Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93453
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊國鑫zh_TW
dc.contributor.advisorKuo-Hsin Yangen
dc.contributor.author毛馨白zh_TW
dc.contributor.authorXin-Bai Maoen
dc.date.accessioned2024-08-01T16:12:18Z-
dc.date.available2024-08-02-
dc.date.copyright2024-08-01-
dc.date.issued2024-
dc.date.submitted2024-07-26-
dc.identifier.citation1.方文村, & 簡傳彬. (2004). 圓柱試驗在飽和土壤熱傳導係數之測定. 農業工程學報, 50(1), 63–71.
2.中華民國內政部國土管理署. (2020). 建築基地保水設計技術規範.
3.林素琴, 李浩銓, & 杜威達. (2013). 我國住宅部門能源耗用調查與應用分析, 冷凍空調與能源科技雜誌, (82), 30-36.
4.陳家瑞. (2013). 地源熱泵空調系統建置過程與性能初探. 碩士論文. 國立臺灣科技大學. 臺灣博碩士論文知識加值系統.
5.劉衍淮. (1974). 台北盆地小氣候之研究. 大氣科學期刊, 1(1), 1-20.
6.Amirdehi, H. A., & Shooshpasha, I. (2022). Evaluation of coupled interaction effects caused by the long-term performance of energy piles in a piled raft foundation. Geotechnical and Geological Engineering, 40(10), 5153-5180.
7.Alnefaie, K. A., & Abu-Hamdeh, N. H. (2020). Specific heat and volumetric heat capacity of some Saudian soils as affected by moisture and density. International Journal of Materials, 7, 42–46.
8.Angelotti, A., & Sterpi, D. (2020). On the performance of energy walls by monitoring assessment and numerical modelling: a case in Italy. Environmental Geotechnics, 7(4), 266-273.
9.Barla, M., Di Donna, A., & Insana, A. (2019). A novel real-scale experimental prototype of energy tunnel. Tunnelling and Underground Space Technology, 87, 1-14.
10.Baser, T., Dong, Y., Moradi, A. M., Lu, N., Smits, K., Ge, S., Tartakovsky, D., & McCartney, J. S. (2018). Role of nonequilibrium water vapor diffusion in thermal energy storage systems in the vadose zone. Journal of Geotechnical and Geoenvironmental Engineering, 144(7), 04018038.
11.Behbehani, F., & McCartney, J. S. (2022). Energy pile groups for thermal energy storage in unsaturated soils. Applied Thermal Engineering, 215, 119028.
12.Bourne-Webb, P. J., Freitas, T. B., & da Costa Gonçalves, R. A. (2016). Thermal and mechanical aspects of the response of embedded retaining walls used as shallow geothermal heat exchangers. Energy and Buildings, 125, 130-141.
13.Brandl, H. (2006). Energy foundations and other thermo-active ground structures. Géotechnique, 56(2), 81-122.
14.Cao, Q., Gong, S., Li, P., Wan, H., & Cheng, D. (2018). Correlation analysis of thermal physical indexes in subway engineering. IOP Conference Series: Materials Science and Engineering, 394, 032051.
15.Casagrande, B., Saboya Jr, F., McCartney, J. S., & Tibana, S. (2022). Investigation of a field-scale energy micropile in stratified soil under cyclic temperature changes. Geomechanics for Energy and the Environment, 29, 100263.
16.Caulk, R., Ghazanfari, E., & McCartney, J. S. (2016). Parameterization of a calibrated geothermal energy pile model. Geomechanics for Energy and the Environment, 5, 1-15.
17.Coccia, C. J., & McCartney, J. S. (2016). Impact of long-term temperature cycling on the thermo-hydro-mechanical behavior of unsaturated soils surrounding an energy pile. In Geo-Chicago 2016 (pp. 42-51).
18.Cunha, R. P., & Bourne-Webb, P. J. (2022). A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings. Renewable and Sustainable Energy Reviews, 158, 112072.
19.Di Donna, A., Loveridge, F., Piemontese, M., & Barla, M. (2020). The role of ground conditions on the heat exchange potential of energy walls. Geomechanics for Energy and the Environment, 25, 100199.
20.Dong, Y., Zeng, Z., Zhu, H., Liu, Y., & Liang, M. (2021). Performance analysis of ground source heat pump system under low load rate. Thermal Science and Engineering, 4(2), 11-22.
21.Faizal, M., Bouazza, A., & McCartney, J. S. (2021). Thermohydraulic responses of unsaturated sand around a model energy pile. Journal of Geotechnical and Geoenvironmental Engineering, 147(10), 04021105.
22.Faizal, M., Bouazza, A., & McCartney, J. S. (2022). Thermal resistance analysis of an energy pile and adjacent soil using radial temperature gradients. Renewable Energy, 190, 1066-1077.
23.Faizal, M., Bouazza, A., Haberfield, C., & McCartney, J. S. (2018). Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes. Journal of Geotechnical and Geoenvironmental Engineering, 144(10), 04018072.
24.Faizal, M., Bouazza, A., McCartney, J. S., & Haberfield, C. (2019). Axial and radial thermal responses of energy pile under six storey residential building. Canadian Geotechnical Journal, 56(7), 1019-1033.
25.Faizal, M., Moradshahi, A., Bouazza, A., & McCartney, J. S. (2020). Soil thermal responses around a field-scale energy pile.
26.Fang, J., Kong, G., Meng, Y., Wang, L., & Yang, Q. (2020). Thermomechanical behavior of energy piles and interactions within energy pile–raft foundations. Journal of Geotechnical and Geoenvironmental Engineering, 146(9), 04020079.
27.Ghasemi-Fare, O., & Basu, P. (2013). A practical heat transfer model for geothermal piles. Energy and Buildings, 66, 470-479.
28.Insana, A., & Barla, M. (2020). Experimental and numerical investigations on the energy performance of a thermo-active tunnel. Renewable Energy, 152, 781-792.
29.Jello, J., & Baser, T. (2023). Utilization of existing hydrocarbon wells for geothermal system development: A review. Applied Energy, 348, 121456.
30.Khan, M. A., & Wang, J. X. (2014). Study on energy foundation design in South Louisiana. In Geo-Congress 2014: Geo-characterization and Modeling for Sustainability, 3799-3806.
31.Kurevija, T., Macenić, M., & Strpić, K. (2018). Steady-state heat rejection rates for a coaxial borehole heat exchanger during passive and active cooling determined with the novel step thermal response test method. Rudarsko-geološko-naftni zbornik, 33(2), 61-71.
32.Khosravi, A., Moradshahi, A., McCartney, J. S., & Kabiri, M. (2016). Numerical analysis of energy piles under different boundary conditions and thermal loading
33.Laloui, L., & Loria, A. F. R. (2019). Analysis and design of energy geostructures: theoretical essentials and practical application. Academic Press.
34.Liu, Y.-H. (1974). A study of the microclimate of taipei basin. Atmospheric Science, 1(1), 1–20.
35.Lund, J. W., & Toth, A. N. (2021). Direct utilization of geothermal energy 2020 worldwide review. Geothermics, 90, 101915.
36.Lu, Q., Narsilio, G. A., Aditya, G. R., & Johnston, I. W. (2017). Economic analysis of vertical ground source heat pump systems in Melbourne. Energy, 125, 107-117.
37.McCartney, J., Coccia, C., Alsherif, N., Stewart, M., Baser, T., Traore, T., & Goode, J. (2014). Unsaturated soil mechanics in geothermal energy applications.
38.Mehrizi, A. A., Porkhial, S., Bezyan, B., & Lotfizadeh, H. (2016). Energy pile foundation simulation for different configurations of ground source heat exchanger. International Communications in Heat and Mass Transfer, 70, 105-114.
39.Mendrinos, D., Katsantonis, S., & Karytsas, C. (2017). Review of alternative pipe materials for exploiting shallow geothermal energy. Innovations in Corrosion and Materials Science (Formerly Recent Patents on Corrosion Science), 7(1), 13-29.
40.Moradshahi, A., Faizal, M., Bouazza, A., & McCartney, J. S. (2022). Thermomechanical responses of thermally interacting field-scale energy piles. International Journal of Geomechanics, 22(11), 04022212.
41.Reiter, M. B., Jello, J., & Baser, T. (2023). Thermo-hydro-mechanical behavior of energy foundations in saturated glacial tills. Geothermics, 108, 102614.
42.Reiter, M. B., Kurtz, L., Attala, M. M., & Baser, T. (2020). Changes in shaft resistance and pore water pressures during heating of an energy foundation. In E3S Web of Conferences (Vol. 205, p. 05022). EDP Sciences.
43.Sani, A. K., Singh, R. M., Amis, T., & Cavarretta, I. (2019). A review on the performance of geothermal energy pile foundation, its design process and applications. Renewable and Sustainable Energy Reviews, 106, 54–78.
44.Santa, G. D., Peron, F., Galgaro, A., Cultrera, M., Bertermann, D., Mueller, J., & Bernardi, A. (2017). Laboratory measurements of gravel thermal conductivity: an update methodological approach. Energy Procedia, 125, 671-677.
45.Singh, R. M., Bouazza, A., Wang, B., Haberfield, C. H., Baycan, S., & Carden, Y. (2015). Thermal and thermo-mechanical response of a geothermal energy pile. In World Geothermal Congress (Vol. 7).
46.Talebi, H. R., Kayan, B. A., Asadi, I., & Hassan, Z. F. B. A. (2020). Investigation of thermal properties of normal weight concrete for different strength classes. J. Environ. Treat. Tech, 8(3), 908-914.
47.US Department of Energy. (2019). GeoVision: Harnessing the heat beneath our feet.
48.You, S., Cheng, X., Guo, H., & Yao, Z. (2016). Experimental study on structural response of CFG energy piles. Applied Thermal Engineering, 96, 640-651.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93453-
dc.description.abstract台灣夏季炎熱,造成冷氣用電增加,供電量吃緊。此外,冷氣所產生的廢熱,也會導致周圍環境溫度增加,在台北造成熱島效應。能源基礎為新興的綠能源技術,為解決上述問題的其中一種解方。該技術是在地工基礎構造物內埋設地熱交換管,將冷氣製造的廢熱透過水傳輸,並使用地源熱泵驅動管內水持續循環。廢熱透過地熱交換管和基礎附近溫度較低的土壤進行熱交換,以有效降低冷氣使用時的能耗。本研究以COMSOL Multiphysics數值模擬進行熱交換分析,探討台北一處實際能源基礎案例。該案例選用能源筏式基礎,將地熱交換管埋設於筏基板中,地熱交換管總長達6720 公尺,共40迴圈。本研究旨在探討能源基礎對周圍土壤溫度分布的影響,並進一步評估地熱交換管形式及間距對熱能交換效率的影響。研究結果期望建議熱能交換效率最佳化的地熱交換管形式,以供工程實務設計參考。
本研究透過三維數值模型分析能源筏式基礎的熱交換行為,模擬結果顯示土壤溫度及管道出口流體的溫度在3週後達到穩定狀態,每日地源熱泵系統運作10小時,出口流體溫度隨著每日運行的週期變化,在地源熱泵系統開始與結束運作時,其出入口流體溫度的最大和最小溫差分別為7°C和4°C。地熱交換管對土壤溫度的水平影響距離約為地熱交換管寬度的1.6倍,表示地熱交換管對周圍土壤的影響距離很小,對鄰近建築物基礎與土壤溫度影響不大。參數研究結果顯示管道間距和排列樣式明顯影響熱交換效率,當管道間距0.1 m時,Meander和Loop管道樣式前後半部管道互相交錯排列過小的管道間距使出口流體溫度受入口流體加熱,由於鄰近管道的溫度影響,在管道間距0.1 m時的管道出口流體溫度高於管道間距1 m的結果;Snake和Swirl管道樣式則是前後半部管道分開,管道間距小不會使出口流體溫度受入口流體加熱,因此地熱交換管的管道長度越長,管道出口流體溫度最低。地源熱泵系統較傳統氣冷式空調系統每年節省約34 %的耗電量,相當於每年可節省約20176元的電費。
zh_TW
dc.description.abstractThis study focuses on the investigation of the behavior of an energy raft foundation study in Taipei. The energy raft foundation was installed to provide heating and cooling to a 13-story and 3-basement residential building in Xindian district and it consisted of 40 loops having a total heat exchanger length of 6720 m. A 3D numerical model was established and validated against field measurements. The thermal response of the energy raft foundation, including soil and geothermal pipe temperature distributions, was investigated. A series of parametric studies were conducted to evaluate the effects of geothermal pipe spacing and patterns on heat exchange efficiency. The results from numerical simulations indicate the pipe outlet fluid temperature increased and decreased during the daily operation cycle. The maximum and minimum temperature differences between the inlet and outlet fluid temperatures were 7 and 4 °C at the beginning and the end of the operation, respectively. The horizontal influence distance of the soil temperature caused by the geothermal pipe was relatively short, approximately 1.6 times the width of the pipe loop, suggesting the geothermal pipe had little influence on the soil temperature of the adjacent building's foundation. The parametric study results indicate the combination of pipe spacing and pattern significantly influenced heat exchange efficiency. For the snake and swirl patterns (where the first and second halves of the pipe are separated), the pipe outlet fluid temperature was lowest at a pipe spacing of S = 0.1 m. For the meander and loop patterns (where the first and second halves of the pipe are alternately arranged one after the other), the pipe outlet fluid temperature at S = 0.1 m was higher than that at S = 1.0 m due to the temperature influence from adjacent pipes. Based on the findings in this study, an optimal design of the pipe configuration is discussed.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-01T16:12:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-01T16:12:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
致謝 i
摘要 ii
Abstract iii
目次 iv
圖次 vii
表次 ix
第一章 序論 1
1.1研究背景與目的 1
1.2 研究內容 2
1.3 研究架構 4
第二章 文獻回顧 7
2.1 淺層地熱應用 7
2.2 地源熱泵系統 10
(1). 開放式地源熱泵系統 12
(2). 封閉式地源熱泵系統 12
(a). 水平地熱交換管 13
(b). 垂直地熱交換管 13
(3). 能源基礎 13
2.3各式能源基礎行為分析 14
2.4 影響能源基礎使用效率之因素 22
2.5 耦合熱傳方程式 25
2.6 材料之熱交換參數 26
第三章 台北能源筏式基礎模擬分析 30
3.1 台北能源筏式基礎案例介紹 30
3.1.1 能源筏式基礎與地源熱泵配置 30
3.1.2 施工過程 31
3.1.3 現地土壤狀況 34
3.1.4 台北地區土層溫度變化 36
3.2 數值分析方法介紹 39
3.3 數值模型介紹 40
3.3.1 模型尺寸及網格劃分 40
3.3.2 模型採用之物理場設定 41
3.3.3 熱力學方程式 42
3.3.4 邊界條件 43
3.3.5 模型材料參數 45
第四章 有限元素模型之分析及驗證 47
4.1 案例驗證 47
4.2 熱交換影響分析 49
4.2.1 地熱交換管流體溫度變化 49
4.2.2 土壤溫度變化 51
4.2.3 土壤與地熱交換管溫度變化比較 55
4.3 地下室建模差異討論 56
第五章 參數研究 60
5.1 參數研究模型設置 60
5.2 地熱交換管間距影響分析 61
5.3 地熱交換管排列樣式影響分析 64
5.4 能源節省 69
5.4.1 地源熱泵系統耗電量評估公式 69
5.4.2 地源熱泵系統耗電量比較 72
第六章 結論與建議 75
6.1結論 75
6.2 建議 78
參考文獻 79
-
dc.language.isozh_TW-
dc.subject能源筏式基礎zh_TW
dc.subject熱交換zh_TW
dc.subject地源熱泵zh_TW
dc.subject管道間距與排列樣式zh_TW
dc.subjectEnergy raft foundationen
dc.subjectGround source heat pumpen
dc.subjectHeat exchangeen
dc.subjectPipe spacing and patternsen
dc.title台北能源筏式基礎熱交換之行為與分析zh_TW
dc.titleThermal Response of an Energy Raft Foundation in Taipeien
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖洪鈞;郭治平;蔡瑞彬zh_TW
dc.contributor.oralexamcommitteeHung-Jiun Liao;Chih-Ping Kuo;Jui-Pin Tsaien
dc.subject.keyword能源筏式基礎,地源熱泵,熱交換,管道間距與排列樣式,zh_TW
dc.subject.keywordEnergy raft foundation,Ground source heat pump,Heat exchange,Pipe spacing and patterns,en
dc.relation.page83-
dc.identifier.doi10.6342/NTU202402117-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2027-07-23-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.69 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved