請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93450完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葛宇甯 | zh_TW |
| dc.contributor.advisor | Louis Ge | en |
| dc.contributor.author | 潘佳榮 | zh_TW |
| dc.contributor.author | Jia-Rong Pan | en |
| dc.date.accessioned | 2024-08-01T16:11:06Z | - |
| dc.date.available | 2024-08-02 | - |
| dc.date.copyright | 2024-08-01 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-26 | - |
| dc.identifier.citation | 1.中華民國內政部營建署 (2023)。建築物基礎構造設計規範。
2.歐章煜 (2021)。進階深開挖工程分析與設計 (二版)。科技圖書。 3.Abdi, A. S., & Ou, C.-Y. (2022). A Study of the Failure Mechanism of Braced Excavations Using 3D Finite-Element Analysis. International Journal of Geomechanics, 22(7), 04022084. 4.Abdi, A. S., & Ou, C.-Y. (2023). Numerical Study of the Effect of Ground Improvement on Basal Heave Stability for Deep Excavations in Normally Consolidated Clays. Journal of Geotechnical and Geoenvironmental Engineering, 149(7), 04023042. 5.Ariyarathne, P., Liyanapathirana, D. S., & Leo, C. J. (2013). Comparison of Different Two-Dimensional Idealizations for a Geosynthetic-Reinforced Pile-Supported Embankment. International Journal of Geomechanics, 13(6), 754–768. 6.Bergado, D. T., & Long, P. (1994). Numerical analysis of embankment on subsiding ground improved by vertical drains and granular piles. International Conference on Soil Mechanics and Foundation Engineering, 1361–1366. 7.Bjerrum, L., & Eide, O. (1956). Stability of strutted excavations in clay. Géotechnique, 6(1), 32–47. 8.Brinkgreve, R. B. J., Kumarswamy, S., Swolfs, W. M., Fonseca, F., Zalamea, N., Ragi Manoj, N., Singh, K., & Zampich, L. (2024). PLAXIS Material Models Manual. 9.Calvello, M., & Finno, R. J. (2004). Selecting parameters to optimize in model calibration by inverse analysis. Computers and Geotechnics, 31(5), 410–424. 10.Dawson, E. M., Roth, W. H., & Drescher, A. (1999). Slope stability analysis by strength reduction. Géotechnique, 49(6), 835–840. 11.Demir, S., & Özener, P. (2019). Numerical investigation of seismic performance of high modulus columns under earthquake loading. Earthquake Engineering and Engineering Vibration, 18(4), 811–822. 12.Do, T.-N., Ou, C.-Y., & Lim, A. (2013). Evaluation of Factors of Safety against Basal Heave for Deep Excavations in Soft Clay Using the Finite-Element Method. Journal of Geotechnical and Geoenvironmental Engineering, 139(12), 2125–2135. 13.Faheem, H., Cai, F., Ugai, K., & Hagiwara, T. (2003). Two-dimensional base stability of excavations in soft soils using FEM. Computers and Geotechnics, 30(2), 141–163. 14.Goh, A. T. C. (1990). Assessment of basal stability for braced excavation systems using the finite element method. Computers and Geotechnics, 10(4), 325–338. 15.Goh, A. T. C., Zhang, W. G., & Wong, K. S. (2019). Deterministic and reliability analysis of basal heave stability for excavation in spatial variable soils. Computers and Geotechnics, 108, 152–160. 16.Griffiths, D. V., & Lane, P. A. (1999). Slope stability analysis by finite elements. Géotechnique, 49(3), 387–403. 17.Huang, J., & Han, J. (2009). 3D coupled mechanical and hydraulic modeling of a geosynthetic-reinforced deep mixed column-supported embankment. Geotextiles and Geomembranes, 27(4), 272–280. 18.Jamsawang, P., Jamnam, S., Jongpradist, P., Tanseng, P., & Horpibulsuk, S. (2017). Numerical analysis of lateral movements and strut forces in deep cement mixing walls with top-down construction in soft clay. Computers and Geotechnics, 88, 174–181. 19.Jamsawang, P., Voottipruex, P., Tanseng, P., Jongpradist, P., & Bergado, D. T. (2019). Effectiveness of deep cement mixing walls with top-down construction for deep excavations in soft clay: Case study and 3D simulation. Acta Geotechnica, 14(1), 225–246. 20.Lim, A., Ou, C.-Y., & Hsieh, P.-G. (2010). Evaluation of Clay Constitutive Models for Analysis of Deep Excavation under Undrained Conditions. Journal of GeoEngineering, 5(1), 9–20. 21.Matsui, T., & San, K.-C. (1992). Finite Element Slope Stability Analysis by Shear Strength Reduction Technique. Soils and Foundations, 32(1), 59–70. 22.Ou, C.-Y. (2006). Deep Excavation Theory and Practice. Taylor & Francis. 23.Ou, C.-Y. (2016). Finite Element Analysis of Deep Excavation Problems. Journal of GeoEngineering, 11(1), 1–12. 24.Ou, C.-Y., Teng, F.-C., & Wang, I.-W. (2008). Analysis and design of partial ground improvement in deep excavations. Computers and Geotechnics, 35(4), 576–584. 25.Ou, C.-Y., Wu, T.-S., & Hsieh, H.-S. (1996). Analysis of Deep Excavation with Column Type of Ground Improvement in Soft Clay. Journal of Geotechnical Engineering, 122(9), 709–716. 26.Schanz, T., Vermeer, P. A., & Bonnier, P. G. (1999). The hardening soil model: Formulation and verification. In Beyond 2000 in Computational Geotechnics. Routledge. 27.Stewart, D. P., Jewell, R. J., & Randolph, M. F. (1993). Numerical modelling of piled bridge abutments on soft ground. Computers and Geotechnics, 15(1), 21–46. 28.Tan, S. A., Tjahyono, S., & Oo, K. K. (2008). Simplified Plane-Strain Modeling of Stone-Column Reinforced Ground. Journal of Geotechnical and Geoenvironmental Engineering, 134(2), 185–194. 29.Terzaghi, K. (1943). Theoretical soil mechanics. 30.Ukritchon, B., Whittle, A. J., & Sloan, S. W. (2003). Undrained Stability of Braced Excavations in Clay. Journal of Geotechnical and Geoenvironmental Engineering, 129(8), 738–755. 31.Zhang, G., & Wang, L. (2010). Stability Analysis of Strain-Softening Slope Reinforced with Stabilizing Piles. Journal of Geotechnical and Geoenvironmental Engineering, 136(11), 1578–1582. 32.Zhang, G., & Wang, L. (2017). Simplified evaluation on the stability level of pile-reinforced slopes. Soils and Foundations, 57(4), 575–586. 33.Zhang, W., Goh, A. T. C., & Xuan, F. (2015). A simple prediction model for wall deflection caused by braced excavation in clays. Computers and Geotechnics, 63, 67–72. 34.Zhang, W., Li, Y., Goh, A. T. C., & Zhang, R. (2020). Numerical study of the performance of jet grout piles for braced excavations in soft clay. Computers and Geotechnics, 124, 103631. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93450 | - |
| dc.description.abstract | 地盤改良技術已廣泛應用於提高土壤的強度與勁度,其中柱狀型式改良樁常用於軟弱黏土層之深開挖工程中,以抑制擋土牆的變形並提供阻抗開挖底部的隆起,進而提升開挖過程之穩定性。然而,近期發生建築基地下方黏土層設置柱狀型式改良樁仍發生隆起破壞,引發對改良樁佈設位置是否能有效提供垂直向與側向承載,對隆起破壞機制之影響等問題應進一步討論。本研究透過 PLAXIS 有限元素法分析,探討改良樁排列方式與壁體變位、地表沉陷及開挖穩定性之關係。另外,在模擬軟弱黏土於開挖過程中之力學行為,常用組成律模式為Mohr-Coulomb (ϕ= 0) model (MCUC) 不排水總應力分析與 Hardening soil model with undrained A (HSUA) 不排水有效應力分析,故本研究探討兩者對於變形量分析與穩定性分析結果之異同。首先,以 Song-San 深開挖分析案例,利用三維四分之一模型以壁體監測資料校正土壤組成律參數,結果顯示縱使兩個組成律能良好的預測壁體變形,但 HSUA 之沉陷量分析結果有大於 MCUC 之趨勢。此外,鑑於三維分析會耗費較長的計算時間與模型建置不容易,現階段常用於分析柱狀改良樁的單一等值化材料法過於簡化真實的幾何情形,目前尚未有文獻針對深開挖中改良樁之行為提出恰當等值化平面應變之方法。因此,本研究引入前人對於群樁基礎之各種簡化模型方法,將各種方法對應成柱-牆簡化之平面應變模型,並與三維模型進行比對。結果顯示,在不同改良樁的間距與直徑之條件下,Equivalent shear strength (ESS) 與三維強度折減分析之結果相似。以變形分析而言,ESS 與 Equivalent area (EA) 分別能預測到 HSUA 與 MCUC 三維分析之變形量最大值。於強度折減分析結果顯示,柱狀改良樁只影響節點位移曲線之破壞初期,且當前勁度參數 (current stiffness parameter, CSP) 與節點位移曲線之發展有相關,基於此論點,本研究以 CSP 下降斜率最大位置定義為初始破壞點,用以評估柱狀改良樁對於穩定性之影響。 | zh_TW |
| dc.description.abstract | The ground improvement technology is widely used to enhance the strength and stiffness of soil. Particularly in soft clay layers, it can restrain the displacement of retaining walls and provide additional resistance against basal heave. However, the recent excavation projects that adopted the column-type ground improvement method in soft clay layers have still encountered basal heave failure. Therefore, the effectiveness of column-type improvement in contributing to vertical and lateral capacity, as well as its impact on basal heave failure mechanisms, needs further investigation. This study uses the PLAXIS finite element method to examine the relationship between the geometric arrangement of improvement piles and wall deflection, ground settlement, and excavation stability. Two constitutive models commonly adopted for analysis of deep excavation behavior in soft clay layers are compared: the Mohr-Coulomb (ϕ=0) model (MCUC) for undrained total stress analysis and the Hardening soil model with undrained A (HSUA) for undrained effective stress analysis. Evaluate the performances of these two models on the deformation and stability analysis results. First, a three-dimensional quarter model was applied to simulate the Song-San deep excavation project, calibrating the soil parameters through wall monitoring data. Both constitutive models demonstrated an ability to predict wall deformation; however, the HSUA model yielded greater settlement values than the MCUC model.
This study also aims to reduce the computational cost of three-dimensional analysis and modeling, so simplified plane strain approaches for column-type improvement piles are needed. The single equivalent material method is commonly used but oversimplifies the actual geometric conditions. No literature currently provides an appropriate equivalent plane strain method for predicting the behavior of improvement piles in deep excavations. Therefore, this study aims to compare various simplified plane strain approaches proposed in the previous research, which were formulated for pile group foundations and then applied to ground improvement piles in deep excavations. The performance of various simplified column-wall plane strain models is evaluated and compared with those of the three-dimensional model. Under varying pile spacing and diameter, the Equivalent Shear Strength (ESS) method yielded results comparable to those obtained from three-dimensional strength reduction analysis. In terms of deformation analysis, the ESS and Equivalent Area (EA) methods could predict the maximum values of deformations from the HSUA and MCUC three-dimensional analyses, respectively. The results of strength reduction analysis indicated that column-type improvement piles primarily affect the initial failure behavior. The current stiffness parameters (CSP) are related to the development of the nodal displacement curve. Based on these observations, this study defines the initial failure point as the position where the CSP greatest decays and uses this definition to evaluate the impact of column-type improvement piles on excavation stability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-01T16:11:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-01T16:11:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 iii Abstract iv 目次 vii 圖次 x 表次 xiv 第一章 緒論 1 1.1研究背景與目的 1 1.2 研究方法 2 1.3 研究內容 2 第二章 文獻回顧 5 2.1 支撐式順打深開挖底面隆起之穩定性分析 5 2.1.1 傳統開挖穩定分析法 5 2.2.2有限元素之強度折減法 10 2.2 柱狀改良樁之數值分析 13 2.2.1 改良樁體力學參數之探討 13 2.2.2 柱狀樁體模型之建立 15 2.3 有限元素法數值軟體 PLAXIS 23 2.3.1 強度折減法 (c-ϕ Reduction) 23 2.3.2 拉力截斷 (Tension cut-off) 24 2.3.3 收斂機制 25 2.3.4 土壤不排水分析模式 26 2.4 常見用於黏土層之土壤組成律模式 27 第三章 三維數值模型之建置與參數校正 33 3.1 深開挖案例之介紹 33 3.1.1 Song-San (K1) 33 3.2 土壤組成律參數及結構參數之假設 36 3.2.1 土壤組成律模式及參數 36 3.2.2 結構參數 38 3.2.3 數值模型建置 39 3.3 三維有限元素之模型設定及分析結果 41 3.3.1 組成律模式及參數之影響 41 3.3.2 改良樁形狀與排列型式之影響 43 3.4 具改良樁的深開挖案例之破壞發展 46 3.5 小結 51 第四章 以二維簡化模型考慮柱狀樁體之行為 53 4.1收斂參數對分析結果之影響 53 4.2 數值模型之建立 55 4.2.1 三維切片模型 (3D Partial Model) 55 4.2.2 二維簡化模型 56 4.3 數值分析結果與比較 58 4.3.1 深開挖的變形行為 58 4.3.2 強度折減法之分析結果 65 4.4 小結 74 第五章 改良樁幾何形式對開挖穩定性之影響 77 5.1 改良樁直徑之影響 77 5.2 樁平行於牆面的間距之影響 85 5.3 安全係數之綜合評估 91 5.4 小結 93 第六章 結論與建議 95 6.1結論 95 6.1.1 數值模型驗證及組成律參數校正 95 6.1.2 二維簡化模型之探討 96 6.1.3 改良樁幾何參數分析 98 6.2 後續研究建議 99 參考文獻 101 附錄 A 開挖至最後一階的分析結果 A-1 附錄 B 強度折減法之分析結果 B-1 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 軟弱黏土層 | zh_TW |
| dc.subject | 柱狀型式改良樁 | zh_TW |
| dc.subject | 柱-牆簡化之平面應變模型 | zh_TW |
| dc.subject | PLAXIS有限元素法分析 | zh_TW |
| dc.subject | 隆起破壞 | zh_TW |
| dc.subject | Basal heave failure | en |
| dc.subject | PLAXIS finite element analysis | en |
| dc.subject | Simplified column-wall plane strain model | en |
| dc.subject | Soft clay layers | en |
| dc.subject | Column-type improvement piles | en |
| dc.title | 改良樁對黏土層開挖穩定之數值分析 | zh_TW |
| dc.title | Numerical Assessment of the Ground Improvement Piles on the Stability of Deep Excavation in Clays | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊國鑫;鄭世豪;葉馥瑄;黃郁惟 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Hsin Yang;Shih-Hao Cheng;Fu-Hsuan Yeh;Yu-Wei Hwang | en |
| dc.subject.keyword | 柱狀型式改良樁,軟弱黏土層,隆起破壞,PLAXIS有限元素法分析,柱-牆簡化之平面應變模型, | zh_TW |
| dc.subject.keyword | Column-type improvement piles,Soft clay layers,Basal heave failure,PLAXIS finite element analysis,Simplified column-wall plane strain model, | en |
| dc.relation.page | 145 | - |
| dc.identifier.doi | 10.6342/NTU202402150 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 147.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
