請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93473完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中平 | zh_TW |
| dc.contributor.advisor | Chung-Ping Chen | en |
| dc.contributor.author | 洪顥宇 | zh_TW |
| dc.contributor.author | Hao-Yu Hung | en |
| dc.date.accessioned | 2024-08-01T16:18:36Z | - |
| dc.date.available | 2024-08-02 | - |
| dc.date.copyright | 2024-08-01 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-30 | - |
| dc.identifier.citation | T. G. Wang and W. S. Chen, “Musculoskeletal Ultrasound Examination,” Taipei, Taiwan: Leader Book, 2014.
T. H. Jhu, “Computer-aided real-time median nerve detection in dynamic ultrasonography using deep learning,” Thesis of National Taiwan University, 2021. Y. F. Tu, “Ultrasound Computer-aided Detection for Upper Limb Using Deep Convolution Neural Network,” Thesis of National Taiwan University, 2022. H. Y. Chu, “Ultrasound Deep Convolution Neural Network Detection Using Semi-Supervised Learning and Relation of Frame,” Thesis of National Taiwan University, 2023. P. Sombune, P. Phienphanich, S. Phuechpanpaisal, S. Muengtaweepongsa, A. Ruamthanthong, and C. Tantibundhit, “Automated embolic signal detection using deep convolutional neural network,” in Proc. 2017 39th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 3365-3368, 2017. X. Yang, L. Yu, L. Wu, D. Ni, J. Qin, and P. Heng, “Fine-grained recurrent neural networks for automatic prostate segmentation in ultrasound images,” in Proc. 31st AAAI Conf. Artif. Intell., pp. 1633-1639, 2017. F. C. Ghesu, E. Krubasik, B. Georgescu, V. Singh, Y. Zheng, J. Hornegger, and D. Comaniciu, “Marginal space deep learning: efficient architecture for volumetric image parsing,” IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1217-1228, 2016. C. Bian, R. Lee, Y.-H. Chou, and J.-Z. Cheng, “Boundary regularized convolutional neural network for layer parsing of breast anatomy in automated whole breast ultrasound,” in Proc. Med. Imag. Comput. Comput. Assist. Interv., pp. 259-266, 2017. J. Ma, F. Wu, T. Jiang, J. Zhu, and D. Kong, “Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images,” Med. Phys., vol. 44, no. 5, pp. 1678-1691, 2017. S. Su, Z. Gao, H. Zhang, Q. Lin, W. K. Hau, and S. Li, “Detection of lumen and media-adventitia borders in IVUS images using sparse autoencoder neural network,” in Proc. IEEE 14th Int. Symp. Biomed. Imag., pp. 1120-1124, 2017. E. Smistad and L. Løvstakken, “Vessel detection in ultrasound images using deep convolutional neural networks,” in Proc. 2nd Int. Workshop, DLMIA, Athnes, Greece, pp. 30-38, 2016. K. Lekadir, A. Galimzianova, A. Betriu, M. del Mar Vila, L. Igual, D. L. Rubin, E. Fernández, P. Radeva, and S. Napel, “A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound,” IEEE J. Biomed. Health Inform., vol. 21, no. 1, pp. 48-55, 2017. Y. Gao and J. A. Nobel, “Detection and characterization of the fetal heartbeat in free-hand ultrasound sweeps with weakly-supervised two-streams convolutional networks,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Interv., pp. 305-313, 2017 H. Ravishankar, R. Venkataramani, S. Thiruvenkadam, P. Sudhakar, and V. Vaidya, “Learning and incorporating shape models for semantic segmentation,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assisted Interv., pp. 203-211, 2017. K. Wu, X. Chen, and M. Ding, “Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound,” Opt.-Int. J. Light Electron Opt., vol. 125, no. 15, pp. 4057-4063, 2014. P. Burlina, S. Billings, N. Joshi, and J. Albayda, “Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods,” PLoS One, vol. 12, no. 8, Art. no. e0184059, 2017. A. Hafiane, P. Vieyres, and A. Delbos, “Deep learning with spatiotemporal consistency for nerve segmentation in ultrasound images,” arXiv preprint arXiv: 1706.05870, 2017. Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2023). Object detection in 20 years: A survey. Proceedings of the IEEE, 111(3), 257-276. R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 580-587, 2014. R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis., pp. 1440-1448, 2015. S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal network,” In Advances in neural information processing systems, pp. 91-99, 2015. Du, J. (2018, April). Understanding of object detection based on CNN family and YOLO. In Journal of Physics: Conference Series (Vol. 1004, p. 012029). IOP Publishing. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 779-788, 2016. D.H. Lee, "Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks," Workshop on challenges in representation learning, ICML, vol. 3, no. 2, pp. 896, Jun. 16, 2013. Jocher, G., Chaurasia, A., & Qiu, J. (2023). Ultralytics YOLO (Version 8.0.0) [Computer software]. https://github.com/ultralytics/ultralytics Ultralytics (2020) yolov5 [Source code]. https://github.com/ultralytics/yolov5. Accessed: 2020-12-29. S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “CutMix: Regularization strategy to train strong classifiers with localizable features,” arXiv preprint arXiv:1905.04899, 2019. Tian, Z., Shen, C., Chen, H., & He, T. (2020). FCOS: A simple and strong anchor-free object detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(4), 1922-1933. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93473 | - |
| dc.description.abstract | 超音波作為即時且非侵入式的診斷方法,在臨床上眾多科別中被廣泛利用,然而超音波影像的判讀並不容易。在以往,實習醫生需要經過大量的練習與學習來獲取經驗,才能準確的判讀超音波影像。
為此,我們團隊在先前開發了基於YOLO家族模型深度神經網絡的超音波檢測系統,分別在前臂及肩膀單一視角的數據集上做的訓練,同時透過半監督式學習與幀間關係,減少實際訓練資料的人工標記數量與檢測顯示結果的改善。 在本研究中,我們提出了在更新的YOLOv8模型上應用的檢測系統,延續半監督式學習並稍做改善,同時將訓練集擴大到前臂與肩膀的多個視角,並透過腳本運行先檢測身體部位後再進行個別部位的細部檢測,建立起多部位、多視角檢測系統,最後更完成可視化的使用者介面針對臨床上的使用需求做進一步的改善。 根據研究結果,YOLOv8模型能夠有效的分辨前臂與肩膀的超音波影像,在個別部位的模型裡,前臂與肩膀的多視角模型都得到良好的結果,進行半監督式學習後效能也有所提升。檢測系統實際使用時,在訓練集上能夠反應出與訓練結果相符的成像,甚至因為幀間關係的引入影像上能有更好的召回率。 本研究初步建立起多部位、多視角的超音波檢測系統,雖然僅有前臂與肩膀作為數據集,但作為一個方法學,在更多的訓練資料加入後,便能夠如法炮製的進行模型的訓練,並從而使此系統變得更加完整。 | zh_TW |
| dc.description.abstract | Ultrasound is utilized wildly across numerous clinical disciplines as a real-time and non-invasive diagnostic method. However, interpreting ultrasound images is not easy. Traditionally, medical interns had to undergo extensive practice and learn to gain experience in accurately interpreting ultrasound images.
To tackle this challenge, our team developed an ultrasound image annotation system utilizing the YOLO model family, specifically trained on forearm and shoulder datasets captured from a single perspective. Through semi-supervised learning and the “Relation of Frames,” we reduce the manual labels needed for training data and improve detection outcomes. In this study, I propose a detection system applied to the YOLOv8 model, continuing with semi-supervised learning with some improvements. The training set was expanded to include multi-views of the forearm and shoulder. The system runs scripts to detect body parts and then performs detailed inspections of individual parts, establishing a multi-site, multi-view detection system. Finally, a user interface was developed based on clinical usage needs for further improvements. According to the research findings, the YOLOv8 model can effectively differentiate forearm and shoulder ultrasound images. The models for both body parts in multi-views showed good results individually, improving performance after semi-supervised learning. In practical use, the detection system's performance on the training set reflects the results, with the introduction of the “Relation of Frames” leading to better recall rates in the imaging. This study initially establishes a multi-site, multi-view ultrasound detection system. Although it only includes the forearm and shoulder as datasets, as a methodology, with more training data added, the model training can be replicated, making the system more comprehensive. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-01T16:18:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-01T16:18:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii Table of contents v Chapter 1 introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Contribution 6 1.4 Organization 6 Chapter 2 Previous work 7 2.1 Object detection 8 2.2 YOLO family 9 2.3 Semi-supervised learning 10 2.4 Relation of frames 11 Chapter 3 Datasets 12 Chapter 4 Proposed methods 14 4.1 Data acquisition 15 4.2 Semi-supervised learning 20 4.3 Multi-site detection 27 4.4 User interface 29 Chapter 5 Experiment results 31 5.1 Experiment environment 31 5.2 Evaluation 31 5.2.1 Confusion matrix 31 5.2.2 Mean average precision 33 5.3 Experimental results 35 5.3.1 Performance of forearm model 36 5.3.2 Performance of shoulder model 44 Chapter 6 Conclusion and uture work 49 Reference 52 | - |
| dc.language.iso | en | - |
| dc.subject | 物件偵測 | zh_TW |
| dc.subject | 半監督式學習 | zh_TW |
| dc.subject | 深度學習臨床應用 | zh_TW |
| dc.subject | 超音波影像 | zh_TW |
| dc.subject | 即時影像辨識 | zh_TW |
| dc.subject | 卷積神經網絡 | zh_TW |
| dc.subject | 肌肉骨骼超音波 | zh_TW |
| dc.subject | Semi-Supervised Learning | en |
| dc.subject | Ultrasound Imaging | en |
| dc.subject | Convolutional Neural Networks | en |
| dc.subject | Deep Learning Clinical Applications | en |
| dc.subject | Object Detection | en |
| dc.subject | Real-time Image Recognition | en |
| dc.subject | Musculoskeletal Ultrasound | en |
| dc.title | 深度卷積網絡超音波檢測系統:多部位檢測與臨床應用 | zh_TW |
| dc.title | Deep Convolutional Neural Network Ultrasound Detection System: Multi-site Detection and Clinical Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳文翔 | zh_TW |
| dc.contributor.coadvisor | Wen-Shiang Chen | en |
| dc.contributor.oralexamcommittee | 李正達;謝明憲 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Ta Li;Ming-Hsien Hsieh | en |
| dc.subject.keyword | 超音波影像,肌肉骨骼超音波,卷積神經網絡,即時影像辨識,物件偵測,半監督式學習,深度學習臨床應用, | zh_TW |
| dc.subject.keyword | Ultrasound Imaging,Musculoskeletal Ultrasound,Convolutional Neural Networks,Real-time Image Recognition,Object Detection,Semi-Supervised Learning,Deep Learning Clinical Applications, | en |
| dc.relation.page | 56 | - |
| dc.identifier.doi | 10.6342/NTU202402488 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-01 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
