Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9346
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李天浩,徐年盛
dc.contributor.authorHung-Jen Liuen
dc.contributor.author劉宏仁zh_TW
dc.date.accessioned2021-05-20T20:18:30Z-
dc.date.available2011-07-14
dc.date.available2021-05-20T20:18:30Z-
dc.date.copyright2009-07-14
dc.date.issued2009
dc.date.submitted2009-06-25
dc.identifier.citation1.Barlebo, H. C., M. C. Hill, D. Rosbjerg, and K. H. Jensen (1998), Concentration data and dimensionality in groundwater models: Evaluation using inverse modeling, Nordic Hydrology, 29(3), 149-178.
2.Barth, G., and M. C. Hill (2005), Numerical methods for improving sensitivity analysis and parameter estimation of virus transport simulated using sorptive-reactive processes, Journal of Contaminant Hydrology, 76(3-4), 251-277.
3.Basu, N. B., P. S. C. Rao, I. C. Poyer, M. C. Annable, and K. Hatfield (2006), Flux-based assessment at a manufacturing site contaminated with trichloroethylene, Journal of Contaminant Hydrology, 86(1-2), 105-127.
4.Bear, J. (1979), Hydraulics of Groundwater, McGraw-Hill Inc., New York.
5.Bonilla, F. A., and J. H. Cushman (2000), Role of boundary conditions in convergence and nonlocality of solutions to stochastic flow problems in bounded domains, Water Resour. Res., 36(4), 981–997.
6.Brochu, Y., and D. Marcotte (2003), A simple approach to account for radial flow and boundary conditions when kriging hydraulic head fields for confined aquifers, Mathematical Geology, 35(2), 111-139.
7.Carrera, J., and S. P. Neuman (1986), Estimation of aquifer parameters under transient and steady state conditions: 1. Maximun likelihood method incorporating prior information, Water Resour. Res., 22(2), 199-210.
8.Carrera, J. (1987), State of the art of the inverse problem applied to the flow and solute transport equations, in Groundwater Flow and Quality Modeling, NATO ASI Ser., pp.549-585, D. Reidel Pub. Co., Holland.
9.Carrera, J., A. Alcolea, A. Medina, J. Hidalgo, and L. J. Slooten (2005), Inverse problem in hydrogeology, Hydrogeology Journal, 13(1), 206-222.
10.Cirpka, O. A., and P. K. Kitanidis (2000), Sensitivity of temporal moments calculated by the adjoint-state method and joint inversing of head and tracer data, Adv. Water Resour., 24(1), 89-103.
11.Cheng, J. M., and W. W.-G. Yeh (1992), A proposed quasi-newton method for parameter-identification in a flow and transport-system, Adv. Water Resour., 15(4), 239-249.
12.Chen, Y., and D. Zhang (2006), Data assimilation for transient flow in geologic formations via ensemble Kalman filter, Adv. Water Resour., 29, 1107–1122.
13.Dinwiddie, C. L., N. A. Foley, and F. J. Molz (1999), In-well hydraulics of the electromagnetic borehole flowmeter, Groundwater Water, 37(2), 305-315.
14.Gomez-Hernanez, J. J., A. Sahuquillo, and J. E. Capilla (1997), Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data - I. Theory, Journal of Hydrology, 203(1-4), 162-174.
15.Harvey, C. W., and S. M. Gorelick (1995), Temporal moment-generating equations: Modeling transport and mass transfer in heterogeneous aquifers, Water Resour. Res., 31(8), 1895-1911.
16.James, A. I., W. D. Graham, K. Hatfield, P. S. C. Rao, and M. D. Annable (1997), Optimal estimation of residual non-aqueous phase liquid saturations using partitioning tracer concentration data, Water Resour. Res., 33(12), 2621-2636.
17.James, A. I., W. D. Graham, K. Hatfield, P. S. C. Rao, and M. D. Annable (2000), Estimation of spatially variable residual nonaqueous phase liquid saturations in nonuniform flow fields using partitioning tracer data, Water Resour. Res., 36(4), 999-1012.
18.Jawitz, J. W., M. D. Annable, G. G. Demmy, and P. S. C. Rao (2003), Estimating nonaqueous phase liquid spatial variability using partitioning tracer higher temporal moments, Water Resour. Res., 39(7), 1192, doi:10.1029/2002WR001309.
