Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93474
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳東諭zh_TW
dc.contributor.advisorTung-Yu Wuen
dc.contributor.author陳麒壬zh_TW
dc.contributor.authorChi-Jen Chenen
dc.date.accessioned2024-08-01T16:18:52Z-
dc.date.available2024-08-02-
dc.date.copyright2024-08-01-
dc.date.issued2024-
dc.date.submitted2024-07-22-
dc.identifier.citation[1] FEMA. (2018). “Seismic Performance Assessment of Buildings Volume 1 – Methodology”. Report No. FEMA-P-58, Federal Emergency Management Agency,Washington, D.C.
[2] LS-DYNA. (2015). “Keyword user’s manual V971,CA: Livermore Software Technology Corporation(LSTC),Livermore”. California
[3] Bertero, V. V., Mahin, S. A. & Herrera, R. A. (1978). Aseismic design implications of near‐fault San Fernando earthquake records. Earthquake engineering & structural dynamics 6(1): 31-42.
[4] Hall, J. F., Heaton, T. H., Halling, M. W. & Wald, D. J. (1995). Near-source ground motion and its effects on flexible buildings. Earthquake spectra 11(4): 569-605.
[5] Malhotra, P. K. (1999). Response of buildings to near‐field pulse‐like ground motions. Earthquake engineering & structural dynamics 28(11): 1309-1326.
[6] Bray, J. D. & Rodriguez-Marek, A. (2004). Characterization of forward-directivity ground motions in the near-fault region. Soil dynamics and earthquake engineering 24(11): 815-828.
[7] Alavi, B. & Krawinkler, H. (2004). Behavior of moment‐resisting frame structures subjected to near‐fault ground motions. Earthquake engineering & structural dynamics 33(6): 687-706.
[8] Champion, C. & Liel, A. (2012). The effect of near‐fault directivity on building seismic collapse risk. Earthquake Engineering & Structural Dynamics 41(10): 1391-1409.
[9] Wu, X., Guo, W., Hu, P., Bu, D., Xie, X. & Hu, Y. (2020). Seismic performance evaluation of building-damper system under near-fault earthquake. Shock and Vibration 2020: 1-21.
[10] Ahmad, F. & Phillips, A. (2022). Buckling restrained braced frame seismic response for far-field, near-field, and long-duration earthquakes. Journal of Constructional Steel Research 199: 107625.
[11] Sarma, K. C. & Adeli, H. (2002). Life‐cycle cost optimization of steel structures. International Journal for Numerical Methods in Engineering 55(12): 1451-1462.
[12] Chiu, C.-K., Noguchi, T. & Kanematsu, M. (2010). Effects of maintenance strategies on the life-cycle performance and cost of a deteriorating RC building with high-seismic hazard. Journal of Advanced Concrete Technology 8(2): 157-170.
[13] Li, G. & Cheng, G. (2003). Damage-reduction-based structural optimum design for seismic RC frames. Structural and multidisciplinary optimization 25: 294-306.
[14] Liu, M., Wen, Y. & Burns, S. A. (2004). Life cycle cost oriented seismic design optimization of steel moment frame structures with risk-taking preference. Engineering Structures 26(10): 1407-1421.
[15] Hwang, S. H. & Lignos, D. G. (2017). Earthquake‐induced loss assessment of steel frame buildings with special moment frames designed in highly seismic regions. Earthquake Engineering & Structural Dynamics 46(13): 2141-2162.
[16] Guerrero, H., Terán-Gilmore, A., Ji, T. & Escobar, J. A. (2017). Evaluation of the economic benefits of using Buckling-Restrained Braces in hospital structures located in very soft soils. Engineering Structures 136: 406-419.
[17] Mirfarhadi, S. A., Estekanchi, H. E. & Sarcheshmehpour, M. (2021). On optimal proportions of structural member cross-sections to achieve best seismic performance using value based seismic design approach. Engineering Structures 231: 111751.
[18] Fang, C., Ping, Y., Zheng, Y. & Chen, Y. (2021). Probabilistic economic seismic loss estimation of steel braced frames incorporating emerging self-centering technologies. Engineering Structures 241: 112486.
[19] Sanati, S. H. & Karamodin, A. (2023). Optimum seismic design of frame structures with and without metallic yielding dampers considering life-cycle cost. Journal of Building Engineering 76: 107335.
[20] Lin, S.-L. & Wei, Y.-F. (2005). Environmental and Energy Considerations in Two Selected SC and RC School Buildings in Taiwan. International Journal of Applied Science and Engineering 3(1): 69-79.
[21] Zhang, X., Xu, J., Zhang, X. & Li, Y. (2021). Life cycle carbon emission reduction potential of a new steel-bamboo composite frame structure for residential houses. Journal of building engineering 39: 102295.
[22] 邱勝煜 (2022),「台北盆地鋼構造建築物之震損與風險評估」,國立台灣大學土木工程學系碩士論文。
[23] 張豐選 (2021),「台北盆地鋼構抗彎矩構架之震損與風險評估」,國立台灣大學土木工程學系碩士論文。
[24] 國家地震工程研究中心 (2016),「台灣地震損失評估系統(TELES)使用手冊」,
[25] NIST, G. (2010). GCR 10-917-8. Evaluation of the fema p695 methadology for quantification of building seismic performance factors, NEHRP consultants Joint Venture, Redwood City, CA.
[26] 內政部營建署 (2022),「建築物耐震設計規範及解說」。
[27] PEER/ATC72-1. (2010). “Modeling and acceptance criteria for seismic design and analysis of tall Buildings (PEER/ATC 72-1)”. Pacific Earthquake Engineering Research Center (PEER)/Applied Technology Council (ATC),Berkeley, CA, USA
[28] 內政部營建署 (2010),「鋼結構極限設計法規範及解說」。
[29] Molina Hutt, C. Non-linear time history analysis of tall steel moment frame buildings in LS-DYNA. 2013; DYNALook.
[30] Krawinkler, H. (1978). Shear in beam-column joints in seismic design of steel frames. Engineering Journal 15(3): 82-91.
[31] Chou, C.-C. & Chen, G.-W. (2020). Lateral cyclic testing and backbone curve development of high-strength steel built-up box columns under axial compression. Engineering Structures 223: 111147.
[32] ATC. (2017). “Guidelines for Nonlinear Structural Analysis for Design of Buildings:Part IIa – Steel oment Frames”. NIST GCR 17-917-46v2,
[33] Ozkula, G., Harris, J., Uang, C.-M. & Maison, B. F. (2019). Observations from cyclic tests on deep, wide-flange beam-columns. Engineering Journal 56: 3-5.
[34] AISC341-16. (2016). “Seismic provisions for structural steel buildings”. American Institute of Steel Construction,
[35] 吳安傑, 林保均, 莊明介 & 蔡克銓 (2015). 挫屈束制支撐構架設計概要與工程應用. Structural Engineering, 30(1), 11-33.
[36] Main, J. A. (2014). Composite floor systems under column loss: Collapse resistance and tie force requirements. Journal of Structural Engineering 140(8): A4014003.
[37] 王宣傑 (2020),「具周緣抗彎矩構架及深寬翼鋼柱之鋼構建築物於三向地震下之地震崩塌風險」,國立台灣大學土木工程學系碩士論文。
[38] Chao, S.-H., Kuo, C.-H., Huang, H.-H., Hsu, C.-C. & Jan, J.-C. Observed pulse-liked ground motion and rupture directivity effect in Taiwan ground motion dataset. In Proceedings of International Conference in Commemoration of 20th Anniversary of the 1999 Chi-Chi Earthquake, 2019; pp 15-19.
[39] 楊甯凱 (2021),「考慮近斷層脈衝影響之隔震設計-以臺北盆地為例」,國立台灣大學土木工程學系碩士論文。
[40] Gupta, A. & Krawinkler, H. (2002). Relating the seismic drift demands of SMRFs to element deformation demands. Engineering Journal 39(2): 100-108.
[41] 臺灣地震模型 (2020),「山腳斷層孕震構造簡介」。
[42] Medina, R. A. (2003). “Seismic demands for nondeteriorating frame structures and their dependence on ground motions”. Stanford University,
[43] ASCE7-16. (2017). “Minimum design loads and associated criteria for buildings and other structures”. American Society of Civil Engineers,
[44] 行政院公共工程委員會 (2024),「114年度一般房屋建築費及辦公室翻修費編列基準」。
[45] JLL. (2023). “Asia Pacific Fit-Out Cost Guide 2023/2024”.
[46] Yang, Y., Ingwersen, W. W., Hawkins, T. R., Srocka, M. & Meyer, D. E. (2017). USEEIO: A new and transparent United States environmentally-extended input-output model. Journal of cleaner production 158: 308-318.
[47] U.S. Bureau of Economic Analysis, "U.Value Added by Industry" (accessed Saturday, June 15, 2024).
[48] 國家發展委員會委託研究 (2018),「精進公共建設計畫經濟效益評估及財務計畫」。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93474-
dc.description.abstract近年來對於環境保護議題之討論興起,根據聯合國統計,建築與營造部門所產生之二氧化碳年碳排量占全球之38%。且通常營造商進行決策時僅考慮建築之建置成本,為了實現長期經濟效益,針對建築物之生命週期成本與碳排放的討論逐漸受到重視。而鋼結構建築由於其重量輕、易於施工與延性(ductility)強等優點,被廣泛地用於頻繁發生地震與人口密集地區中。而台北盆地地區地質複雜、人口密度高,且鄰近山腳斷層,為了應對未來可能發生之近斷層地震風險與調查台北盆地地區內鋼構建物之主體結構壽命生命週期五十年內由地震導致之經濟與環境影響,有必要詳細,以作為相關決策者之參考依據。
為深入了解並比較各種不同鋼結構系統於此類地震事件中之耐震能力,本研究回顧有關於近斷層地震特性與鋼結構對於近斷層歷時下反應之相關文獻,並使用不同樓高之鋼結構抗彎矩構架(MRF)、二元構架(DUAL)、周緣抗彎矩構架(PMF) 與周緣挫屈束制斜撐構架(PBRB)作為構架原型進行震損評估。本研究依據美國 FEMA P-58 所提出之評估流程,使用修繕金額與碳排放量作為指標來量化鋼構建築物之震災韌性,並採用有限元素軟體 LS-DYNA 針對三種原型構架進行非線性動力歷時分析,進行基於近斷層情境與基於整體危害度之震損評估,以探討不同結構系統之鋼構建築物於山腳斷層發生規模7.3之近斷層脈衝地震下之震損情形與其年化修繕、碳排成本評估。
結果顯示,本研究所考慮的原型構架均滿足ASCE 7-16對於50年內倒塌風險的要求。震災損失評估結果表明,非結構構件的修復損失是主要的震損來源,若以經濟性和永續性作為考量,應優先考慮降低各系統的樓層加速度。此外,結構週期差異對生命週期成本有顯著影響,且使用經濟性耐震指標時須注意構件損毀樓層的影響。若以生命週期成本與碳排放作為主要考量,建議在中樓層、高樓層及超高樓層分別選擇MRF、PMF和BRBF作為鋼結構建築使用之系統。近斷層震損評估結果則顯示,在中高樓層建築中亦可使用PBRB系統,以降低震災損失並提升空間使用靈活性,但需對另該系統進行生命週期成本分析以評估其效益。
zh_TW
dc.description.abstractEnvironmental protection efforts have highlighted the construction sector's significant CO2 emissions, contributing 38% of global emissions annually according to the United Nations. Typically, builders focus on construction costs, overlooking long-term economic and environmental impacts. Steel structures, favored for their light weight, ease of construction, and high ductility, are crucial in earthquake-prone and densely populated areas. Given the intricate geology and dense population of the Taipei Basin, and its proximity to the Shanchiao Fault, evaluating the 50-year economic and environmental impacts of seismic events on steel structures is vital for informed decision-making.
This study assesses seismic damage in various steel structural systems—Moment Resisting Frames (MRF), Dual Systems (DUAL), Perimeter Moment Frames (PMF), and Perimeter Buckling Restrained Braced Frames (PBRB)—at different heights. Using FEMA P-58 evaluation procedures, repair costs, and carbon emissions quantify seismic resilience. Nonlinear dynamic time-history analyses with LS-DYNA evaluate seismic damage under near-fault scenarios, focusing on a magnitude 7.3 earthquake at the Shanchiao Fault. Annualized repair and carbon emission costs are assessed for different structural systems.
Results show that all prototype frames meet ASCE 7-16 collapse risk requirements within 50 years. The seismic loss assessment results show that the repair costs for non-structural components are the main source of seismic losses, priority should be given to reducing floor accelerations in various systems. Additionally, differences in structural periods significantly impact life cycle costs, and when using economic seismic indicators, attention must be paid to the impact of damaged floors. Suppose life cycle costs and carbon emissions are the primary considerations. In that case, it is recommended that MRF, PMF, and BRBF be selected for mid-rise, high-rise, and super-high-rise steel structures, respectively. Near-fault seismic loss assessment results indicate that PBRB systems can also be used in mid-rise and high-rise buildings to reduce seismic losses and improve space usage, but a life cycle cost analysis should be conducted to evaluate the benefits of this system.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-01T16:18:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-01T16:18:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ii
摘要 iii
ABSTRACT iv
目 次 v
圖 次 vii
表 次 xvi
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 2
1.3 論文結構 2
第二章 文獻回顧 4
2.1 近斷層地震下性能評估之相關文獻 4
2.2 建築結構生命週期成本與永續性評估 5
2.2.1 生命週期成本評估與永續性評估 5
2.2.2 FEMA P-58 耐震性能評估法 9
第三章 鋼結構系統原型構架 22
3.1 各結構系統介紹 22
3.1.1 全剛接梁構架系統與周緣構架系統 22
3.1.2 抗彎矩構架系統與斜撐構架系統 22
3.2 原型構架設計結果 23
3.2.1 設計條件 23
3.2.2 梁柱斷面及用鋼量差異 23
3.2.3 樓層勁度及動力特性差異 24
第四章 原型構架非線性動力歷時分析 43
4.1 有限元素模型建置 43
4.1.1 阻尼設定 43
4.1.2 材料模型 44
4.1.3 束制及邊界條件 47
4.1.4 各結構構件之建立準則 48
4.2 自由震動分析 53
4.3 非線性動力歷時分析 53
4.3.1 遠域地震歷時之選取 54
4.3.2 近斷層地震歷時之選取 54
4.3.3 危害度曲線 54
4.3.4 地震歷時之縮放 55
4.3.5 非線性動力歷時分析結果 55
第五章 原型構架風險與震損評估 107
5.1 倒塌易損性與風險 107
5.1.1 鋼結構倒塌易損性分析 107
5.1.2 倒塌風險分析 108
5.2 生命週期成本與碳排 109
5.2.1 性能模型設定 109
5.2.2 生命週期成本與碳排設定 112
5.2.3 各強度震損評估結果 113
5.2.4 生命週期成本與生命週期碳排評估結果 117
5.2.5 綜合評比 118
5.3 近斷層地震震損評估 119
5.3.1 中層樓構架 119
5.3.2 高層樓構架 120
5.3.3 超高層樓構架 121
5.3.4 綜合評比 122
5.4 結果與討論 123
第六章 結論與建議 170
6.1 結論 170
6.2 建議 171
參考文獻 173
-
dc.language.isozh_TW-
dc.subject鋼結構耐震分析zh_TW
dc.subject震損評估zh_TW
dc.subject機率式風險評估zh_TW
dc.subject近斷層zh_TW
dc.subject碳排放zh_TW
dc.subjectSeismic Analysis of Steel Structuresen
dc.subjectNear fault earthquakeen
dc.subjectCollapse risk assignmenten
dc.subjectCarbon emissionen
dc.subjectSeismic lossen
dc.title鋼構建築物之生命週期成本與永續性分析zh_TW
dc.titleLifecycle Cost and Sustainability Analysis of Steel Building Structuresen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃尹男;林偲妘zh_TW
dc.contributor.oralexamcommitteeYin-Nan Huang;Szu-Yun Linen
dc.subject.keyword鋼結構耐震分析,震損評估,機率式風險評估,近斷層,碳排放,zh_TW
dc.subject.keywordSeismic loss,Near fault earthquake,Collapse risk assignment,Seismic Analysis of Steel Structures,Carbon emission,en
dc.relation.page175-
dc.identifier.doi10.6342/NTU202402010-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-23-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf15.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved