agriculture, 2023. 103(4):1994-2003.
Omonijo, F.A., S.X. Liu, Q.R. Hui, H. Zhang, L. Lahaye, J.C. Bodin, J.S. Gong, M. Nyachoti, and C.B. Yang, Thymol improves barrier function and attenuates inflammatory responses in porcine intestinal epithelial cells during lipopolysaccharide (LPS)-induced inflammation. Journal of Agricultural and Food Chemistry, 2019. 67(2):615-624.
Wang, X.H., J. Zhao, Z. Han, and F. Tang, Protective effects of Semen Crotonis Pulveratum on trinitrobenzene sulphonic acid-induced colitis in rats and H2O2-induced intestinal cell apoptosis. International Journal of Molecular Medicine, 2015. 35(6):1699-1707.
Zhang, H., X.Y. Liu, Y.T. Fan, Y. Yu, J.J. Loor, M. Elsabagh, A. Peng, and H.R. Wang, L-arginine alleviates hydrogen peroxide-induced oxidative damage in ovine intestinal epithelial cells by regulating apoptosis, mitochondrial function, and autophagy. Journal of Nutrition, 2021. 151(4):1038-1046.
Zhu, L.H., J.X. Xu, S.W. Zhu, X. Cai, S.F. Yang, X.L. Chen, and Q. Guo, Gene expression profiling analysis reveals weaning-induced cell cycle arrest and apoptosis in the small intestine of pigs. Journal of Animal Science, 2014. 92(3):996-1006.
Yuan, Z.H., Z.N. Liang, J.N. Yi, X.J. Chen, R.F. Li, Y. Wu, J. Wu, and Z.L. Sun, Protective effect of koumine, an alkaloid from Gelsemium Sempervirens, on injury induced by H2O2 in IPEC-J2 cells. International Journal of Molecular Sciences, 2019. 20(3):754.
Chen, Y.A., H. Zhang, S.L. Ji, P.L. Jia, Y.P. Chen, Y. Li, and T. Wang, Resveratrol and its derivative pterostilbene attenuate oxidative stress-induced intestinal injury by improving mitochondrial redox homeostasis and function via SIRT1 signaling. Free Radical Biology and Medicine, 2021. 177:1-14.
Novak, E.A. and K.P. Mollen, Mitochondrial dysfunction in inflammatory bowel disease. Frontiers in Cell and Developmental Biology, 2015. 3:62.
Fleury, C., B. Mignotte, and J.L. Vayssière, Mitochondrial reactive oxygen species in cell death signaling. Biochimie, 2002. 84(2-3):131-141.
Mancini, N.L., L. Goudie, W. Xu, R. Sabouny, S. Rajeev, A. Wang, N. Esquerre, A. Al Rajabi, T.S. Jayme, E.V. Bernandes, Y. Nasser, J.G.P. Ferraz, T. Shutt, J. Shearer, and D.M. McKay, Perturbed mitochondrial dynamics is a novel feature of colitis that can be targeted to lessen disease. Cellular and Molecular Gastroenterology and Hepatology, 2020. 10(2):287-307.
Zhao, G.J., K.Q. Cao, C.Q. Xu, A.F. Sun, W. Lu, Y. Zheng, H.X. Li, G.L. Hong, B. Wu, Q.M. Qiu, and Z.Q. Lu, Crosstalk between mitochondrial fission and oxidative stress in paraquat-induced apoptosis in mouse alveolar Type II cells. International Journal of Biological Sciences, 2017. 13(7):888-900.
Wu, S.N., F.F. Zhou, Z.Z. Zhang, and D. Xing, Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. Febs Journal, 2011. 278(6):941-954.
Zhang, H.L., Z.N. Pan, J.Q. Ju, C.H. Xing, X.H. Li, M.M. Shan, and S.C. Sun, DRP1 deficiency induces mitochondrial dysfunction and oxidative stress-mediated apoptosis during porcine oocyte maturation. Journal of Animal Science and Biotechnology, 2020. 11(1):77.
Favaro, G., V. Romanello, T. Varanita, M.A. Desbats, V. Morbidoni, C. Tezze, M. Albiero, M. Canato, G. Gherardi, D. De Stefani, C. Mammucari, B. Blaauw, S. Boncompagni, F. Protasi, C. Reggiani, L. Scorrano, L. Salviati, and M. Sandri, DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nature Communications, 2019. 10(1):2576.
Denton, D. and S. Kumar, Autophagy-dependent cell death. Cell Death and Differentiation, 2019. 26(4):605-616.
Chen, Y., E. McMillan-Ward, J. Kong, S.J. Israels, and S.B. Gibson, Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death and Differentiation, 2008. 15(1):171-182.
Simsek, H., C. Gür, S. Kücükler, M. Ileritürk, N. Akaras, M. Öz, and F.M. Kandemir, Carvacrol reduces mercuric chloride-induced testicular toxicity by regulating oxidative stress, inflammation, apoptosis, autophagy, and histopathological changes. Biological Trace Element Research, 2023.
Spalletta, S., V. Flati, E. Toniato, J. Di Gregorio, A. Marino, L. Pierdomenico, M. Marchisio, G. D'Orazi, I. Cacciatore, and I. Robuffo, Carvacrol reduces adipogenic differentiation by modulating autophagy and ChREBP expression. PloS One, 2018. 13(11):e0206894.
Arruri, V.K., C. Gundu, A.K. Kalvala, B. Sherkhane, D.K. Khatri, and S.B. Singh, Carvacrol abates NLRP3 inflammasome activation by augmenting Keap1/Nrf-2/p62 directed autophagy and mitochondrial quality control in neuropathic pain. Nutritional Neuroscience, 2022. 25(8):1731-1746.
Rena, G., D.G. Hardie, and E.R. Pearson, The mechanisms of action of metformin. Diabetologia, 2017. 60(9):1577-1585.
Lu, G.L., Z. Wu, J. Shang, Z.X. Xie, C.R. Chen, and C.N. Zhang, The effects of metformin on autophagy. Biomedicine and Pharmacotherapy, 2021. 137:111286.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93499-
dc.description.abstract早期離乳為現代養豬產業中降低生產成本之常見手段,然而,在離乳的過程中經常會造成仔豬嚴重的緊迫,進而造成腸道的氧化壓力及功能受損,導致仔豬之生長表現降低,影響經濟利益。香芹酚(carvacrol)為一種具有酚類、單萜結構之天然精油,過去許多研究已經證實了其對於仔豬腸道之抗氧化及抗發炎功效。然而,過去的研究多採用成分複雜之粗萃或混合精油,導致香芹酚對於豬隻腸道的具體保護機制仍不明確。因此,本研究之目的在於透過體外模型,探討香芹酚在離乳誘導之氧化壓力下對於豬隻腸道潛在的調控路徑。
在本研究中,我們以 H2O2 (hydrogen peroxide)處理豬隻腸道上皮細胞(IPEC-J2, porcine intestinal epithelial cells),誘導嚴重之腸道氧化壓力,並在此體外模型中探討香芹酚在氧化壓力下可能的保護機制。結果指出,香芹酚可以在 H2O2 誘導的氧化壓力下顯著提升細胞存活率、減少細胞凋亡(apoptosis),並且降低超氧化物(ROS, reactive oxygen species)及脂質過氧化物(MDA, malondialdehyde)之含量,顯示香芹酚在 H2O2 處理的情況下可以幫助 IPEC-J2 存活並且減緩過度的氧化壓力。並且,香芹酚在 H2O2 處理的情況下也能夠顯著降低粒線體 ROS 生成及提升檸檬酸合成酶(citrate synthase)之活性,顯示香芹酚可以在氧化壓力下有助於改善 IPEC-J2 細胞之粒線體功能。此外,我們進一步發現香芹酚在 H2O2 處理的情況下會明顯減少溶酶體(lysosomes)及自噬溶酶體(autolysosomes)之堆積,並顯著降低自噬(autophagy)相關指標 LC3II/I (Light chain 3)之比值。同時也發現,香芹酚可以在 H2O2 處理的情況下顯著降低粒線體自噬(mitophagy)相關指標 PINK1 (PTEN-induced kinase 1)之蛋白質表現量,顯示香芹酚可能會在氧化壓力下調控 IPEC-J2 細胞中的自噬作用。最後,我們以二甲雙胍(metformin)作為自噬活化劑,以探討香芹酚在氧化壓力下是否參與調控自噬作用。結果指出,在香芹酚及 H2O2 處理下,活化自噬作用會顯著造成 IPEC-J2 細胞存活率降低及 MDA 含量上升,證實香芹酚對於 IPEC-J2 細胞之保護功效,需仰賴其對於自噬作用的調控機制。