19.Jin, M. Q., M. Delshad, V. Dwarakanath, D. C. Mckinney, G. A. Pope, K. Sepehrnoori, C. E. Tilburg, and R. E. Jackson (1995), Partition tracer test for detection, estimation, and remediation performance assessment of subsurface nonaqueous phase liquids, Water Resour. Res., 31(5), 1201-1211.
20.Kitanidis, P. K. (1995), Quasi-linear geostatistical theory for inversing, Water Resour. Res., 31(10), 2411-2419.
21.LaVenue, A. M., and J. F. Pickens (1992), Application of a coupled adjoint sensitivity and kriging approach to calibrate a groundwater-flow model, Water Resour. Res., 28(6), 1543-1569.
22.Mayer, A. S., and C. L. Huang (1999), Development and application of a coupled-process parameter inversion model based on the maximum likelihood estimation method, Adv. Water Resour., 22(8), 841-853.
23.McLaughlin, D. and L. R. Townley (1996), A reassessment of the groundwater inverse problem, Water Resour. Res., 32(5), 1131-1161.
24.Rubin, Y., and G. Dagan (1988), Stochastic analysis of boundaries effects on head spatial variability in heterogeneous aquifers 1.Constent head boundary, Water Resour. Res., 24(10), 1689-1697.
25.Rubin, Y., M. A. Cushey, and A. Wilson (1997), The moments of the breakthrough curves of instantaneously and kinetically sorbing solutes in heterogeneous geologic media: Prediction and parameter inference from field measurements, Water Resour. Res., 33(11), 2465-2481.
26.Sun, N.-Z., and W. W.-G. Yeh (1990), Coupled inverse problems in groundwater modeling, 1. Sensitivity analysis and parameter identification, Water Resour. Res., 26(10), 2507-2525.
27.Sun, N.-Z. (1994), Inverse Problems in Groundwater Modeling, Kluwer Acad., Netherlands.
28.Sun, N.-Z., and W. W.-G. Yeh (2007), Development of objective-oriented groundwater models: 1. Robust parameter identification, Water Resour. Res., 43(2), W02420.
29.Wagner B. J. (1992), Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modeling, Journal of Hydrology, 135(1-4), 275-303.
30.Wu, Y.-S., C.-H. Lee, and J.-L. Yu (2008), Effects of Hydraulic Variables and Well Construction on Horizontal Borehole Flowmeter Measurements, Ground Water Monitoring & Remediation, 28(1), 65–74.
31.Yeh, T.-C. J., and P. A. Mock (1996), A structured approach for calibrating steady-state ground-water flow models, Ground Water, 34(3), 444-450.
32.Yeh, T.-C. J., C. H. Lee, K.-C. Hsu, and Y.-C. Tan (2007), Fusion of active and passive hydrologic and geophysical tomographic surveys: The future of subsurface characterization. In Data Integration in Subsurface Hydrology, ed. D.W. Hyndman, F.D. Day-Lewis, and K. Singha, AGU monograph.
33.Yeh, W. W.-G. (1986), Review of parameter identification procedures in groundwater hydrology : The inverse problem, Water Resour. Res., 22(2), 95-108.
34.Yeh, W. W.-G., and N.-Z. Sun (1990), Variational sensitivity analysis, data requirement, and parameter identification in a leaky aquifer system, Water Resour. Res., 26(9), 1927-1938.
35.Zijl, W. (2004), A direct method for the identification of the permeability field based on flux assimilation by a discrete analog of Darcy's law, Transport in Porous Media, 56(1), 87-112.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9346-
dc.description.abstract本研究提出一個一般化逆向問題求解方法,結合了地下水模擬模式、伴隨狀態變數法、梯度法與近似牛頓法,在最小誤差平方和的架構下,最佳化估計未知參數、初始條件或邊界條件。應用伴隨狀態法推導所得之伴隨問題是一種對於參數或條件估計錯誤所造成之模擬誤差的描述,藉由狀態變數與伴隨狀態變數的積分,目標函數對應於所有未知數的梯度值可以快速獲得。
本研究以水平二維拘限含水層為考量對象,首先以一個設計過的示蹤劑試驗探討水力傳導係數(K)檢定問題。除了水頭與一階動差觀測外,再加入了地下水流速與示蹤劑零階動差的觀測。貢獻度指標分析結果指出流速僅包含觀測位置K的資訊,而水頭與動差則包含了大範圍內K 值分佈的訊息。
本研究提出不同示蹤劑濃度釋放策略,營造一個隨空間變化的零階動差場,解決零階動差二元分佈問題,且所得之零階動差其對於檢定K 的貢獻度還高於水頭與一階動差。參數檢定結果發現,水頭觀測資料描述的是地下水等勢能線的分佈,此分佈直接反應參數場大小;動差觀測描述的是流線的分佈,可以表現出流線與流線間K 值差異與的資訊。
在完整逆向問題的探討上,本研究以一個試驗設計過的抽水實驗配合最佳化演算法,同時估計蓄水係數、導水係數、初始水位、邊界水位與邊界流量。相關性分析結果顯示蓄水係數與初始水位呈高度相關;導水係數與邊界水位、邊界流量皆高度相關,這樣的相關性導致逆向問題成為非唯一解。觀測貢獻度分析發現抽水實驗初期的非穩態洩降對於蓄水係數與初始條件檢定貢獻度較高,但單一個水位觀測的貢獻度仍小於一;而抽水晚期的穩態水位觀測,則是對於檢定導水係數與邊界條件特別有效。靠近邊界的觀測井對於邊界條件特別敏感,而抽水井的洩降主要貢獻至參數檢定。在觀測充足的狀況下,逆向演算法可有效融合上述這些資訊,使得檢定結果收斂至未知數的真值。
zh_TW
dc.description.abstractIn this paper, groundwater simulation models, adjoint state method, gradient search method, and least square algorithm are combined to formulate an efficient optimization approach to solve the groundwater inverse problem. The adjoint state method is used to evaluate effectively the gradient of objective function with respect to parameter or condition.
The horizontal two-dimensional confined aquifer is the research target. First, the parameter identification is discussed through a designed tracer test. Head, flux, zeroth and first moment observations are utilized to estimate hydraulic conductivity(K) field. The moment observations at different locations contain some indirect trend information of K field. Next to head observations, they provide additional knowledge useful to parameter identification in groundwater system. Using all three kinds together, the case study demonstrates to elevate the efficiency and accuracy of solution substantially.
Second, the complete inverse problem is taken into consideration. A designed pumping test is performed to simultaneously estimate aquifer parameters, initial condition, and boundary conditions in groundwater modeling. The correlation analysis shows high connection between storage coefficient and initial condition. Besides, transmissivity and boundary conditions are also highly correlated. A time series of unsteady head is needed for storage coefficient and initial condition estimation. The observation near boundary is very effective on boundary condition estimation. The observation at pumping well mostly contributes to the estimation of transmissivity.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:18:30Z (GMT). No. of bitstreams: 1
ntu-98-F91521308-1.pdf: 1315431 bytes, checksum: c5eebf6db29c6a72d590f6d5d7020b85 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書 ................................ I
誌謝 ............................................ II
中文摘要 ........................................ III
英文摘要 ........................................ IV
目錄............................................. V
表目錄 .......................................... VII
圖目錄 .......................................... VIII
第一章 緒論.......................................1-1
1.1 問題概述和研究動機............................1-1
1.2 文獻回顧......................................1-3
1.2.1 地下水觀測和試驗設計........................1-4
1.2.2 參數檢定....................................1-8
1.2.3 完整逆向問題................................1-10
1.3 研究目標 .....................................1-12
1.4 論文架構 .....................................1-13
第二章 研究方法論 ................................2-1
2.1 最佳化演算法 .................................2-1
2.2 地下水參數檢定 ...............................2-3
2.2.1 地下水水流與示蹤劑動差控制方程式 ...........2-4
2.2.2 目標函數 ...................................2-9
2.2.3 伴隨問題 ...................................2-10
2.2.4 參數更新方法 ...............................2-13
2.3 完整逆向問題 .................................2-15
2.3.1 非穩態地下水水流控制方程式 .................2-15
2.3.2 目標函數 ...................................2-16
2.3.3 伴隨問題 ...................................2-17
第三章 參數檢定之案例研究 ........................3-1
3.1 試驗設計 .....................................3-1
3.1.1 案例說明 ...................................3-2
3.1.2 狀態變數場 .................................3-4
3.1.3 初始估計誤差 ...............................3-9
3.2 貢獻度分析 ...................................3-12
3.3 伴隨狀態變數場 ...............................3-20
3.4 檢定結果分析..................................3-24
3.4.1 參數最佳化估計 .............................3-24
3.4.2水位、流速與動差觀測的價值 ..................3-27
第四章 完整逆向問題之案例研究 ....................4-1
4.1 試驗設計 .....................................4-1
4.2 敏感度分析 ...................................4-3
4.3 相關性分析 ...................................4-4
4.4 貢獻度分析 ...................................4-6
4.5 可檢定性分析 .................................4-8
第五章 總結與建議 ................................5-1
5.1 伴隨狀態法 ...................................5-1
5.2 試驗設計 .....................................5-2
5.3 參數檢定 .....................................5-3
5.4 完整逆向問題 .................................5-5
參考文獻 ........................................參-1
附錄A 地下水參數檢定之伴隨問題推導 ............A-1
附錄B 參數檢定問題之實際求解過程 ..............B-1
附錄C 完整逆向問題之伴隨問題推導 ..............C-1
簡歷
表目錄
表3.1 含水層真實參數場 ................................................3-3
表3.2 OSSE觀測資料 ....................................................3-12
表3.3 觀測精度與要求之參數精度 ........................................3-14
表3.4 水位、流速與動差觀測對於檢定K1的貢獻度指標 ......................3-18
表3.5 水位、流速與動差觀測對於檢定K2的貢獻度指標 ......................3-19
表3.6 不同觀測資料組合下之最佳參數估計結果 ............................3-25
表3.7 單一觀測資料下之參數最佳估計值結果 ..............................3-28
表4.1 參數、初始與邊界條件之相關性矩陣 ................................4-5
表4.2 觀測精度與要求之參數、初始與邊界條件精度 ........................4-6
表4.3 不同觀測組合下之最佳估計結果 ....................................4-8
表4.4 不同未知數設定下之最佳估計結果 ..................................4-9

圖目錄
圖2.1地下水一般化逆向問題求解流程圖 ...................................2-2
圖2.2參數最佳化搜尋過程圖 .............................................2-15
圖3.1 虛擬拘限含水層俯視圖 ............................................3-3
圖3.2 真實地下水水位與流速分布場 ......................................3-5
圖3.3 真實零階動差分布場 ..............................................3-6
圖3.4 真實一階動差分布場 ..............................................3-8
圖3.5 初始參數估計所造成之水頭與流速誤差分布圖 ........................3-9
圖3.6 初始參數估計所造成之零階動差誤差分布圖 ..........................3-10
圖3.7 初始參數估計所造成之一階動差誤差分布圖 ..........................3-11
圖3.8 觀測H(60,15)對於檢定各個計算節點K值的貢獻度分布圖 ...............3-14
圖3.9 觀測q(60,45)對於檢定各個計算節點K值的貢獻度分布圖 ...............3-15
圖3.10 觀測m0(30,45)對於檢定各個計算節點K值的貢獻度分布圖 .............3-16
圖3.11 觀測m1(90,15)對於檢定各個計算節點K值的貢獻度分布圖 .............3-16
圖3.12 伴隨一階動差分布圖..............................................3-21
圖3.13 伴隨零階動差分布圖..............................................3-22
圖3.14 伴隨水頭分布圖..................................................3-23
圖3.15 伴隨流速分布圖..................................................3-23
圖3.16 參數最佳化過程中不同觀測資料組合下誤差平方和的遞減圖 ...........3-25
圖3.17 參數最佳化過程中單一觀測資料下誤差平方和的遞減圖 ...............3-27
圖4.1 虛擬二維拘限含水層示意圖 ........................................4-2
圖4.2 抽水實驗過程之抽水井與監測井之洩降曲線圖 ........................4-3
圖4.3 水位h(30,20)對於參數、初始與邊界條件的敏感度隨時間變化圖 ........4-3
圖4.4 水位h(10,20)對於參數、初始與邊界條件檢定之貢獻度隨時間變化圖.....4-6
圖4.5 水位h(30,20)對於參數、初始與邊界條件檢定之貢獻度隨時間變化圖.....4-7
圖4.6 水位h(50,20)對於參數、初始與邊界條件檢定之貢獻度隨時間變化圖.....4-7
dc.language.isozh-TW
dc.title利用伴隨狀態法耦合水流與傳輸逆推地下水參數及未知條件zh_TW
dc.titleCoupling flow and transport for groundwater parameter and unknown condition identification using adjoint state methoden
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee葉弘德,陳主惠,張良正,劉振宇,黃良雄
dc.subject.keyword地下水模擬,水流與傳輸,參數檢定,完整逆向問題,伴隨狀態變數法,試驗設計,觀測貢獻度,資料融合,zh_TW
dc.subject.keywordgroundwater modeling,flow and transport,parameter identification,complete inverse problem,adjoint state method,experimental design,contribution of observation,data assimilation,en
dc.relation.page110
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-06-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf1.28 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved