請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93455完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾嘉綾 | zh_TW |
| dc.contributor.advisor | Chia-Lin Chung | en |
| dc.contributor.author | 劉沛軒 | zh_TW |
| dc.contributor.author | Pei-Hsuan Liu | en |
| dc.date.accessioned | 2024-08-01T16:12:56Z | - |
| dc.date.available | 2024-08-02 | - |
| dc.date.copyright | 2024-08-01 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-23 | - |
| dc.identifier.citation | 安寶貞、蔡志濃、王姻婷、謝美如。1999。果樹及觀賞植物對 Phellinus noxius 之抗感病性檢定。植物病理學會刊 8:61-66。
吳孟玲、徐孟豪、劉則言。2020。樹木褐根病診斷及防治建議手冊。行政院農委會林務局 & 林業試驗所。台北市。25頁。 吳孟玲、許育晏、李芷芸、吳厚德、洪挺軒。2014。微生物製劑在褐根病防治管理之應用研究。臺灣林業科學 29:41-53。 李有田。2021。緩解水分逆境以提高大樹移植存活率的策略與方法。臺灣大學園藝暨景觀學系學位論文。 李縈榛。2009。印度梨型孢真菌促進小白菜生長的分子機制與生理研究。臺灣大學植物科學研究所學位論文。 林木疫情鑑定與資訊中心。2024。危害統計表。行政院農委會林業試驗所。網址:https://health.tfri.gov.tw/fhsnc/。查詢日期:2024-04-01。 林川仁。2019。印度梨型孢真菌的效應蛋白對其宿主小白菜之功能性探討。臺灣大學植物科學研究所碩士論文。 林振吉。2014。景觀植栽喬木移植技術之探討。屏東科技大學景觀暨遊憩管理研究所碩士論文。 段中漢、陳冠穎。2023。稻熱病菌分子鑑定、配對型及對殺菌劑之感受性。植物醫學 65:33-42。 高志維。2014。印度梨型孢真菌促進小白菜生長相關基因之功能性探討。臺灣大學植物科學研究所學位論文。 張東柱、苗華紘、傅春旭。2012。淹水法治療樹木罹患褐根病的個案研究。臺灣林業 38:52-54。 張東柱。1991。Phellinus noxius 引起數種木本植物根腐與頸腐。植保會刊 33:432。 許如君。2022。農用藥劑分類及作用機制檢索第四版。行政院農委會動植物防疫檢疫局。台北市。117頁。 許雅粟。2017。印度梨形孢真菌於蘭花產業之應用。成功大學熱帶植物科學研究所碩士論文。 傅春旭、張東柱、孫銘源、胡寶元、蕭文偉。2003。以農用燻蒸劑-邁隆進行褐 根腐病害區之土壤燻蒸。臺大實驗林研究報告 17:153-158。 彭婉兒。2020。探討以印度梨型孢菌防治樹木褐根病與抵抗非生物性逆境。臺灣大學植物醫學碩士學位學程碩士論文。 黃柏勳。2016。印度梨形孢真菌提升水稻幼苗對瘤野螟之耐受性。臺灣大學農藝學研究所學位論文。 黃晉興、林筑蘋、黃巧雯、蔡志濃、安寶貞。2023。臺灣作物疫病菌種類與其寄主範圍。臺灣農業研究 72:289-316。 詹為巽、邱祈榮、鄭可風、林俊成、成瑋。2019。民眾對都市樹木效益與問題之認知-以臺北市居民為例。中華林學季刊 52:187-203。 蔡志濃、安寶貞、謝文瑞。2005。抑制褐根病菌、白紋羽菌及南方靈芝菌之化學藥劑篩選。植病會刊 14:115-124。 蔡志濃、安寶貞、謝文瑞。2010。褐根病之發生、診斷鑑定及防治。近年來我國重大作物病害之發生及其診斷、監測與防治研討會專刊 149:149-163。 戴肇鋒、蘇秋竹、張瑞璋。殺菌劑抗藥性行動委員會 (Fungicide Resistance Action Committee) 簡介與臺灣殺菌劑抗藥性研究進展。臺灣農藥科學 9:37-54。 簡怡珍、林乃君。2018。以印度梨形孢菌進行生物健化對草莓組織培養苗生長及其抗炭疽病能力之影響。植物醫學 60:1-6。 Ann, P. J., Chang, T. T., and Ko, W. H. 2002. Phellinus noxius brown root rot of fruit and ornamental trees in Taiwan. Plant Disease 86:820-826. Ayaz, M., Li, C. H., Ali, Q., Zhao, W., Chi, Y. K., Shafiq, M., Ali, F., Yu, X. Y., Yu, Q., Zhao, J. T., Yu, J. W., Qi, R. D., and Huang, W. K. 2023. Bacterial and fungal biocontrol agents for plant disease protection: journey from lab to field, current status, challenges, and global perspectives. Molecules 28:6735. Bakhshandeh, E., Pirdashti, H., Shahsavarpour Lendeh, K., Gilani, Z., Yaghoubi Khanghahi, M., and Crecchio, C. 2020. Effects of plant growth promoting microorganisms inoculums on mineral nutrition, growth and productivity of rice (Oryza sativa L.). Journal of Plant Nutrition 43:1643-1660. Bolland, L. 1984. Phellinus noxius: cause of a significant root-rot in Queensland hoop pine plantations. Australian Forestry 47:2-10. Carmichael, J. W. 1955. Lacto-fuchsin: a new medium for mounting fungi. Mycologia 47:611. Chang, T. T. 1995. A selective medium for Phellinus noxius. European Journal of Forest Pathology 25:185-190. Chang, T. T. 1996. Survival of Phellinus noxius in soil and in the roots of dead host plants. Phytopathology 86:272-276. Chang, T. T., and Chang, R. J. 1999. Generation of volatile ammonia from urea fungicidal to Phellinus noxius in infested wood in soil under controlled conditions. Plant Pathology 48:337-344. Chen, C. Y., Wu, Z. C., Liu, T. Y., Yu, S. S., Tsai, J. N., Tsai, Y. C., Tsai, I. J., and Chung, C. L. 2023. Investigation of asymptomatic infection of Phellinus noxius in herbaceous plants. Phytopathology 113:460-469. Cheng, C., Liu, F., Wang, B., Qu, P., Liu, J., Zhang, Y., Liu, W., Tong, Z., and Deng, G. 2022. Influences of Serendipita indica and Dictyophorae echinovolvata on the growth and Fusarium wilt disease resistance of banana. Biology (Basel) 11:393. Chung, C. L., Lee, T. J., Akiba, M., Lee, H. H., Kuo, T. H., Liu, D., Ke, H. M., Yokoi, T., Roa, M. B., Lu, M. J., Chang, Y. Y., Ann, P. J., Tsai, J. N., Chen, C. Y., Tzean, S. S., Ota, Y., Hattori, T., Sahashi, N., Liou, R. F., Kikuchi, T., and Tsai, I. J. 2017. Comparative and population genomic landscape of Phellinus noxius: a hypervariable fungus causing root rot in trees. Molecular Ecology 26:6301-6316. Chung, W. H., Ishii, H., Nishimura, K., Fukaya, M., Yano, K., and Kajitani, Y. 2006. Fungicide sensitivity and phylogenetic relationship of anthracnose fungi isolated from various fruit crops in Japan. Plant Disease 90:506-512. del Barrio-Duque, A., Samad, A., Nybroe, O., Antonielli, L., Sessitsch, A., and Compant, S. 2020. Interaction between endophytic Proteobacteria strains and Serendipita indica enhances biocontrol activity against fungal pathogens. Plant and Soil 451:277-305. Ghorbani, A., Tafteh, M., Roudbari, N., Pishkar, L., Zhang, W., and Wu, C. 2021. Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilizing arsenic in roots and improving iron translocation to shoots. Ecotoxicology and Environmental Safety 209:111793. Hill, T., and Käfer, E. 2001. Improved protocols for Aspergillus minimal medium: Trace element and minimal medium salt stock solutions. Fungal Genetics Reports 48:20-21. Hodges, C. S., and Tenorio, J. A. 1984. Root disease of Delonix regia and associated tree species in the Mariana Islands caused by Phellinus noxius. Plant Disease 68:334-336. Hsiao, W. W., Hung, T. H., and Sun, E. J. 2019. Newly discovered basidiocarps of Phellinus noxius on 33 tree species with brown root rot disease in Taiwan and the basidiospore variations in growth rate. Taiwania 64:263-268. Ibarra Caballero, J. R., Ata, J. P., Leddy, K. A., Glenn, T. C., Kieran, T. J., Klopfenstein, N. B., Kim, M. S., and Stewart, J. E. 2020. Genome comparison and transcriptome analysis of the invasive brown root rot pathogen, Phellinus noxius, from different geographic regions reveals potential enzymes associated with degradation of different wood substrates. Fungal Biology 124:144-154. Jacobs, S., Zechmann, B., Molitor, A., Trujillo, M., Petutschnig, E., Lipka, V., Kogel, K. H., and Schafer, P. 2011. Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiology 156:726-740. Kaval, A., Yılmaz, H., Tunca Gedik, S., Yıldız Kutman, B., and Kutman, Ü. B. 2023. The fungal root endophyte Serendipita indica (Piriformospora indica) enhances bread and Durum wheat performance under boron toxicity at both vegetative and generative stages of development through mechanisms unrelated to mineral homeostasis. Biology 12:1098. Khatabi, B., Molitor, A., Lindermayr, C., Pfiffi, S., Durner, J., von Wettstein, D., Kogel, K.-H., and Schäfer, P. 2012. Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLOS ONE 7:e35502. Leck, A. 1999. Preparation of lactophenol cotton blue slide mounts. Community Eye Health 12:24. Li, D., Bodjrenou, D. M., Zhang, S., Wang, B., Pan, H., Yeh, K. W., Lai, Z., and Cheng, C. 2021. The endophytic fungus Piriformospora indica reprograms banana to cold resistance. International Journal of Molecular Sciences 22:4973. Liang, S.-M., Hashem, A., Abd-Allah, E. F., and Wu, Q.-S. 2023. Root-associated symbiotic fungi enhance waterlogging tolerance of peach seedlings by increasing flavonoids and activities and gene expression of antioxidant enzymes. Chemical and Biological Technologies in Agriculture 10:124. Liao, T. Z., Chen, Y. H., Tsai, J. N., Chao, C., Huang, T. P., Hong, C. F., Wu, Z. C., Tsai, I. J., Lee, H. H., Klopfenstein, N. B., Kim, M. S., Stewart, J. E., Atibalentja, N., Brooks, F. E., Cannon, P. G., Farid, A. M., Hattori, T., Kwan, H. S., Ching Lam, R. Y., Ota, Y., Sahashi, N., Schlub, R. L., Shuey, L. S., Tang, A. M. C., and Chung, C. L. 2023. Translocation of fungicides and their efficacy in controlling Phellinus noxius, the cause of brown root rot disease. Plant Disease 107:2039-2053. Narayan, O. P., Verma, N., Jogawat, A., Dua, M., and Johri, A. K. 2021. Sulfur transfer from the endophytic fungus Serendipita indica improves maize growth and requires the sulfate transporter SiSulT. The Plant Cell 33:1268-1285. Narayan, O. P., Verma, N., Singh, A. K., Oelmüller, R., Kumar, M., Prasad, D., Kapoor, R., Dua, M., and Johri, A. K. 2017. Antioxidant enzymes in chickpea colonized by Piriformospora indica participate in defense against the pathogen Botrytis cinerea. Scientific reports 7:13553. Ngwene, B., Boukail, S., Söllner, L., Franken, P., and Andrade-Linares, D. R. 2016. Phosphate utilization by the fungal root endophyte Piriformospora indica. Plant and Soil 405:231-241. Opitz, M. W., Daneshkhah, R., Lorenz, C., Ludwig, R., Steinkellner, S., and Wieczorek, K. 2021. Serendipita indica changes host sugar and defense status in Arabidopsis thaliana: cooperation or exploitation? Planta 253:74. Osman, M., Stigloher, C., Mueller, M. J., and Waller, F. 2020. An improved growth medium for enhanced inoculum production of the plant growth-promoting fungus Serendipita indica. Plant Methods 16:39. Rong, Z. Y., Lei, A. Q., Wu, Q. S., Srivastava, A. K., Hashem, A., Abd Allah, E. F., Kuča, K., and Yang, T. 2023. Serendipita indica promotes P acquisition and growth in tea seedlings under P deficit conditions by increasing cytokinins and indoleacetic acid and phosphate transporter gene expression. Frontiers in Plant Science 14:1146182. Roylawar, P., Panda, S., and Kamble, A. 2015. Comparative analysis of BABA and Piriformospora indica mediated priming of defence-related genes in tomato against early blight. Physiological and Molecular Plant Pathology 91:88–95. Roylawar, P., Khandagale, K., Randive, P., Shinde, B., Murumkar, C., Ade, A., Singh, M., Gawande, S., and Morelli, M. 2021. Piriformospora indica primes onion response against Stemphylium leaf blight disease. Pathogens 10:1085. Sahashi, N., Akiba, M., Ishihara, M., Ota, Y., and Kanzaki, N. 2012. Brown root rot of trees caused by Phellinus noxius in the Ryukyu Islands, subtropical areas of Japan. Forest Pathology 42:353-361. Saleem, S., Bytešníková, Z., Richtera, L., and Pokluda, R. 2021. The effects of Serendipita indica and guanidine-modified nanomaterial on growth and development of cabbage seedlings and black spot infestation. Agriculture 11:1295. Saleem, S., Ragasova, L. N., Tekielska, D., Fidurski, M., Sekara, A., and Pokluda, R. 2023. Serendipita indica as a plant growth promoter and biocontrol agent against black rot disease in cabbage grown in a phytotron. Agriculture 13:2048. Sawada, K. 1928. Camphor tree docline. Descript. Catal. Formosan Fungi 4:86-91. Sherameti, I., Shahollari, B., Venus, Y., Altschmied, L., Varma, A., and Oelmüller, R. 2005. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. Journal of Biological Chemistry 280:26241-26247. Singhal, U., Attri, M. K., and Varma, A. 2017. Mass cultivation of mycorrhiza-like fungus Piriformospora indica (Serendipita indica) by batch in bioreactor. Pages 365-384 in: Mycorrhiza - Function, Diversity, State of the Art. A. Varma, R. Prasad and N. Tuteja, eds. Springer International Publishing, Cham. Sirrenberg, A., Göbel, C., Grond, S., Czempinski, N., Ratzinger, A., Karlovsky, P., Santos, P., Feussner, I., and Pawlowski, K. 2007. Piriformospora indica affects plant growth by auxin production. Physiologia Plantarum 131:581-589. Solanki, S., Lakshmi, G. B. V. S., Dhiman, T., Gupta, S., Solanki, P. R., Kapoor, R., and Varma, A. 2023. Co-application of silver nanoparticles and symbiotic fungus Piriformospora indica improves secondary metabolite production in black rice. Journal of Fungi 9:260. Stein, E., Molitor, A., Kogel, K.-H., and Waller, F. 2008. Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant and Cell Physiology 49:1747-1751. Trzewik, A., Marasek-Ciolakowska, A., and Orlikowska, T. 2020. Protection of highbush blueberry plants against Phytophthora cinnamomi using Serendipita indica. Agronomy 10:1598. Vadassery, J., Ritter, C., Venus, Y., Camehl, I., Varma, A., Shahollari, B., Novák, O., Strnad, M., Ludwig-Müller, J., and Oelmüller, R. 2008. The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Molecular Plant-Microbe Interactions 21:1371-1383. Vahabi, K., Sherameti, I., Bakshi, M., Mrozinska, A., Ludwig, A., Reichelt, M., and Oelmüller, R. 2015. The interaction of Arabidopsis with Piriformospora indica shifts from initial transient stress induced by fungus-released chemical mediators to a mutualistic interaction after physical contact of the two symbionts. BMC Plant Biology 15:58. Verma, N., Narayan, O. P., Prasad, D., Jogawat, A., Panwar, S. L., Dua, M., and Johri, A. K. 2022. Functional characterization of a high-affinity iron transporter (PiFTR) from the endophytic fungus Piriformospora indica and its role in plant growth and development. Environmental Microbiology 24:689-706. Verma, S., Varma, A., Rexer, K.-H., Hassel, A., Kost, G., Sarbhoy, A., Bisen, P., Bütehorn, B., and Franken, P. 1998. Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896-903. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., von Wettstein, D., Franken, P., and Kogel, K.-H. 2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences 102:13386-13391. Yourman, L. F., and Jeffers, S. N. 1999. Resistance to benzimidazole and dicarboximide fungicides in greenhouse isolates of Botrytis cinerea. Plant Disease 83:569-575. Zhang, W., Wang, J., Xu, L., Wang, A., Huang, L., Du, H., Qiu, L., and Oelmüller, R. 2018. Drought stress responses in maize are diminished by Piriformospora indica. Plant Signaling & Behavior 13:e1414121. Zuccaro, A., Lahrmann, U., Güldener, U., Langen, G., Pfiffi, S., Biedenkopf, D., Wong, P., Samans, B., Grimm, C., Basiewicz, M., Murat, C., Martin, F., and Kogel, K. H. 2011. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLOS Pathogens 7:e1002290. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93455 | - |
| dc.description.abstract | Phellinus noxius 引起的褐根病會導致樹木根基部腐朽,容易倒伏,影響公共安全。防治褐根病的眾多方法之中,生物防治法對環境生態較為友善,且不會使病原菌產生抗藥性,值得進一步發展。印度梨形孢菌 Serendipita indica 為可人工培養的植物內共生真菌,具有促進植物生長的功能並可協助植物抵抗生物及非生物逆境。本研究首先針對印度梨形孢菌之培養及接種方式進行測試,發現使用馬鈴薯葡萄糖液態培養基震盪培養後打碎,再將接種源調整至 106 spores/ml,以 50 ml 混拌至 650 g土壤中進行接種 (約 7.7 × 104 spores/g soil),可透過台盼藍染色法在根部觀察到印度梨形孢菌厚膜胞子。為了解印度梨形孢菌能否運用於褐根病防治及生長促進效果,使用茄苳苗進行接種試驗,發現先接種印度梨形孢菌後兩週再接種褐根病菌的組別,相較於僅接種褐根病菌的組別,具有較低的植物萎凋率與褐根病菌分離率,且茄苳苗之濕重與根系投影面積顯著增加。為了進一步瞭解印度梨形孢菌與殺菌劑共同施用的可行性,也作為未來開發印度梨形孢菌選擇性培養基之參考,測試其在含有 100 ppm (mg a.i./L)、10 ppm、1 ppm、0.1 ppm 的滅達樂、殺紋寧、免賴得、白克列、百克敏、嘉賜黴素、撲滅寧、大克爛、得克利、鋅錳乃浦、蓋普丹、克熱淨 (烷苯磺酸鹽) 及腐絕快得寧共 13 種藥劑之馬鈴薯葡萄糖瓊脂培養基上菌絲生長情形,結果顯示印度梨形孢菌對得克利、克熱淨 (烷苯磺酸鹽)、腐絕快得寧呈現敏感性;對免賴得、白克列、百克敏、嘉賜黴素、鋅錳乃浦呈現低敏感性;對大克爛、蓋普丹呈現中度抗性;對滅達樂、殺紋寧、撲滅寧呈現高度抗性。本研究成果可作為未來印度梨形孢菌應用於木本植物之參考,達到預防病害與促進生長之效果。 | zh_TW |
| dc.description.abstract | Brown root rot disease caused by Phellinus noxius can cause root decay of trees, making them prone to collapse and endanger public safety. Among many strategies to control brown root rot disease, biological control is worthy of development because it is environmentally friendly and will not cause the emergence of fungicide-resistant pathogens. Serendipita indica is a culturable endophytic fungus that promotes plant growth and assists in its resistance to abiotic and biotic stresses. This research first tested different culture and inoculation methods. The S. indica inoculum was prepared by shaking culturing in potato dextrose broth and then homogenized. By mixing 50 ml of the inoculum (106 chlamydospores/ml) with the planting substrate (about 7.7 × 104 spores/g substrate), successful root colonization of S. indica could be observed by trypan blue staining. To understand whether S. indica can be used to prevent and control brown root rot disease, an inoculation test was conducted using Bischofia javanica seedlings. Compared to P. noxius-inoculated plants, plants pre-treated with S. indica and then inoculated with P. noxius two weeks later showed lower wilting rate, lower P noxius reisolation rate, and increased wet weight and root projected area. To understand the potential of integrating S. indica with chemical control and also serve as a reference for future development of selective culture media for S. indica, the sensitivity of S. indica to 13 fungicides was tested on potato dextrose agar containing 100 ppm (mg a.i./L), 10 ppm, 1 ppm, and 0.1 ppm of the fungicides. S. indica was sensitive to tebuconazole, iminoctadine tris (albesilate), and thiabendazole + oxine-copper; less sensitivity to benomyl, boscalid, pyraclostrobin, kasugamycin, and mancozeb; intermediately resistant to dicloran and captan; and highly resistant to metalaxyl, hymexazol, and procymidone. The outcomes of this study can provide a reference for applying S. indica for the integrated health management of woody plants. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-01T16:12:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-01T16:12:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv 目次 vi 表次 viii 圖次 ix 附錄目次 x 第一章 前言 1 1.1 都市樹木的健康問題 1 1.2 褐根病菌介紹 2 1.3 印度梨形孢菌 4 1.4 研究目的 8 第二章 材料方法 10 2.1 供試植物 10 2.2 供試菌株與保存培養 10 2.2.1 菌株保存與培養 10 2.2.2 接種源之製備 10 2.3 溫室防治實驗 11 2.3.1 印度梨形孢菌與褐根病菌接種 11 2.3.2 植株生長評估與測定 12 2.3.3 台盼藍染色 12 2.3.4 褐根病菌之組織分離 13 2.4 印度梨形孢菌藥劑敏感性實驗 13 2.5 統計分析 14 第三章 結果 15 3.1 印度梨形孢菌之液態培養 15 3.2 溫室防治試驗 15 3.2.1 印度梨形孢菌對茄苳生長促進與存活率之影響 15 3.2.2 印度梨形孢菌於植物根系內之定殖情形 17 3.2.3 褐根病菌之組織分離 17 3.3 印度梨形孢菌藥劑敏感性實驗 18 第四章 討論 19 4.1印度梨形孢菌之製備與接種 19 4.2 印度梨形孢菌用於促進生長及褐根病防治之可能性 20 4.2.1 印度梨形孢菌對茄苳具有部分生長促進效果 20 4.2.2 印度梨形孢菌對褐根病菌之防治潛力 20 4.2.3 溫室防治試驗改進方向 21 4.3 印度梨形孢菌於茄苳根系之定殖 22 4.4 印度梨形孢菌對不同機制藥劑之敏感性表現 23 4.4 結論與防治建議 25 第五章、參考文獻 26 表 34 圖 50 附錄 75 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 褐根病菌 | zh_TW |
| dc.subject | 殺菌劑 | zh_TW |
| dc.subject | 生物防治 | zh_TW |
| dc.subject | 印度梨形孢菌 | zh_TW |
| dc.subject | Phellinus noxius | en |
| dc.subject | fungicide | en |
| dc.subject | biocontrol | en |
| dc.subject | Serendipita indica | en |
| dc.title | 印度梨形孢菌應用於褐根病防治之探討 | zh_TW |
| dc.title | Investigate the potential of using Serendipita indica for the control of brown root rot disease | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡志濃;沈原民 | zh_TW |
| dc.contributor.oralexamcommittee | Jyh-Nong Tsai ;Yuan-Min Shen | en |
| dc.subject.keyword | 褐根病菌,印度梨形孢菌,生物防治,殺菌劑, | zh_TW |
| dc.subject.keyword | Phellinus noxius,Serendipita indica,biocontrol,fungicide, | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202401912 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-23 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物醫學碩士學位學程 | - |
| dc.date.embargo-lift | 2029-07-18 | - |
| 顯示於系所單位: | 植物醫學碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-07-18 | 13.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
