請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93493完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊曜宇 | zh_TW |
| dc.contributor.advisor | Eric Y. Chuang | en |
| dc.contributor.author | 劉姜麟 | zh_TW |
| dc.contributor.author | Chiang-Lin Liu | en |
| dc.date.accessioned | 2024-08-05T16:11:50Z | - |
| dc.date.available | 2024-08-06 | - |
| dc.date.copyright | 2024-08-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-22 | - |
| dc.identifier.citation | [1] World Health Organization, Global tuberculosis report 2023. World Health Organization, 2023.
[2] M. Wilson, B. O'Connor, N. Matigian, and G. Eather, "Management of isoniazid-monoresistant tuberculosis (Hr-TB) in Queensland, Australia: a retrospective case series," Respiratory Medicine, vol. 173, p. 106163, Nov 2020, doi: 10.1016/j.rmed.2020.106163. [3] S. V. Gordon and T. Parish, "Microbe Profile: Mycobacterium tuberculosis: Humanity's deadly microbial foe," Microbiology, vol. 164, no. 4, pp. 437-439, Apr 2018, doi: 10.1099/mic.0.000601. [4] L. M. Fu and C. S. Fu-Liu, "Is Mycobacterium tuberculosis a closer relative to Gram-positive or Gram-negative bacterial pathogens?," (in English), Tuberculosis (Edinb), vol. 82, no. 2-3, pp. 85-90, 2002, doi: 10.1054/tube.2002.0328. [5] M. B. O'Neill et al., "Lineage specific histories of Mycobacterium tuberculosis dispersal in Africa and Eurasia," Molecular ecology, vol. 28, no. 13, pp. 3241-3256, Jul 2019, doi: 10.1111/mec.15120. [6] A. O'Garra, P. S. Redford, F. W. McNab, C. I. Bloom, R. J. Wilkinson, and M. P. Berry, "The immune response in tuberculosis," Annual review of immunology, vol. 31, pp. 475-527, 2013. [7] K. Yuen, C. Chan, K. Chan, W. Yam, P. Ho, and P. Chau, "IS6110 based amplityping assay and RFLP fingerprinting of clinical isolates of Mycobacterium tuberculosis," Journal of clinical pathology, vol. 48, no. 10, pp. 924-928, Oct 1995, doi: 10.1136/jcp.48.10.924. [8] J. Kamerbeek et al., "Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology," Journal of clinical microbiology, vol. 35, no. 4, pp. 907-914, Apr 1997, doi: 10.1128/jcm.35.4.907-914.1997. [9] P. Supply, S. Lesjean, E. Savine, K. Kremer, D. Van Soolingen, and C. Locht, "Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units," Journal of clinical microbiology, vol. 39, no. 10, pp. 3563-3571, Oct 2001, doi: 10.1128/JCM.39.10.3563-3571.2001. [10] S. Desikan and S. Narayanan, "Genetic markers, genotyping methods & next generation sequencing in Mycobacterium tuberculosis," Indian Journal of Medical Research, vol. 141, no. 6, pp. 761-774, Jun 2015, doi: 10.4103/0971-5916.160695. [11] P. C. Ng and E. F. Kirkness, "Whole genome sequencing," Genetic variation: Methods and protocols, vol. 628, pp. 215-226, 2010, doi: 10.1007/978-1-60327-367-1_12. [12] J. Amlerova, I. Bitar, and J. Hrabak, "Genotyping of Mycobacterium tuberculosis using whole genome sequencing," Folia microbiologica, vol. 63, no. 5, pp. 537-545, Sep 2018, doi: 10.1007/s12223-018-0599-y. [13] B. Z. Katale et al., "Whole genome sequencing of Mycobacterium tuberculosis isolates and clinical outcomes of patients treated for multidrug-resistant tuberculosis in Tanzania," BMC genomics, vol. 21, no. 1, pp. 1-15, Feb 21 2020, doi: 10.1186/s12864-020-6577-1. [14] H. H. Kumburu et al., "Using WGS to identify antibiotic resistance genes and predict antimicrobial resistance phenotypes in MDR Acinetobacter baumannii in Tanzania," Journal of Antimicrobial Chemotherapy, vol. 74, no. 6, pp. 1484-1493, Jun 1 2019, doi: 10.1093/jac/dkz055. [15] V. Nikolayevskyy et al., "Role and value of whole genome sequencing in studying tuberculosis transmission," Clinical Microbiology and Infection, vol. 25, no. 11, pp. 1377-1382, Nov 2019, doi: 10.1016/j.cmi.2019.03.022. [16] S. Sreevatsan et al., "Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination," Proceedings of the National Academy of Sciences, vol. 94, no. 18, pp. 9869-9874, Sep 2 1997, doi: 10.1073/pnas.94.18.9869. [17] A. Roetzer et al., "Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study," PLoS medicine, vol. 10, no. 2, p. e1001387, 2013, doi: 10.1371/journal.pmed.1001387. [18] K. Kremer et al., "Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility," Journal of clinical microbiology, vol. 37, no. 8, pp. 2607-2618, Aug 1999, doi: 10.1128/JCM.37.8.2607-2618.1999. [19] T. Jagielski, J. Van Ingen, N. Rastogi, J. Dziadek, P. K. Mazur, and J. Bielecki, "Current methods in the molecular typing of Mycobacterium tuberculosis and other mycobacteria," BioMed research international, vol. 2014, p. 645802, 2014, doi: 10.1155/2014/645802. [20] J. R. Glynn et al., "Whole genome sequencing shows a low proportion of tuberculosis disease is attributable to known close contacts in rural Malawi," (in English), PloS one, vol. 10, no. 7, p. e0132840, Jul 16 2015, doi: 10.1371/journal.pone.0132840. [21] C. J. Meehan et al., "The relationship between transmission time and clustering methods in Mycobacterium tuberculosis epidemiology," (in English), EBioMedicine, vol. 37, pp. 410-416, Nov 2018, doi: 10.1016/j.ebiom.2018.10.013. [22] C. Jandrasits, S. Kröger, W. Haas, and B. Y. Renard, "Computational pan-genome mapping and pairwise SNP-distance improve detection of Mycobacterium tuberculosis transmission clusters," PLoS computational biology, vol. 15, no. 12, p. e1007527, Dec 2019, doi: 10.1371/journal.pcbi.1007527. [23] K. Trisakul et al., "High clustering rate and genotypic drug-susceptibility screening for the newly recommended anti-tuberculosis drugs among global extensively drug-resistant Mycobacterium tuberculosis isolates," (in English), Emerging Microbes & Infections, vol. 11, no. 1, pp. 1857-1866, Dec 31 2022, doi: 10.1080/22221751.2022.2099304. [24] T. H. Heupink, L. Verboven, R. M. Warren, and A. Van Rie, "Comprehensive and accurate genetic variant identification from contaminated and low-coverage Mycobacterium tuberculosis whole genome sequencing data," Microbial Genomics, vol. 7, no. 11, p. 000689, Nov 2021, doi: 10.1099/mgen.0.000689. [25] T. H. Heupink et al., "The MAGMA pipeline for comprehensive genomic analyses of clinical Mycobacterium tuberculosis samples," PLOS Computational Biology, vol. 19, no. 11, p. e1011648, Nov 2023, doi: 10.1371/journal.pcbi.1011648. [26] U. Gurjav et al., "Whole genome sequencing demonstrates limited transmission within identified Mycobacterium tuberculosis clusters in New South Wales, Australia," (in English), PloS one, vol. 11, no. 10, p. e0163612, Oct 13 2016, doi: 10.1371/journal.pone.0163612. [27] L. Fiebig et al., "A joint cross-border investigation of a cluster of multidrug-resistant tuberculosis in Austria, Romania and Germany in 2014 using classic, genotyping and whole genome sequencing methods: lessons learnt," Eurosurveillance, vol. 22, no. 2, p. 30439, Jan 12 2017, doi: 10.2807/1560-7917.ES.2017.22.2.30439. [28] B. N. Howie, P. Donnelly, and J. Marchini, "A flexible and accurate genotype imputation method for the next generation of genome-wide association studies," PLoS genetics, vol. 5, no. 6, p. e1000529, Jun 2009, doi: 10.1371/journal.pgen.1000529. [29] J. Marchini and B. Howie, "Genotype imputation for genome-wide association studies," Nature Reviews Genetics, vol. 11, no. 7, pp. 499-511, Jul 2010, doi: 10.1038/nrg2796. [30] B. L. Browning and S. R. Browning, "Genotype imputation with millions of reference samples," The American Journal of Human Genetics, vol. 98, no. 1, pp. 116-126, Jan 7 2016, doi: 10.1016/j.ajhg.2015.11.020. [31] Y. Li, C. Willer, S. Sanna, and G. Abecasis, "Genotype imputation," Annual review of genomics and human genetics, vol. 10, pp. 387-406, 2009. [32] S. Rubinacci, O. Delaneau, and J. Marchini, "Genotype imputation using the positional burrows wheeler transform," PLoS genetics, vol. 16, no. 11, p. e1009049, Nov 2020, doi: 10.1371/journal.pgen.1009049. [33] S. R. Browning and B. L. Browning, "Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering," The American Journal of Human Genetics, vol. 81, no. 5, pp. 1084-1097, Nov 2007, doi: 10.1086/521987. [34] B. L. Browning, Y. Zhou, and S. R. Browning, "A one-penny imputed genome from next-generation reference panels," The American Journal of Human Genetics, vol. 103, no. 3, pp. 338-348, Sep 6 2018, doi: 10.1016/j.ajhg.2018.07.015. [35] B. Howie, C. Fuchsberger, M. Stephens, J. Marchini, and G. R. Abecasis, "Fast and accurate genotype imputation in genome-wide association studies through pre-phasing," (in English), Nature genetics, vol. 44, no. 8, pp. 955-959, Aug 2012, doi: 10.1038/ng.2354. [36] S. Das et al., "Next-generation genotype imputation service and methods," Nature genetics, vol. 48, no. 10, pp. 1284-1287, Oct 2016, doi: 10.1038/ng.3656. [37] F. Coll et al., "Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences," Genome medicine, vol. 7, no. 1, pp. 1-10, 2015, doi: 10.1186/s13073-015-0164-0. [38] J. E. Phelan et al., "Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs," Genome medicine, vol. 11, no. 1, pp. 1-7, Jun 24 2019, doi: 10.1186/s13073-019-0650-x. [39] T. Yang et al., "SAM-TB: a whole genome sequencing data analysis website for detection of Mycobacterium tuberculosis drug resistance and transmission," Briefings in bioinformatics, vol. 23, no. 2, p. bbac030, Mar 10 2022, doi: 10.1093/bib/bbac030. [40] T. A. Kohl et al., "MTBseq: a comprehensive pipeline for whole genome sequence analysis of Mycobacterium tuberculosis complex isolates," PeerJ, vol. 6, p. e5895, 2018, doi: 10.7717/peerj.5895. [41] S. Feuerriegel et al., "PhyResSE: a web tool delineating Mycobacterium tuberculosis antibiotic resistance and lineage from whole-genome sequencing data," Journal of clinical microbiology, vol. 53, no. 6, pp. 1908-1914, Jun 2015, doi: 10.1128/JCM.00025-15. [42] D. Kim et al., "GenoMycAnalyzer: a web-based tool for species and drug resistance prediction for Mycobacterium genomes," BMC genomics, vol. 25, no. 1, p. 387, Apr 20 2024, doi: 10.1186/s12864-024-10320-3. [43] S. Andrews, "FastQC: a quality control tool for high throughput sequence data," ed: Cambridge, United Kingdom, 2010. [44] P. Ewels, M. Magnusson, S. Lundin, and M. Käller, "MultiQC: summarize analysis results for multiple tools and samples in a single report," Bioinformatics, vol. 32, no. 19, pp. 3047-3048, Oct 1 2016, doi: 10.1093/bioinformatics/btw354. [45] A. M. Bolger, M. Lohse, and B. Usadel, "Trimmomatic: a flexible trimmer for Illumina sequence data," Bioinformatics, vol. 30, no. 15, pp. 2114-2120, Aug 1 2014, doi: 10.1093/bioinformatics/btu170. [46] H. Li, "Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM," arXiv preprint arXiv:1303.3997, 2013. [47] T. Seemann. "Samclip: filter SAM file for soft and hard clipped alignments." https://github.com/tseemann/samclip (accessed 2024). [48] H. Li, A. R. SHAHRIARI, and A. Wysoker, "Durbin R; 1000 genome project data processing subgroup. The sequence alignment/map format and SAMtools," 2009. [49] P. Danecek et al., "Twelve years of SAMtools and BCFtools," Gigascience, vol. 10, no. 2, p. giab008, Feb 16 2021, doi: 10.1093/gigascience/giab008. [50] E. Garrison and G. Marth, "Haplotype-based variant detection from short-read sequencing," arXiv preprint arXiv:1207.3907, 2012. [51] P. Danecek et al., "The variant call format and VCFtools," Bioinformatics, vol. 27, no. 15, pp. 2156-2158, Aug 1 2011, doi: 10.1093/bioinformatics/btr330. [52] A. Tan, G. R. Abecasis, and H. M. Kang, "Unified representation of genetic variants," Bioinformatics, vol. 31, no. 13, pp. 2202-2204, Jul 1 2015, doi: 10.1093/bioinformatics/btv112. [53] S. Kohli, Y. Singh, K. Sharma, A. Mittal, N. Z. Ehtesham, and S. E. Hasnain, "Comparative genomic and proteomic analyses of PE/PPE multigene family of Mycobacterium tuberculosis H37Rv and H37Ra reveal novel and interesting differences with implications in virulence," Nucleic acids research, vol. 40, no. 15, pp. 7113-7122, Aug 2012, doi: 10.1093/nar/gks465. [54] D. C. Koboldt et al., "VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing," Genome research, vol. 22, no. 3, pp. 568-576, Mar 2012, doi: 10.1101/gr.129684.111. [55] D. Money, Z. Migicovsky, K. Gardner, and S. Myles, "LinkImputeR: user-guided genotype calling and imputation for non-model organisms," BMC genomics, vol. 18, no. 1, pp. 1-12, Jul 10 2017, doi: 10.1186/s12864-017-3873-5. [56] T. Seemann., Fabian Klötzl, and A. J. Page. "snp-dists: Convert a FASTA alignment to SNP distance matrix." https://github.com/tseemann/snp-dists (accessed 2024). [57] G. Csardi and T. Nepusz, "The igraph software," Complex syst, vol. 1695, pp. 1-9, 2006. [58] P. Virtanen et al., "SciPy 1.0: fundamental algorithms for scientific computing in Python," Nat Methods, vol. 17, no. 3, pp. 261-272, Mar 2020, doi: 10.1038/s41592-019-0686-2. [59] G. Perrone, J. Unpingco, and H.-m. Lu, "Network visualizations with Pyvis and VisJS," arXiv preprint arXiv:2006.04951, 2020. [60] World Health Organization, Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. World Health Organization, 2023. [61] Plotly. "Plotly Open Source Graphing Library for Python." https://plotly.com/python/ (accessed 2024). [62] Highcharts. "Highcharts." https://www.highcharts.com/ (accessed 2024). [63] SpryMedia Ltd. "DataTables." https://datatables.net/ (accessed 2024). [64] A. Stamatakis, "RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies," Bioinformatics, vol. 30, no. 9, pp. 1312-1313, May 1 2014, doi: 10.1093/bioinformatics/btu033. [65] J. Huerta-Cepas, F. Serra, and P. Bork, "ETE 3: reconstruction, analysis, and visualization of phylogenomic data," Molecular biology and evolution, vol. 33, no. 6, pp. 1635-1638, Jun 2016, doi: 10.1093/molbev/msw046. [66] I. Letunic and P. Bork, "Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation," Nucleic acids research, vol. 49, no. W1, pp. W293-W296, Jul 2 2021, doi: 10.1093/nar/gkab301. [67] D. Money, K. Gardner, Z. Migicovsky, H. Schwaninger, G.-Y. Zhong, and S. Myles, "LinkImpute: fast and accurate genotype imputation for nonmodel organisms," G3: Genes, Genomes, Genetics, vol. 5, no. 11, pp. 2383-2390, Sep 15 2015, doi: 10.1534/g3.115.021667. [68] S. Purcell et al., "PLINK: a tool set for whole-genome association and population-based linkage analyses," The American journal of human genetics, vol. 81, no. 3, pp. 559-575, Sep 2007, doi: 10.1086/519795. [69] T. Alouane et al., "Genomic Diversity and Hotspot Mutations in 30,983 SARS-CoV-2 Genomes: Moving Toward a Universal Vaccine for the "Confined Virus"?," (in English), Pathogens, vol. 9, no. 10, p. 829, Oct 2020, doi: 10.3390/pathogens9100829. [70] Z. D. Stephens, M. E. Hudson, L. S. Mainzer, M. Taschuk, M. R. Weber, and R. K. Iyer, "Simulating next-generation sequencing datasets from empirical mutation and sequencing models," PloS one, vol. 11, no. 11, p. e0167047, 2016, doi: 10.1371/journal.pone.0167047. [71] C. Yang et al., "Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a retrospective observational study using whole-genome sequencing and epidemiological investigation," The Lancet Infectious Diseases, vol. 17, no. 3, pp. 275-284, Mar 2017, doi: 10.1016/S1473-3099(16)30418-2. [72] T. M. Walker et al., "Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study," The Lancet infectious diseases, vol. 13, no. 2, pp. 137-146, Feb 2013, doi: 10.1016/S1473-3099(12)70277-3. [73] A. Bainomugisa et al., "Genomic epidemiology of tuberculosis in eastern Malaysia: insights for strengthening public health responses," Microbial genomics, vol. 7, no. 5, p. 000573, May 2021, doi: 10.1099/mgen.0.000573. [74] H. Zhang et al., "Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance," Nature genetics, vol. 45, no. 10, pp. 1255-1260, Oct 2013, doi: 10.1038/ng.2735. [75] M. Dohál et al., "Resistance patterns and transmission of mono-and polyresistant TB: clinical impact of WGS," JAC-Antimicrobial Resistance, vol. 5, no. 5, p. dlad108, Oct 2023, doi: 10.1093/jacamr/dlad108. [76] T. Hesterberg, "Bootstrap," Wiley Interdisciplinary Reviews: Computational Statistics, vol. 3, no. 6, pp. 497-526, 2011. [77] Django Software Foundation. "Django: The web framework for perfectionists with deadlines." https://www.djangoproject.com/ (accessed 2024). [78] I. Steemers. "Django Q: A multiprocessing distributed task queue for Django." https://github.com/Koed00/django-q (accessed 2024). [79] R. Kusuma. "jQuery Upload File." https://github.com/hayageek/jquery-upload-file (accessed 2024). [80] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith, "Cython: The best of both worlds," Computing in Science & Engineering, vol. 13, no. 2, pp. 31-39, 2010. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93493 | - |
| dc.description.abstract | 結核病(TB)由結核分枝桿菌 (M. TB) 所引起,仍然是全球發病和死亡的主要原因之一,因此需要採取有效的控制策略來打破傳播鏈。結核分枝桿菌分成七個主要譜系(譜系1至7),影響結核病的流行病學、傳播及臨床結果。全基因體定序(WGS)和遺傳距離計算對於了解結核病傳播動態已被證明非常有價值。然而,計算遺傳距離的傳統方法在處理缺失的基因型數據時可能會引入偏差。本研究旨在透過基因型插補預測缺失的位點,並將其整合到一個對使用者友善的線上分析平台TBImpact中,從而增強遺傳距離計算。
本研究中收集了來自臺灣高雄市674名細菌學培養呈陽性的肺結核患者的WGS數據。這些數據被用於建立譜系1、2和4的單譜系插補參考模板,包括譜系1、2和4,以及一個混合譜系的模板。利用LinkImputeR,根據序列讀數和LD-kNNi演算法對缺失和低品質基因型進行了插補。TBImpact提供七個主要步驟:序列前處理、譜系鑑定、變異識別、基因型插補、傳播分析、抗藥性預測與系統發育樹生成。此外,TBImpact還提供全流程和逐步分析的選項,為使用者提供了靈活性。透過使用WGS序列檔案作為輸入,TBImpact生成文字格式和HTML格式的結果。 模擬資料集和臨床資料集都被用於評估TBImpact的性能。在模擬資料集中,插補方法表現出高達98.99%的基因型水平精度,超過了傳統方法。從公開的臨床資料集所推測之傳播網路顯示,遺傳距離與原始研究中的結果高度一致,並為結核病傳播的地理距離提供了新的見解。這些發現表明插補方法在恢復結核分枝桿菌基因組資料中的缺失基因型方面具有潛力。 總結來說,本研究提出了一個基於網路的系統,具有結核分枝桿菌基因組的綜合分析流程,整合了基因型插補以提高遺傳距離的準確性,並為研究人員提供了一個高效的結核病分析平台。 | zh_TW |
| dc.description.abstract | Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. TB), remains a major global cause of morbidity and mortality, necessitating effective control strategies to break transmission chains. M.TB has seven major lineages (Lineage 1 to 7), influencing the epidemiology, transmission, and possibly the clinical outcomes of TB. Whole-genome sequencing (WGS) and genetic distance calculations have proven valuable in understanding TB transmission dynamics. Nevertheless, traditional methods for calculating genetic distance may introduce biases when handling missing genotype data. This study aimed to enhance genetic distance calculations by predicting missing sites through genotype imputation and integrating this into a user-friendly online analysis platform, TBImpact.
In this study, WGS data were collected from 674 newly diagnosed pulmonary TB patients in Kaohsiung, Taiwan, with positive bacterial cultures. These data were used to establish single-lineage imputation reference panels for Lineages 1, 2, and 4, as well as a mixed lineage panel. Utilizing LinkImputeR, missing and low-quality genotypes were imputed based on the read count and the LD-kNNi algorithm. TBImpact serves seven major steps: sequence preprocessing, lineage specification, variant calling, genotype imputation, transmission analysis, drug resistance prediction, and phylogenetic tree generation. In addition, TBImpact offers both full-pipeline and step-by-step analysis options, providing users with flexibility. Using WGS sequence files as input, TBImpact generates text-formatted and HTML-formatted results. Both simulated datasets and clinical datasets were used to evaluate the performance of TBImpact. In the case of the simulation datasets, the imputation method exhibited an impressive genotype level accuracy of 98.99%, surpassing conventional methods. The inferred transmission network from clinical datasets in public suggested that the genetic distances were closely aligned with those in the original research studies and provided new insights into the geographic distances of tuberculosis transmission. These findings indicated the potential of the imputation method to accurately recover missing genotypes in M.TB genomic data. In conclusion, this study proposed a web-based system featuring a comprehensive analysis pipeline for the M. TB genomes, integrating genotype imputation to improve genetic distance accuracy, and providing researchers with a highly effective analysis platform for TB. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:11:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-05T16:11:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xvii Chapter 1 Introduction 1 1.1 Tuberculosis 1 1.1.1 Epidemiology of tuberculosis 1 1.1.2 Mycobacterium tuberculosis 2 1.1.3 Genotyping methods for Mycobacterium tuberculosis 3 1.2 Whole genome sequencing 4 1.3 Existing methods for calculating genetic distance 5 1.4 Genotype imputation 8 1.5 Existing analysis tools for TB 10 1.6 Specific aims 11 Chapter 2 Materials and Methods 13 2.1 Overview of TBImpact 13 2.2 Analysis pipeline 14 2.2.1 Sequence Preprocessing 16 2.2.2 Lineage Specification 16 2.2.3 Variant calling and filtering 17 2.2.4 Genotype imputation 17 2.2.5 Transmission clustering 21 2.2.6 Drug resistance prediction 22 2.2.7 Phylogenetic analysis 22 2.3 Development of imputation reference panels 23 2.4 Genotype imputation tools for non-model organisms 24 2.4.1 LinkImpute 24 2.4.2 LinkImputeR 26 2.4.3 Comparison of imputation accuracy between two tools 27 2.4.4 Differences between LinkImpute and LinkImputeR 27 2.5 Imputation without reference panels 28 2.6 Assessment of imputation accuracy 29 2.6.1 Simulated datasets 29 2.6.2 Accuracy comparison among different methods 30 2.6.3 Published clinical datasets 31 2.6.4 Using clinical data to determine the suggested cutoff value for employing the imputation reference panel in TBImpact 33 2.7 Web-based analysis platform 34 2.7.1 Command-Line Interface (CLI) scripts 34 2.7.2 Website framework 34 2.7.3 Universally Unique Identifier (UUID) and login token 35 2.7.4 Input data management 36 2.7.5 Full-pipeline analysis 37 2.7.6 Step-by-step analysis 38 2.7.7 Project management 38 Chapter 3 Results 39 3.1 Assessment of TBImpact 39 3.1.1 Accuracy comparison between LinkImpute and LinkImputeR 39 3.1.2 Accuracy comparison between TBImpact and existing methods 41 3.1.3 Validation with published datasets 49 3.1.4 Using clinical data to find suggested cutoff value for TBImpact 54 3.2 Overview of TBImpact 65 3.3 TB analysis on TBImpact 68 3.3.1 Create user 68 3.3.2 Create project and upload data 69 3.3.3 Full pipeline analysis 70 3.3.4 Step-by-step analysis 74 3.3.5 Visualization results 75 3.3.6 Log files and notification emails 82 3.3.7 Project management 83 3.4 Resource usage 84 Chapter 4 Discussion 85 4.1 Performance evaluation 85 4.2 Result comparison using clinical datasets 86 4.3 Features of TBImpact 87 4.4 Limitation and future extension of TBImpact 89 Chapter 5 Conclusion 91 References 93 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 線上平台 | zh_TW |
| dc.subject | 基因型插補 | zh_TW |
| dc.subject | 譜系鑑定 | zh_TW |
| dc.subject | 遺傳距離 | zh_TW |
| dc.subject | 抗藥性預測 | zh_TW |
| dc.subject | 結核分枝桿菌 | zh_TW |
| dc.subject | online platform | en |
| dc.subject | Mycobacterium tuberculosis | en |
| dc.subject | genotype imputation | en |
| dc.subject | lineage specification | en |
| dc.subject | genetic distance | en |
| dc.subject | drug resistance prediction | en |
| dc.title | 建立用於結核桿菌分析之整合性線上基因型插補平台 | zh_TW |
| dc.title | Development of an integrated online genotype imputation platform for Mycobacterium tuberculosis analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 李建樂 | zh_TW |
| dc.contributor.coadvisor | Chien-Yueh Lee | en |
| dc.contributor.oralexamcommittee | 盧子彬;林先和 | zh_TW |
| dc.contributor.oralexamcommittee | Tzu-Pin Lu;Hsien-Ho Lin | en |
| dc.subject.keyword | 結核分枝桿菌,基因型插補,譜系鑑定,遺傳距離,抗藥性預測,線上平台, | zh_TW |
| dc.subject.keyword | Mycobacterium tuberculosis,genotype imputation,lineage specification,genetic distance,drug resistance prediction,online platform, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202401790 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-23 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | 2029-07-01 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 5.37 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