綜上所述,本研究成功證實了香芹酚對於豬隻腸道上皮細胞 IPEC-J2 之保護效果,可能是透過緩解腸道過度的自噬作用以達到其抗氧化之功效,此結果也間接指出了香芹酚改善離乳仔豬腸道健康的可能機制。
zh_TW
dc.description.abstractEarly weaning is a common practice to reduce the cost in the intensive pig industry. But piglets usually experience severe stress during this process and result in intestinal oxidative stress which further cause poor growth performance due to impaired intestinal function. Carvacrol is a natural essential oil with a phenolic monoterpene structure and its anti-oxidative and anti-inflammatory abilities on the intestine of piglets have been proposed in many studies. However, the underlying mechanisms of its protection on piglet intestines under oxidative stress are still unclear. The aim of this study is to investigate the possible pathway of carvacrol involved in the porcine intestine under oxidative stress via an in vitro model.
In this study, porcine intestinal epithelium cells (IPEC-J2) were treated with carvacrol and hydrogen peroxide (H2O2), an oxidative stress inducer, to investigate the protective mechanisms of carvacrol under oxidative stress. We found that carvacrol ameliorated H2O2-induced cell viability loss, apoptosis, and oxidative stress markers, intracellular ROS (reactive oxygen species) and MDA (malondialdehyde) levels, indicating the protective ability of carvacrol under oxidative stress in IPEC-J2 cells. Consistently, carvacrol significantly reduced mitochondrial ROS generation and increased citrate synthase activity during H2O2 treatment, indicating carvacrol protects mitochondrial function in IPEC-J2 cells during oxidative stress. Furthermore, carvacrol significantly attenuated the increase of autophagy marker, LC3-II to I (Light chain 3) ratio, and reduced the accumulation of lysosomes and autolysosomes induced by H2O2. Also, the increased protein expression of mitophagy marker, PINK1 (PTEN-induced kinase 1), induced by H2O2 was also significantly reduced by carvacrol treatment. These results indicated carvacrol effectively regulated oxidative stress-induced excessive autophagy. Finally, metformin was used as an autophagy activator to clarify the involvement of carvacrol in the autophagic pathway. Activation of autophagy by metformin significantly diminished carvacrol’s protection in cell viability and MDA level under H2O2 treatment, indicating modulation of autophagy is necessary for carvacrol’s protective function in IPEC-J2 cells during oxidative stress.
In conclusion, this study revealed the underlying mechanism that carvacrol exerted its anti-oxidative ability in porcine intestinal epithelium cells via relieving excessive autophagy during weaning stress.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:13:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-05T16:13:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
ABBREVIATIONS xi
Chapter 1 Introduction 1
1.1 Oxidative stress and intestinal health 1
1.1.1 Oxidative stress 1
1.1.2 Weaning stress induce intestinal oxidative stress in piglets 2
1.1.3 Intestinal oxidative stress and cell apoptosis 2
1.1.4 Intestinal oxidative stress and autophagy 4
1.2 Mitochondria and intestinal function 5
1.2.1 Mitochondria and ROS generation 5
1.2.2 Mitochondrial dynamics and quality regulation 6
1.2.3 Intestinal mitochondrial dysfunction and oxidative stress 6
1.3 Protective effects of carvacrol 8
1.3.1 Bioactivities of carvacrol 8
1.3.2 Use of carvacrol as feed additive in pig health 9
1.4 In vitro model of intestinal oxidative stress 11
1.5 Aims of the study 12
Chapter 2 Material and Methods 13
2.1 Chemicals and reagents 13
2.2 Cell culture and treatment 13
2.3 Cell viability assay 14
2.4 TBARS (Thiobarbituric acid reactive substances) assay 14
2.5 Intracellular ROS generation 15
2.6 Quantification of SOD activity 15
2.7 Quantification of CAT activity 16
2.8 Mitochondrial ROS detection 16
2.9 ATP production 17
2.10 Quantification of citrate synthase activity 17
2.11 Western blotting 18
2.12 Fluorescence imaging of acidic vacuoles 19
2.13 Apoptotic and necrotic cells detection 19
2.14 Statistical analysis 20
Chapter 3 Results 21
3.1 Carvacrol suppressed H2O2-induced oxidative damage in IPEC-J2 cells. 21
3.1.1 Effect of carvacrol and H2O2 on the viability of IPEC-J2 cells. 21
3.1.2 Carvacrol relieved H2O2-induced lipid peroxidation in IPEC-J2 cells. 23
3.1.3 Carvacrol relieved H2O2-induced ROS generation in IPEC-J2 cells. 24
3.1.4 Effect of carvacrol on anti-oxidative enzyme activities under H2O2-induced oxidative stress in IPEC-J2 cells. 26
3.1.5 Effect of carvacrol on tight junction-related protein expression in H2O2-induced IPEC-J2 cells. 27
3.1.6 Carvacrol suppressed H2O2-induced apoptosis in IPEC-J2 cells. 28
3.2 Carvacrol ameliorated mitochondrial dysfunction in H2O2-induced IPEC-J2 cells. 30
3.2.1 Carvacrol suppressed mitochondrial ROS generation in H2O2-induced IPEC-J2 cells. 30
3.2.2 Effects of carvacrol on energy metabolism in H2O2-induced IPEC-J2 cells. 33
3.2.3 Effects of carvacrol on mitochondrial dynamics in H2O2-induced IPEC-J2 cells. 36
3.3 Carvacrol modulated autophagy in H2O2-induced IPEC-J2 cells. 38
3.3.1 Carvacrol inhibited the excessive accumulation of acidic vacuoles in H2O2-induced IPEC-J2 cells. 38
3.3.2 Effects of carvacrol on autophagy-related protein expression in H2O2-induced IPEC-J2 cells. 40
3.3.3 Effects of carvacrol on mitophagy-related protein expression in H2O2-induced IPEC-J2 cells. 42
3.4 Autophagy modulation was necessary for carvacrol’s protection in H2O2-induced IPEC-J2 cells. 44
Chapter 4 Discussion 46
4.1 Carvacrol relieved H2O2-induced intestinal damage and oxidative stress. 46
4.2 Protective ability of carvacrol in mitochondrial function in intestinal epithelial cells during oxidative stress. 49
4.3 Autophagy was involved in the protective mechanism of carvacrol in intestinal epithelial cells during oxidative stress. 50
Chapter 5 Conclusion 54
REFERENCES 55
-
dc.language.isoen-
dc.subject自噬作用zh_TW
dc.subject離乳仔豬zh_TW
dc.subject氧化壓力zh_TW
dc.subject粒線體功能異常zh_TW
dc.subject腸道健康zh_TW
dc.subject香芹酚zh_TW
dc.subjectweaning pigletsen
dc.subjectcarvacrolen
dc.subjectautophagyen
dc.subjectoxidative stressen
dc.subjectmitochondrial dysfunctionen
dc.subjectintestinal healthen
dc.title香芹酚在氧化壓力下透過調節自噬作用以保護IPEC-J2豬小腸上皮細胞zh_TW
dc.titleCarvacrol protects IPEC-J2 cells from oxidative stress via modulating autophagyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王翰聰;林原佑;李欣瑾zh_TW
dc.contributor.oralexamcommitteeHan-Tsung Wang;Yuan-Yu Lin;Sin-Jin Lien
dc.subject.keyword自噬作用,香芹酚,腸道健康,粒線體功能異常,氧化壓力,離乳仔豬,zh_TW
dc.subject.keywordautophagy,carvacrol,intestinal health,mitochondrial dysfunction,oxidative stress,weaning piglets,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU202401915-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-22-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
dc.date.embargo-lift2026-07-18-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
2.79 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved