Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 元件材料與異質整合學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93460
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林致廷zh_TW
dc.contributor.advisorChih-Ting Linen
dc.contributor.author滑凱茵zh_TW
dc.contributor.authorHoi-Yan Waten
dc.date.accessioned2024-08-01T16:14:36Z-
dc.date.available2024-08-02-
dc.date.copyright2024-08-01-
dc.date.issued2024-
dc.date.submitted2024-07-29-
dc.identifier.citation[1] Xu, J., Murphy., S.L., Kochanek, K.D., Arias E. (2022). Mortality in the United States, 2021.NCHS Data Brief, (456), 1-8.

[2] Cao, S., Sun, P., Xiao, G., Tang, Q., Sun, X., Zhao, H., Zhao, S., Lu, H., & Yue, Z. (2022). ISFET‐based sensors for (bio)chemical applications: A review. Electrochemical Science Advances, 3(4).

[3] Hierlemann, A. (2005). CMOS‐based chemical sensors. Advanced Micro & Nanosystems, 335–390.

[4] Hassan, E., &Abdolkader, T. (2023). A review of ion-sensitive field effect transistor (ISFET) based biosensors. International Journal of Materials Technology and Innovation.

[5] Yates, D.E., Levine, S. and Healy, T.W. (1974). Site-Binding Model of the Electrical Double Layer at the Oxide/Water Interface. Journal of the Chemical Society, Faraday Transactions, 70, 1807-1818.

[6] Davis, J. A., James, R. O., & Leckie, J. O. (1978). Surface ionization and complexation at the oxide/water interface. Journal of Colloid and Interface Science, 63(3), 480–499.

[7] van Hal, R., Eijkel, J., & Bergveld, P. (1996). A general model to describe the electrostatic potential at electrolyte oxide interfaces. Advances in Colloid and Interface Science, 69(1–3), 31–62.

[8] Dinar, A. M., Zain, A. M., Salehuddin, F., Abdulhameed, M., Mohsen, M. K., & Attiah, M. L. (2019). Impact of Gouy-Chapman-Stern model on conventional ISFET sensitivity and stability. Telkomnika, 17(6), 2842.

[9] Dinar, A. M., Zain, A. S., Salehuddin, F. (2017). CMOS ISFET device for DNA Sequencing: Device Compensation, Application Requirements and Recommendations. International Journal of Applied Engineering Research. (12), 11015-11028.


[10] Yin, L.-T., Chou, J.-C., Chung, W.-Y., Sun, T.-P., & Hsiung, S.-K. (2001). Study of indium tin oxide thin film for separative extended gate ISFET. Materials Chemistry and Physics, 70(1), 12–16.

[11] Chang, C., & Lu, M. S. (2020). CMOS ion sensitive field effect transistors for highly sensitive detection of DNA hybridization. IEEE Sensors Journal, 20(16), 8930–8937.

[12] Lee, C., Chen, Y., & Lu, M. S. (2021). CMOS biosensors for the detection of DNA hybridization in high Ionic-Strength solutions. IEEE Sensors Journal, 21(4), 4135–4142.

[13] Park, K., Choi, S., Lee, M., Sohn, B., & Choi, S. (2002). ISFET glucose sensor system with fast recovery characteristics by employing electrolysis. Sensors and Actuators. B, Chemical, 83(1–3), 90–97.

[14] Seo, H., Kim, C., Sohn, B., Yeow, T., Son, M., & Haskard, M. (1997). ISFET glucose sensor based on a new principle using the electrolysis of hydrogen peroxide. Sensors and Actuators. B, Chemical, 40(1), 1–5.

[15] Khanna, V. K., Kumar, A., Jain, Y. K., & Ahmad, S. (2006). Design and development of a novel high-transconductance pH-ISFET (ion-sensitive field-effect transistor)-based glucose biosensor. International Journal of Electronics, 93(2), 81–96.

[16] Kim, K. H., Wee, K. W., Kim, C., Hur, D., Lee, J. H., & Yoo, Y. K. (2022). Rapid and low-cost, and disposable electrical sensor using an extended gate field-effect transistor for cardiac troponin I detection. Biomedical Engineering Letters, 12(2), 197–203.

[17] Chou, J., & Weng, C. (2001). Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET. Materials Chemistry and Physics, 71(2), 120–124.

[18] Ryu, S., Lee, S., Sohn, Y., Son, W., & Choi, S. (2012). Characteristics of Al2O3 gate pH-ISFET difference of thermal annealing temperature. Biomedical Engineering: Applications, Basis and Communications, 24(2), 117–121.

[19] Bousse, L., Mostarshed, S., van der Schoot, B., & de Rooij, N.F. (1994). Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators. Sensors and Actuators. B, Chemical, 17(2), 157–164.
[20] Chen, M., Jin, Y., Qu, X., Jin, Q., & Zhao, J. (2014). Electrochemical impedance spectroscopy study of Ta2O5 based EIOS pH sensors in acid environment. Sensors and Actuators. B, Chemical, 192, 399–405.

[21] Yusof, K.A., Noh, N.I., Herman, S.H., Abdullah, A.Z., Zolkapli, M., & Abdullah, W.F. (2013). pH sensing characteristics of silicon nitride thin film and silicon nitride-based ISFET sensor. 2013 IEEE 4th Control and System Graduate Research Colloquium, 132-135.

[22] Lai, C., Lue C., Yang C., and Jao J., Modifications on pH sensitivity of Si3N4 membrane by CF4 plasma and rapid thermal annealing for ISFET/REFET applications. 2006 International Conference on Solid State Devices and Materials, 11-15.

[23] Yao, P., Chiang, J., & Lee, M. (2014). Application of sol–gel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor. Solid State Sciences, 28, 47–54.

[24] Huang, Y.-J., Lin, C.-C., Huang, J.-C., Hsieh, C.-H., Wen, C.-H., Chen, T.-T., Jeng, L.-S., Yang, C.-K., Yang, J.-H., Tsui, F., Liu, Y.-S., Liu, S., & Chen, M. (2015). High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SOC. 2015 IEEE International Electron Devices Meeting (IEDM), 29.2.1-29.2.4.

[25] Bhatt, D., Kumar, N. and Panda, S. (2019). Stacked top gate dielectrics in dual gate ion sensitive field effect transistors: Role of interfaces, ACS Applied Electronic Materials, 1(8), 1465–1473.

[26] Zhou, K. et al. (2020). Highly sensitive pH sensors based on double-gate silicon nanowire field-effect transistors with dual-mode amplification, Sensors and Actuators B: Chemical, 320, 128403.

[27] Lu, C.-H., Hou, T.-H. and Pan, T.-M. (2018). High-performance double-gate α-InGaZnO ISFET pH sensor using a HFO2 gate dielectric, IEEE Transactions on Electron Devices, 65(1), 237–242.

[28] Kumar, N. et al. (2020). Interface mechanisms involved in a-IGZO based dual gate ISFET pH sensor using al2o3 as the top gate dielectric, Materials Science in Semiconductor Processing, 119,105239.

[29] Wang, Y. et al. (2023). Fabrication of high-performance dual-gate ISFET PH sensors using In2O3 nano-channel, Current Research in Biotechnology, 6, 100149.

[30] Srikanya, D., Bhat, A.M. and Sahu, C. (2023). Design and analysis of high-performance double-gate ZnO nano-structured thin-film ISFET for pH sensing applications, Microelectronics Journal, 137, 105811.

[30] Chiang, J., Jan, S., Chou, J., & Chen, Y. (2001). Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide. Sensors and Actuators. B, Chemical, 76(1–3), 624–628.

[31] Fathil, M., Arshad, M. M., Gopinath, S. C., Hashim, U., Adzhri, R., Ayub, R., Ruslinda, A., MN, M. N., Azman, A., Zaki, M., & Tang, T. (2015). Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers. Biosensors & Bioelectronics/Biosensors & Bioelectronics (Online), 70, 209–220.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93460-
dc.description.abstract隨著全球各國陸續進入高齡化的社會,醫療問題顯得日益重要,根據多項研究指出,心血管疾病佔據所有疾病死因之冠,如急性心肌梗塞等都是人類健康的一大威脅。
因此,本篇論文主要探討如何製作出一個有良好穩定度,精確又能快速檢驗的生物感測器。我們將從半導體元件設計為核心,採用不同結構、不同面積、並進一步針對感測膜材料進行談討。再者,我們使用表面改質的方法,使表面種上抗體,使元件能有效檢測出抗原的濃度。接著,進行選擇比測試,說明元件具有的專一性吸附的特性。最後進行穩定度測試,驗證何種感測膜能夠有最少的時間飄移,以減少元件所造成的誤差。
在這篇論文中,我們驗證了多種大小、不同材料的元件,得到Al2O3有良好的穩定性,同時最大面積的Al2O3感測膜靈敏度甚至能夠達到50.4 mV/decade 的Troponin I量測。若未來能進一步結合大數據的資料及AI模型的訓練,將能夠有效解決時間飄移的問題,使臨床上有更穩定的表現,實現快速,精準的醫療檢測器。
zh_TW
dc.description.abstractAs global populations continue to age, healthcare issues become increasingly important. Numerous studies have identified cardiovascular diseases as the leading cause of mortality, presenting significant threats to human health, including acute myocardial infarction.
This paper addresses the development of a stable, precise, and rapid biosensor. It focuses on semiconductor device design, exploring various structures and areas, and deep into discussions regarding sensing membrane materials. Additionally, surface modification techniques are employed to immobilize antibodies on the surface, enabling effective detection of antigen concentrations. Subsequent selectivity tests demonstrate the specificity of the device. Finally, stability tests are conducted to discover which sensing membrane exhibits minimal drift over time.
Through this study, we validate multiple devices of varying sizes and materials, identifying Al2O3 exhibited excellent sensitivity and stability. Furthermore, the largest area Al2O3 sensing membrane demonstrates a sensitivity of up to 50.4 mV/decade for Troponin I measurement. We hope to have the integration of big data and AI model training in future research holds promise for effectively addressing drift issues, leading to more stable performance in clinical settings and facilitating rapid and accurate medical diagnostics.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-01T16:14:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-01T16:14:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
Table of Contents vi
List of Figures viii
List of Tables xii
Chapter 1 Preamble 1
1.1 Motivation 1
1.2 Objective 2
1.3 Thesis structure 3
1.4 Research Questions and Hypotheses 4
Chapter 2 Introduction 6
2.1 Introduction of Ion-Sensitive Field-Effect Transistors (ISFET) structure 6
2.3 Extended-Gate Ion-Sensitive Field-Effect Transistors (EG-ISFET) 12
2.4 ISFET Usage 13
2.5 Design Improvement 14
2.6 Non ideal effect 16
2.7 Target Biomarker and detection range for myocardial infarction 16
Chapter 3 Experiment Design and Procedure 18
3.1 Extend-Gate ISFET design and fabrication 18
3.2 Process Flow after chip out 24
3.3 Post Processing 25
3.4 Wire Bonding and Package 33
3.5 Surface Modification 35
Chapter 4 Result and Discussion 39
4.1 ISFET measurement system 39
4.2 pH measurement 40
4.3 Threshold voltage and voltage sensitivity 41
4.4 Drift effect 42
4.5 Performance of ISFETs – pH measurement 43
4.6 Drifting issue of ISFET 57
4.7 Troponin Measurement 60
Chapter 5 Conclusion and Future Work 68
5.1 Conclusion 68
5.2 Future Work 69
References 71
-
dc.language.isozh_TW-
dc.subject心肌鈣蛋白I感測器zh_TW
dc.subject離子敏感型場效電晶體zh_TW
dc.subject感測膜材料對ISFET性能影響zh_TW
dc.subject感測膜面積研究zh_TW
dc.subject表面改質zh_TW
dc.subjectIon-sensitive field-effect transistoren
dc.subjectArea impact on ISFET performanceen
dc.subjectTroponin I sensoren
dc.subjectSurface modificationen
dc.subjectSensing membrane material effects on ISFETen
dc.title離子敏感型場效電晶體設計於Troponin I感測之研究zh_TW
dc.titleAn Implementation of Ion Sensitive Field Effect Transistors for Troponin I Detectionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張子璿;黃建璋zh_TW
dc.contributor.oralexamcommitteeTzu-Hsuan Chang;Jian-Jang Huangen
dc.subject.keyword離子敏感型場效電晶體,心肌鈣蛋白I感測器,感測膜面積研究,感測膜材料對ISFET性能影響,表面改質,zh_TW
dc.subject.keywordIon-sensitive field-effect transistor,Troponin I sensor,Area impact on ISFET performance,Sensing membrane material effects on ISFET,Surface modification,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202402246-
dc.rights.note未授權-
dc.date.accepted2024-07-30-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept元件材料與異質整合學位學程-
顯示於系所單位:元件材料與異質整合學位學程

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved