請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93466
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林俊達 | zh_TW |
dc.contributor.advisor | Guin-Dar Lin | en |
dc.contributor.author | 鐘紹紘 | zh_TW |
dc.contributor.author | Shao-Hung Chung | en |
dc.date.accessioned | 2024-08-01T16:16:28Z | - |
dc.date.available | 2024-08-02 | - |
dc.date.copyright | 2024-08-01 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-29 | - |
dc.identifier.citation | [1] Hsiang-Hua Jen. Steady-state phase diagram of a weakly driven chiral- coupled atomic chain. Physical Review Research, 2(1):013097, 2020.
[2] Shao-Hung Chung, I Gusti Ngurah Yudi Handayana, Yi-Lin Tsao, Chun- Chi Wu, G. D. Lin, and H. H. Jen. Steady-state phases and interaction- induced depletion in a driven-dissipative chirally-coupled dissimilar atomic array, 2023. [3] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller. Quantum States and Phases in Driven Open Quantum Systems with Cold Atoms. Nature Physics, 4(11):878–883, November 2008. doi: 10.1038/ nphys1073. [4] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller. Preparation of entangled states by quantum markov processes. Phys. Rev. A, 78:042307, Oct 2008. doi: 10.1103/PhysRevA.78.042307. [5] Frank Verstraete, Michael M. Wolf, and J. Ignacio Cirac. Quantum com- putation, quantum state engineering, and quantum phase transitions driven by dissipation, 2008. [6] Kristian Baumann, Christine Guerlin, Ferdinand Brennecke, and Tilman Esslinger. Dicke quantum phase transition with a superfluid gas in an optical cavity. nature, 464(7293):1301–1306, 2010. [7] Hendrik Weimer, Markus Müller, Igor Lesanovsky, Peter Zoller, and Hans Peter Büchler. A rydberg quantum simulator. Nature Physics, 6(5): 382–388, 2010. [8] Sebastian Diehl, Andrea Tomadin, Andrea Micheli, Rosario Fazio, and Peter Zoller. Dynamical phase transitions and instabilities in open atomic many- body systems. Physical review letters, 105(1):015702, 2010. [9] Julio T Barreiro, Markus Müller, Philipp Schindler, Daniel Nigg, Thomas Monz, Michael Chwalla, Markus Hennrich, Christian F Roos, Peter Zoller, and Rainer Blatt. An open-system quantum simulator with trapped ions.Nature, 470(7335):486–491, 2011. [10] Andrea Tomadin, Sebastian Diehl, and Peter Zoller. Nonequilibrium phase diagram of a driven and dissipative many-body system. Phys. Rev. A, 83: 013611, Jan 2011. doi: 10.1103/PhysRevA.83.013611. [11] Philipp M Preiss, Ruichao Ma, M Eric Tai, Alexander Lukin, Matthew Rispoli, Philip Zupancic, Yoav Lahini, Rajibul Islam, and Markus Greiner. Strongly correlated quantum walks in optical lattices. Science, 347(6227): 1229–1233, 2015. [12] Peter Lodahl, Sahand Mahmoodian, Søren Stobbe, Arno Rauschenbeutel, Philipp Schneeweiss, Jürgen Volz, Hannes Pichler, and Peter Zoller. Chiral quantum optics. Nature, 541(7638):473–480, 2017. [13] DE Chang, JS Douglas, Alejandro González-Tudela, C-L Hung, and HJ Kim- ble. Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons. Reviews of Modern Physics, 90(3):031002, 2018. [14] Polnop Samutpraphoot, Tamara Dordevic, Paloma L Ocola, Hannes Bernien, Crystal Senko, Vladan Vuletic, and Mikhail D Lukin. Strong coupling of two individually controlled atoms via a nanophotonic cavity. Physical review letters, 124(6):063602, 2020. [15] Stuart J Masson and Ana Asenjo-Garcia. Atomic-waveguide quantum electrodynamics. Physical Review Research, 2(4):043213, 2020. [16] Nikos Fayard, Loïc Henriet, Ana Asenjo-Garcia, and DE Chang. Many- body localization in waveguide quantum electrodynamics. Physical Review Research, 3(3):033233, 2021. [17] Eunjong Kim, Xueyue Zhang, Vinicius S Ferreira, Jash Banker, Joseph K Iverson, Alp Sipahigil, Miguel Bello, Alejandro González-Tudela, Mohammad Mirhosseini, and Oskar Painter. Quantum electrodynamics in a topological waveguide. Physical Review X, 11(1):011015, 2021. [18] Alexandra S Sheremet, Mihail I Petrov, Ivan V Iorsh, Alexander V Poshakinskiy, and Alexander N Poddubny. Waveguide quantum electrodynamics: col- lective radiance and photon-photon correlations. Reviews of Modern Physics, 95(1):015002, 2023. [19] Pablo Solano, Pablo Barberis-Blostein, Fredrik K Fatemi, Luis A Orozco, and Steven L Rolston. Super-radiance reveals infinite-range dipole interac- tions through a nanofiber. Nature communications, 8(1):1857, 2017. [20] James S Douglas, Hessam Habibian, C-L Hung, Alexey V Gorshkov, H Jeff Kimble, and Darrick E Chang. Quantum many-body models with cold atoms coupled to photonic crystals. Nature Photonics, 9(5):326–331, 2015. [21] Rudolf Mitsch, Clément Sayrin, B Albrecht, Philipp Schneeweiss, and A Rauschenbeutel. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nature communications, 5 (1):5713, 2014. [22] Yongguan Ke, Alexander V Poshakinskiy, Chaohong Lee, Yuri S Kivshar, and Alexander N Poddubny. Inelastic scattering of photon pairs in qubit arrays with subradiant states. Physical review letters, 123(25):253601, 2019. [23] Andreas Albrecht, Loïc Henriet, Ana Asenjo-Garcia, Paul B Dieterle, Oskar Painter, and Darrick E Chang. Subradiant states of quantum bits coupled to a one-dimensional waveguide. New Journal of Physics, 21(2):025003, 2019. [24] HH Jen. Bound and subradiant multiatom excitations in an atomic array with nonreciprocal couplings. Physical Review A, 103(6):063711, 2021. [25] Riccardo Pennetta, Martin Blaha, Aisling Johnson, Daniel Lechner, Philipp Schneeweiss, Jürgen Volz, and Arno Rauschenbeutel. Collective radiative dynamics of an ensemble of cold atoms coupled to an optical waveguide. Physical Review Letters, 128(7):073601, 2022. [26] Riccardo Pennetta, Daniel Lechner, Martin Blaha, Arno Rauschenbeutel, Philipp Schneeweiss, and Jürgen Volz. Observation of coherent coupling between super-and subradiant states of an ensemble of cold atoms collectively coupled to a single propagating optical mode. Physical Review Letters, 128 (20):203601, 2022. [27] Sahand Mahmoodian, Mantas Cepulkovskis, Sumanta Das, Peter Lodahl, Klemens Hammerer, and Anders S. Sørensen. Strongly correlated photon transport in waveguide quantum electrodynamics with weakly coupled emit- ters. Phys. Rev. Lett., 121:143601, Oct 2018. doi: 10.1103/PhysRevLett. 121.143601. [28] CA Downing, JC López Carreño, AI Fernández-Domínguez, and E Del Valle. Asymmetric coupling between two quantum emitters. Physical Review A, 102(1):013723, 2020. [29] HH Jen. Quantum correlations of localized atomic excitations in a disordered atomic chain. Physical Review A, 105(2):023717, 2022. [30] Julian Léonard, Sooshin Kim, Matthew Rispoli, Alexander Lukin, Robert Schittko, Joyce Kwan, Eugene Demler, Dries Sels, and Markus Greiner. Probing the onset of quantum avalanches in a many-body localized system. Nature Physics, 19(4):481–485, 2023. [31] C-C Wu, K-T Lin, IGNY Handayana, C-H Chien, S Goswami, G-D Lin, Y-C Chen, and HH Jen. Atomic excitation delocalization at the clean to disor- dered interface in a chirally-coupled atomic array. Physical Review Research, 6(1):013159, 2024. [32] I Handayana, Chun-Chi Wu, Sumit Goswami, Ying-Cheng Chen, and HH Jen. Atomic excitation trapping in dissimilar chirally-coupled atomic arrays. arXiv preprint arXiv:2311.05906, 2023. [33] Miroslav Hopjan and Fabian Heidrich-Meisner. Many-body localization from a one-particle perspective in the disordered one-dimensional bose-hubbard model. Physical Review A, 101(6):063617, 2020. [34] T Schulte, S Drenkelforth, Jens Kruse, Wolfgang Ertmer, Jan Arlt, Krzysztof Sacha, Jakub Zakrzewski, and Maciej Lewenstein. Routes towards anderson- like localization of bose-einstein condensates in disordered optical lattices. Physical review letters, 95(17):170411, 2005. [35] Paul Adrien Maurice Dirac. The principles of quantum mechanics. Number 27. Oxford university press, 1981. [36] J. J. Sakurai and Jim Napolitano. Modern Quantum Mechanics. Cambridge University Press, 3 edition, 2020. [37] I. I. Rabi. Space quantization in a gyrating magnetic field. Phys. Rev., 51: 652–654, Apr 1937. doi: 10.1103/PhysRev.51.652. [38] Albert B. Einstein. On the quantum theory of radiation. 1917. [39] Paul Adrien Maurice Dirac and Niels Henrik David Bohr. The quantum theory of the emission and absorption of radiation. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 114(767):243–265, 1927. doi: 10.1098/rspa.1927.0039. [40] Edwin T Jaynes and Frederick W Cummings. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Pro- ceedings of the IEEE, 51(1):89–109, 1963. [41] R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 93: 99–110, Jan 1954. doi: 10.1103/PhysRev.93.99. [42] Jonathan P Marangos. Electromagnetically induced transparency. Journal of modern optics, 45(3):471–503, 1998. [43] John David Jackson. Classical electrodynamics. John Wiley & Sons, 2012. [44] Donald H Kobe. Gauge transformations and the electric dipole approximation. American Journal of Physics, 50(2):128–133, 1982. [45] Stephen D Webb, Dan T Abell, Nathan M Cook, and David L Bruhwiler. A spectral symplectic algorithm for cylindrical electromagnetic plasma simulations. arXiv preprint arXiv:1609.05095, 14, 2016. [46] Pallavi Bhat, Muni Zhou, and Nuno F Loureiro. Inverse energy transfer in decaying, three-dimensional, non-helical magnetic turbulence due to mag- netic reconnection. Monthly Notices of the Royal Astronomical Society, 501 (2):3074–3087, 2021. [47] István Montvay and Gernot Münster. Quantum fields on a lattice. Cambridge University Press, 1994. [48] Heinz-Peter Breuer and Francesco Petruccione. The Theory of Open Quantum Systems. Oxford University Press, 2007. ISBN 9780199213900. doi: 10.1093/acprof:oso/9780199213900.001.0001. [49] Francisco Guinea. Quantum dissipative systems. In Germán Sierra and Miguel A. Martín-Delgado, editors, Strongly Correlated Magnetic and Superconducting Systems, pages 249–260, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg. ISBN 978-3-540-49734-9. [50] Alfred G Redfield. On the theory of relaxation processes. IBM Journal of Research and Development, 1(1):19–31, 1957. [51] Sadao Nakajima. On quantum theory of transport phenomena: Steady diffusion. Progress of Theoretical Physics, 20(6):948–959, 1958. ISSN 0033-068X. doi: 10.1143/PTP.20.948. [52] Robert Zwanzig. Ensemble method in the theory of irreversibility. The Journal of Chemical Physics, 33(5):1338–1341, 11 1960. ISSN 0021-9606. doi: 10.1063/1.1731409. [53] W Pauli. Probleme der Modernen Physik: Arnold Sommerfeld zum 60. Geburtstage gewidmet von Seinen Schulern, volume 2. Hirzel Verlag, 1928. [54] R Zwanzig. Statistical mechanics of irreversibility. 3, 1961. [55] GS Agarwal. I master equation methods in quantum optics. In Progress in optics, volume 11. Amsterdam: North-Holland, 1973. [56] I Prigogine. Non-equilibrium Statistical Mechanics. 1962. [57] W H Louisell. Quantum statistical properties of radiation. 1973. [58] Daniel Manzano. A short introduction to the lindblad master equation. Aip Advances, 10(2), 2020. [59] Angel Rivas and Susana F. Huelga. Open Quantum Systems: An Intro- duction. Springer Berlin Heidelberg, 2012. ISBN 9783642233548. doi: 10.1007/978-3-642-23354-8. [60] J Preskill. Lecture notes for physics 229: Quantum information and computation. California Institute of Technology, 16, 1998. [61] Michael J. W. Hall, James D. Cresser, Li Li, and Erika Andersson. Canonical form of master equations and characterization of non-markovianity. Phys. Rev. A, 89:042120, Apr 2014. doi: 10.1103/PhysRevA.89.042120. [62] Vittorio Gorini, Andrzej Kossakowski, and E. C. G. Sudarshan. Completely positive dynamical semigroups of n‐level systems. Journal of Mathematical Physics, 17(5):821–825, 05 1976. ISSN 0022-2488. doi: 10.1063/1.522979. [63] G. Lindblad. On the generators of quantum dynamical semigroups. Com- munications in Mathematical Physics, 48(2):119 – 130, 1976. [64] Howard J Carmichael. Statistical methods in quantum optics 1: master equations and Fokker-Planck equations. Springer Science & Business Media, 2013. [65] Max Planck. Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzungsberichte der Königlich- Preussischen Akademie der Wissenschaften zu Berlin. Reimer, 1917. [66] Adriaan Daniël Fokker. Die mittlere energie rotierender elektrischer dipole im strahlungsfeld. Annalen der Physik, 348(5):810–820, 1914. [67] Marlan O. Scully and M. Suhail Zubairy. Quantum Optics, chapter 9. Cambridge University Press, 1997. [68] M.D. Lukin. Modern Atomic and Optical Physics II, chapter 8. 2016. [69] Crispin Gardiner and Peter Zoller. Quantum noise: a handbook of Marko- vian and non-Markovian quantum stochastic methods with applications to quantum optics. Springer Science & Business Media, 2004. [70] Crispin W Gardiner et al. Handbook of stochastic methods, volume 3. springer Berlin, 1985. [71] C. W. Gardiner and M. J. Collett. Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. Phys. Rev. A, 31:3761–3774, Jun 1985. doi: 10.1103/PhysRevA.31.3761. [72] Bernard Yurke. Input-output theory. 2004. [73] Kurt Jacobs. Input–output theory, page 458–474. Cambridge University Press, 2014. [74] Jonas FG Santos and Fabricio S Luiz. Quantum thermodynamics aspects with a thermal reservoir based on-symmetric hamiltonians. Journal of Physics A: Mathematical and Theoretical, 54(33):335301, 2021. [75] Francesco Ciccarello. Collision models in quantum optics. Quantum Mea- surements and Quantum Metrology, 4(1):53–63, 2017. [76] Otto Bretscher. Linear algebra with applications, volume 52. Prentice Hall Eaglewood Cliffs, NJ, 1997. [77] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan- tum Information: 10th Anniversary Edition. Cambridge University Press, 2010. [78] Karl Kraus, Arno Böhm, John D Dollard, and WH Wootters. States, Effects, and Operations Fundamental Notions of Quantum Theory: Lectures in Mathematical Physics at the University of Texas at Austin. Springer, 1983. [79] Peter Stelmachovic and Vladimír Buzek. Dynamics of open quantum systems initially entangled with environment: Beyond the kraus representation. Phys. Rev. A, 64:062106, Nov 2001. doi: 10.1103/PhysRevA.64.062106. [80] D. Salgado, J. L. Sánchez-Gómez, and M. Ferrero. Evolution of any finite open quantum system always admits a kraus-type representation, although it is not always completely positive. Phys. Rev. A, 70:054102, Nov 2004. doi: 10.1103/PhysRevA.70.054102. [81] D. M. Tong, L. C. Kwek, C. H. Oh, Jing-Ling Chen, and L. Ma. Operator- sum representation of time-dependent density operators and its applications. Phys. Rev. A, 69:054102, May 2004. doi: 10.1103/PhysRevA.69.054102. [82] Dariusz Chrusciski and Saverio Pascazio. A brief history of the gkls equation. Open Systems & Information Dynamics, 24(03):1740001, 2017. [83] Fabio Benatti and Roberto Floreanini. Open quantum dynamics: complete positivity and entanglement. International Journal of Modern Physics B, 19 (19):3063–3139, 2005. [84] Hannes Pichler, Tomás Ramos, Andrew J Daley, and Peter Zoller. Quantum optics of chiral spin networks. Physical Review A, 91(4):042116, 2015. [85] A. A. Clerk, M. H. Devoret, S. M. Girvin, Florian Marquardt, and R. J. Schoelkopf. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys., 82:1155–1208, Apr 2010. doi: 10.1103/RevModPhys.82. 1155. [86] Alexandre Blais, Arne L. Grimsmo, S. M. Girvin, and Andreas Wallraff. Circuit quantum electrodynamics. Rev. Mod. Phys., 93:025005, May 2021. doi: 10.1103/RevModPhys.93.025005. [87] Michael E Peskin. An introduction to quantum field theory. CRC press, 2018. [88] Tomás Ramos, Hannes Pichler, Andrew J Daley, and Peter Zoller. Quantum spin dimers from chiral dissipation in cold-atom chains. Physical review letters, 113(23):237203, 2014. [89] Bharath Kannan, Aziza Almanakly, Youngkyu Sung, Agustin Di Paolo, David A Rower, Jochen Braumüller, Alexander Melville, Bethany M Niedzielski, Amir Karamlou, Kyle Serniak, et al. On-demand directional microwave photon emission using waveguide quantum electrodynamics. Nature Physics, 19(3):394–400, 2023. [90] P Solano, P Barberis-Blostein, and K Sinha. Dissimilar collective decay and directional emission from two quantum emitters. Physical Review A, 107(2): 023723, 2023. [91] Alejandro González-Tudela and Diego Porras. Mesoscopic entanglement in- duced by spontaneous emission in solid-state quantum optics. Physical review letters, 110(8):080502, 2013. [92] Konstantin Y Bliokh and Franco Nori. Transverse and longitudinal angular momenta of light. Physics Reports, 592:1–38, 2015. [93] Daniel O’connor, Pavel Ginzburg, Francisco J Rodríguez-Fortuño, Greg A Wurtz, and Anatoly V Zayats. Spin–orbit coupling in surface plasmon scattering by nanostructures. Nature communications, 5(1):5327, 2014. [94] Francisco J. Rodríguez-Fortuño, Giuseppe Marino, Pavel Ginzburg, Daniel O’Connor, Alejandro Martínez, Gregory A. Wurtz, and Anatoly V. Zayats. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science, 340(6130):328–330, 2013. doi: 10.1126/science. 1233739. [95] Immo Söllner, Sahand Mahmoodian, Sofie Lindskov Hansen, Leonardo Mi- dolo, Alisa Javadi, Gabija Kirsanske, Tommaso Pregnolato, Haitham El-Ella, Eun Hye Lee, Jin Dong Song, et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nature nanotechnology, 10(9):775–778, 2015. [96] Silvia Cardenas-Lopez, Stuart J Masson, Zoe Zager, and Ana Asenjo-Garcia. Many-body superradiance and dynamical mirror symmetry breaking in waveguide qed. Physical Review Letters, 131(3):033605, 2023. [97] B Olmos, C Liedl, I Lesanovsky, and P Schneeweiss. Bragg condition for scattering into a guided optical mode. Physical Review A, 104(4):043517, 2021. [98] N. C. Murphy, R. Wortis, and W. A. Atkinson. Generalized inverse partic- ipation ratio as a possible measure of localization for interacting systems. Phys. Rev. B, 83:184206, May 2011. doi: 10.1103/PhysRevB.83.184206. [99] M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett., 113:093603, Aug 2014. doi: 10.1103/PhysRevLett.113. 093603. [100] Guo-Zhu Song, Ewan Munro, Wei Nie, Leong-Chuan Kwek, Fu-Guo Deng, and Gui-Lu Long. Photon transport mediated by an atomic chain trapped along a photonic crystal waveguide. Phys. Rev. A, 98:023814, Aug 2018. doi: 10.1103/PhysRevA.98.023814. [101] Xingsheng Luan, Jean-Baptiste Béguin, Alex P Burgers, Zhongzhong Qin, Su-Peng Yu, and Harry J Kimble. The integration of photonic crystal waveg- uides with atom arrays in optical tweezers. Advanced Quantum Technologies, 3(11):2000008, 2020. [102] L-M Duan, Mikhail D Lukin, J Ignacio Cirac, and Peter Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414(6862):413–418, 2001. [103] S. J. van Enk. Single-particle entanglement. Phys. Rev. A, 72:064306, Dec 2005. doi: 10.1103/PhysRevA.72.064306. [104] Wolfgang Dür, Guifre Vidal, and J Ignacio Cirac. Three qubits can be entangled in two inequivalent ways. Physical Review A, 62(6):062314, 2000. [105] Rivka Bekenstein, Igor Pikovski, Hannes Pichler, Ephraim Shahmoon, Susanne F Yelin, and Mikhail D Lukin. Quantum metasurfaces with atom arrays. Nature Physics, 16(6):676–681, 2020. [106] CH Chien, S Goswami, CC Wu, WS Hiew, YC Chen, and HH Jen. Generating scalable graph states in an atom-nanophotonic interface. Quantum Science and Technology, 9(2):025020, 2024. [107] Nathaniel B Vilas, Paige Robichaud, Christian Hallas, Grace K Li, Loïc Anderegg, and John M Doyle. An optical tweezer array of ultracold polyatomic molecules. Nature, pages 1–5, 2024. [108] Federico Lombardo, Francesco Ciccarello, and G Massimo Palma. Photon localization versus population trapping in a coupled-cavity array. Physical Review A, 89(5):053826, 2014. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93466 | - |
dc.description.abstract | 光子晶體波導與原子陣列耦合的一維手性自旋網路構成了一種強耦合量子界面,在光子介導下產生的遠程偶極-偶極相互作用之下,該系統展現了許多引人入勝的量子集體動力學特徵。在本論文中,我們特別研究了具有兩種不同粒子間距的異質陣列在弱驅動場的條件下,由共振偶極-偶極相互作用及手性耦合相互競爭下所產生的原子激發穩態相。首先,我們確認了此驅動耗散系統的大部分穩態相是由均質陣列穩態相組合而成,而少部分的穩態相則出現了一些嶄新的激發分佈,揭示了連接異質陣列的界面原子的複雜行為。其次,在我們的模擬結果中,異質陣列在特定條件下將出現由相互作用引起的半耗竭激發現象,並且能夠以此製備 Bell 糾纏態或是 W 態。這在雙向耦合下的解析解中也得到了進一步的證實。除此之外,我們也進一步探索了系統動態演化下產生的激發反射與激發阻塞現象,由此解釋半耗竭相的生成。本研究結果為一維驅動-耗散系統所呈現原子激發量子相提供了洞察,同時也為量子資訊與量子計算中的奇特多體量子態模擬提供了基礎。 | zh_TW |
dc.description.abstract | The coupling of a photonic crystal waveguide with an atomic array forms a one-dimensional chiral spin network that constitutes a strongly coupled quantum interface, exhibiting numerous fascinating quantum collective dynamics under the long-range dipole-dipole interactions mediated by photons. In this thesis, we particularly explore the atomic excitation steady states in a dissimilar array with two different interparticle spacings under weak driving felds, infuenced by the competition between the resonant dipole-dipole interaction and directionality of the chiral coupling. We identify that the majority of the steady states in a dissimilar array are combinations of steady states in a homogeneous array, while a minority of the states exhibit some novel excitation distributions, revealing the complex behaviors of the interface atom connecting dissimilar arrays. Furthermore, our simulations indicate the emergence of half-depletion excitations in a dissimilar array under specifc conditions, which allows for the preparation of Bell entangled states or W states. This is also corroborated by analytical solutions under bidirectional coupling. Additionally, we delve into the excitation refection and excitation blockade during the evolution of the system, elucidating the generation of half-depletion phases. Our fndings offer insights into the quantum phases of atomic excitations in one-dimensional driven-dissipative systems and lay the groundwork for simulating exotic many-body quantum states in quantum information and computation. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-01T16:16:28Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-01T16:16:28Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Verifcation Letter from the Oral Examination Committee i
致謝 iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xix 1 Introduction 1 2 Light-Matter Interaction 5 2.1 Atom-Field Interaction 5 2.1.1 Dirac Interaction Picture 5 2.1.2 Rotating Frame 7 2.1.3 Semiclassical Theory 8 2.1.4 Two-Level System 11 2.2 Open Quantum System 14 2.2.1 Markovian Evolution 15 2.2.2 Lindblad Master Equation 21 2.2.3 Physics in Lindblad Master Equation 27 2.3 Summary 27 3 Chiral Quantum Optics 29 3.1 Circuit QED: Transmission Line 29 3.1.1 Effective Model 29 3.1.2 Classical Treatment 31 3.1.3 Circuit Quantization 34 3.2 Chiral Dissipative Dynamics 36 3.2.1 1D Atomic Array as System 37 3.2.2 Waveguide as Reservoir 38 3.2.3 Directional Coupling 39 3.2.4 Chiral Master Equation 40 3.3 Effective Formalism 41 3.3.1 Weak Driving Assumption 41 3.3.2 The Effective Dynamics 42 3.4 Summary 43 4 Steady-State Phases 45 4.1 Homogeneous Atomic Array 45 4.1.1 Steady-State Population Distribution 45 4.1.2 Phase Diagram 48 4.2 Dissimilar Atomic Array 50 4.2.1 Steady-State Population Distribution 51 4.2.2 Phase Combinations and New Phases 53 4.2.3 Impact of Free-Space Decay 57 4.3 Interaction-Induced Depletion 58 4.3.1 Half-Depletion Phases 58 4.3.2 Half-Depletion Regime 59 4.3.3 Impact of Spacing and Directionality 60 4.3.4 Impact of System Size Parity 63 4.3.5 Finite-Size Effect 63 4.4 Analytical Solution in Bi-directional Coupling 65 4.5 Summary 68 5 Atomic Excitation Dynamics 69 5.1 Some Examples 69 5.2 Excitation Refection 71 5.3 Excitation Blockade 73 5.4 Summary 75 6 Discussion and Conclusion 77 6.1 Potential Application in Quantum Information Processing 77 6.1.1 Preparation of Entangled State 77 6.1.2 Preparation of W State 79 6.2 Conclusion and Future Work 79 References 83 | - |
dc.language.iso | zh_TW | - |
dc.title | 一維原子陣列中的穩態相和相互作用引發的激發耗竭 | zh_TW |
dc.title | Steady-State Phases and Interaction-Induced Depletion of Atomic Excitation in a One-Dimensional Atomic Array | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 任祥華 | zh_TW |
dc.contributor.coadvisor | Hsiang-Hua Jen | en |
dc.contributor.oralexamcommittee | 陳應誠 | zh_TW |
dc.contributor.oralexamcommittee | Ying-Cheng Chen | en |
dc.subject.keyword | 手性自旋網路,偶極-偶極相互作用,量子態工程,量子糾纏製備, | zh_TW |
dc.subject.keyword | Chiral spin network,Dipole-dipole interaction,Quantum state engineering,Quantum entanglement preparation, | en |
dc.relation.page | 94 | - |
dc.identifier.doi | 10.6342/NTU202401426 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-07-30 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 物理學系 | - |
dc.date.embargo-lift | 2026-03-18 | - |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 40.18 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。