請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93443完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋孔彬 | zh_TW |
| dc.contributor.advisor | Kung-Bin Sung | en |
| dc.contributor.author | 郭庭沂 | zh_TW |
| dc.contributor.author | Ting-Yi Kuo | en |
| dc.date.accessioned | 2024-08-01T16:08:57Z | - |
| dc.date.available | 2024-08-02 | - |
| dc.date.copyright | 2024-08-01 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-27 | - |
| dc.identifier.citation | 1. K. Koyano et al., "The effect of blood transfusion on cerebral hemodynamics in preterm infants," Transfusion 53(7), 1459-1467 (2013).
2. Y. Sato et al., "Differences in Tissue Oxygenation, Perfusion and Optical Properties in Brain Areas Affected by Stroke: A Time-Resolved NIRS Study," Adv Exp Med Biol 1072(63-67 (2018). 3. D. Highton et al., "Near Infrared Light Scattering Changes Following Acute Brain Injury," Adv Exp Med Biol 876(139-144 (2016). 4. H. Hajime et al., "A Comparison of Cerebral Activity in the Prefrontal Region between Young Adults and the Elderly while Driving," Journal of PHYSIOLOGICAL ANTHROPOLOGY 26(3), 409-414 (2007). 5. L. Gagnon et al., "Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system," Journal of Biomedical Optics 13(5), (2008). 6. J. Choi et al., "Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach," Journal of Biomedical Optics 9(1), 221-229 (2004). 7. D. Comelli et al., "In vivo time-resolved reflectance spectroscopy of the human forehead," Appl Opt 46(10), 1717-1725 (2007). 8. E. Vargas et al., "Beneficial neurocognitive effects of transcranial laser in older adults," Lasers Med Sci 32(5), 1153-1162 (2017). 9. L.-D. Huang et al., "Simulation Study on the Optimization of Photon Energy Delivered to the Prefrontal Cortex in Low-Level-Light Therapy Using Red to Near-Infrared Light," IEEE Journal of Selected Topics in Quantum Electronics 27(4), 1-10 (2021). 10. D. Contini et al., "Brain and Muscle near Infrared Spectroscopy/Imaging Techniques," J. Near Infrared Spectrosc. 20(1), 15-27 (2012). 11. T. C. Kao, and K. B. Sung, "Quantifying tissue optical properties of human heads in vivo using continuous-wave near-infrared spectroscopy and subject-specific three-dimensional Monte Carlo models," J Biomed Opt 27(8), (2022). 12. F. Lange, and I. Tachtsidis, "Clinical Brain Monitoring with Time Domain NIRS: A Review and Future Perspectives," Applied Sciences 9(8), 1612 (2019). 13. F. Martelli, S. Del Bianco, and G. Zaccanti, "Procedure for retrieving the optical properties of a two-layered medium from time-resolved reflectance measurements," Opt Lett 28(14), 1236-1238 (2003). 14. F. Martelli et al., "Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements," Opt Lett 29(17), 2037-2039 (2004). 15. B. Hallacoglu, A. Sassaroli, and S. Fantini, "Optical Characterization of Two-Layered Turbid Media for Non-Invasive, Absolute Oximetry in Cerebral and Extracerebral Tissue," Plos One 8(5), (2013). 16. J. D. Veesa, and H. Dehghani, "Hyper-spectral Recovery of Cerebral and Extra-Cerebral Tissue Properties Using Continuous Wave Near-Infrared Spectroscopic Data," Appl Sci-Basel 9(14), (2019). 17. D. A. Boas et al., "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Opt Express 10(3), 159-170 (2002). 18. J. Selb et al., "Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head," J Biomed Opt 19(1), 16010 (2014). 19. S. Mahmoodkalayeh, M. A. Ansari, and V. V. Tuchin, "Head model based on the shape of the subject's head for optical brain imaging," Biomedical Optics Express 10(6), 2795-2808 (2019). 20. S. Perrey, "Non-invasive NIR spectroscopy of human brain function during exercise," Methods 45(4), 289-299 (2008). 21. A. Liebert et al., "Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons," Appl Opt 42(28), 5785-5792 (2003). 22. F. Lange, F. Peyrin, and B. Montcel, "Broadband time-resolved multi-channel functional near-infrared spectroscopy system to monitor in vivo physiological changes of human brain activity," Appl Opt 57(22), 6417-6429 (2018). 23. K. Alwin, and G. Thomas, "In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model," Physics in Medicine & Biology 44(11), 2689 (1999). 24. W. Becker et al., "Advanced time-correlated single photon counting technique for spectroscopy and imaging in biomedical systems," Proceedings of SPIE - The International Society for Optical Engineering 5340(104-112 (2004). 25. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (2005). 26. M. Wahl, "Time-Correlated Single Photon Counting," https://www.picoquant.com/images/uploads/page/files/7253/technote_tcspc.pdf. 27. R. L. Harrison, "Introduction To Monte Carlo Simulation," AIP Conf Proc 1204(17-21 (2010). 28. D. F. Swinehart, "The beer-lambert law," Journal of chemical education 39(7), 333 (1962). 29. T. Binzoni et al., "The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics," Phys Med Biol 51(17), N313-322 (2006). 30. R. Grainger, "Radiative Transfer Nomenclature, Symbols and Units." 31. Q. Q. Fang, and D. A. Boas, "Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated by Graphics Processing Units," Opt Express 17(22), 20178-20190 (2009). 32. A. Sassaroli, and F. Martelli, "Equivalence of four Monte Carlo methods for photon migration in turbid media," J Opt Soc Am A Opt Image Sci Vis 29(10), 2110-2117 (2012). 33. Q. Liu, and N. Ramanujam, "Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra," Appl. Opt. 45(19), 4776-4790 (2006). 34. I. Fredriksson, M. Larsson, and T. Stromberg, "Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy," J Biomed Opt 17(4), 047004 (2012). 35. W. S. McCulloch, and W. Pitts, "A logical calculus of the ideas immanent in nervous activity. 1943," Bull Math Biol 52(1-2), 99-115; discussion 173-197 (1990). 36. A. Kulkarni, "Jump Start to Artificial Intelligence," https://hackernoon.com/jump-start-to-artificial-intelligence-f6eb30d624ec. 37. D. Lopez-Bernal et al., "Education 4.0: Teaching the Basics of KNN, LDA and Simple Perceptron Algorithms for Binary Classification Problems," Future Internet 13(193 (2021). 38. S. Zivkovic, "#018 PyTorch – Popular techniques to prevent the Overfitting in a Neural Networks," https://datahacker.rs/018-pytorch-popular-techniques-to-prevent-the-overfitting-in-a-neural-networks/. 39. 伍育汶, "功能性近紅外光譜術應用於經顱紅外光刺激前後之認知功能評估," 國立台灣大學, 台北市 (2022). 40. H. P. K. K., Photomultiplier Tubes: Basics and Applications, 4 ed. (2017). 41. L. T. Dunne, "Development of a Novel Multiwavelength, Time Resolved, Near Infrared Spectrometer," in Department of Medical Physics and Biomedical Engineering, p. 254, University College London (2016). 42. Y. Yamada, H. Suzuki, and Y. Yamashita, "Time-Domain Near-Infrared Spectroscopy and Imaging: A Review," Appl Sci-Basel 9(6), (2019). 43. W. D. Penny et al., Statistical parametric mapping: the analysis of functional brain images, Elsevier (2011). 44. 高子佳, "以連續波近紅外光譜與三維模型定量人體腦部光學參數," 國立臺灣大學, 台北市 (2021). 45. S. C. Gebhart, W. C. Lin, and A. Mahadevan-Jansen, "In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling," Phys Med Biol 51(8), 2011-2027 (2006). 46. K. L. Leenders et al., "Cerebral Blood-Flow, Blood-Volume and Oxygen Utilization - Normal Values and Effect of Age," Brain 113(27-47 (1990). 47. A. N. Bashkatov et al., "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," J Phys D Appl Phys 38(15), 2543-2555 (2005). 48. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, "Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review," J Innov Opt Heal Sci 4(1), 9-38 (2011). 49. E. K. Chan et al., "Effects of compression on soft tissue optical properties," Ieee Journal of Selected Topics in Quantum Electronics 2(4), 943-950 (1996). 50. N. Okui, and E. Okada, "Wavelength dependence of crosstalk in dual-wavelength measurement of oxy- and deoxy-hemoglobin," Journal of Biomedical Optics 10(1), (2005). 51. C. R. Simpson et al., "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Physics in Medicine and Biology 43(9), 2465-2478 (1998). 52. A. Bashkatov et al., "Optical properties of human cranial bone in the spectral range from 800 to 2000 nm," Progress in Biomedical Optics and Imaging - Proceedings of SPIE 6163((2006). 53. F. Bevilacqua et al., "In vivo local determination of tissue optical properties: applications to human brain," Appl Opt 38(22), 4939-4950 (1999). 54. M. Firbank et al., "Measurement of the optical properties of the skull in the wavelength range 650-950 nm," Phys Med Biol 38(4), 503-510 (1993). 55. A. N. Yaroslavsky et al., "Optical properties of selected native and coagulated human brain tissues in the visible and near infrared spectral range," Physics in Medicine and Biology 47(12), 2059-2073 (2002). 56. P. van der Zee, M. Essenpreis, and D. Delpy, Optical properties of brain tissue, SPIE (1993). 57. S. C. Gebhart, W. C. Lin, and A. Mahadevan-Jansen, "determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling," Physics in Medicine and Biology 51(8), 2011-2027 (2006). 58. A. Farina et al., "In-vivo multilaboratory investigation of the optical properties of the human head," Biomedical Optics Express 6(7), 2609-2623 (2015). 59. S. Jacques, "Optical Absorption of Melanin." 60. P. Oltulu et al., "Measurement of epidermis, dermis, and total skin thicknesses from six different body regions with a new ethical histometric technique," Turk Plastik, Rekonstruktif ve Estetik Cerrahi Dergisi 26(56-61 (2018). 61. A. E. Light, "Histological study of human scalps exhibiting various degrees of non-specific baldness," J Invest Dermatol 13(2), 53-59 (1949). 62. F. Bevilacqua et al., "Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods," Appl. Opt. 39(34), 6498-6507 (2000). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93443 | - |
| dc.description.abstract | 光學技術提供了非侵入式的方法來測量組織生理參數和進行治療。例如,功能性近紅外光譜能夠監測大腦的血液動力學變化、經顱紅外光刺激具有提升大腦認知功能的效果等等,使得光學技術被廣泛應用於大腦行為監測和治療研究上。然而,光在組織中的行進特性是由各組織的光學參數描述,這些參數會因頭部結構及物質濃度的不同而有所變化。因此,提升數據準確度及光穿透深度依賴於對頭部組織光學參數的精確定量。
本研究使用波長為800 nm的雷射皮秒光源、混合式光感測器以及計時電路模組建立時域近紅外漫反射光譜系統。使用多個距離在1.5 cm至4.3 cm之間的偵測器,並計算各偵測器之光子在組織中的飛行時間,以獲得光子飛行時間分布。透過測量系統響應函數進行校正,可將實驗值和模擬值比較並進行疊代式曲線擬合,初步以單層仿體驗證系統數據準確性及其定量光學參數的能力。 基於三位受試者之頭部核磁共振影像建立頭皮、頭骨、腦脊髓液、灰質、白質及額竇共六層組織的三維頭部模型,進行蒙地卡羅法模擬光子在頭部的散射及吸收事件,取得光子在各層組織中之行進路徑長,並經由計算取得光子飛行時間分布。為了加快模擬速度,使用白蒙地卡羅法配合平滑化技術去除模擬雜訊,生成大量訓練資料用於訓練神經網路。後續以神經網路取代傳統蒙地卡羅法模擬作為疊代式曲線擬合的順向模型,大量縮短了擬合時間。 在評估最適合的光源-偵測器距離及時間區段後,本研究使用模擬光譜作為擬合目標,透過疊代式調整擬合參數數值,逐步找到與擬合目標接近的光學參數組合,從而獲得光學參數最佳解。以三個頭部模型驗證此流程能夠有效找到合理誤差範圍內之各層光學參數解。為了更進一步定量多波長下之光學參數,本研究同步擬合了寬頻(continuous-wave)近紅外光譜術在波長700-900 nm範圍內的模擬光譜與時域近紅外光譜術之飛行時間分布。結果顯示,結合兩系統數據確實能夠顯著提升光學參數定量的準確性。 | zh_TW |
| dc.description.abstract | Optical technology provides a non-invasive method for measuring physiological parameters of tissues and for therapeutic applications. For example, functional near-infrared spectroscopy can monitor cerebral hemodynamics and transcranial infrared light stimulation can enhance cognitive functions. These advantages have led to the widespread use of optical technology in brain behavior monitoring and therapeutic research. However, the propagation characteristics of light in tissue are described by the optical parameters of each tissue, which vary with head structure and substance concentration. Therefore, improving data accuracy and light penetration depth relies on the precise quantification of the optical parameters of head tissues.
This study established a time-resolved near-infrared spectroscopy (TR-NIRS) system using an 800 nm picosecond laser source, a hybrid photodetector, and a timing circuit module. Multiple detectors spaced between 1.5 cm and 4.3 cm were used to calculate the photon travel time in tissues, thereby obtaining the distribution of time of flight (DTOF). By measuring and calibrating the impulse response function, experimental values were compared with simulated values, allowing iterative curve fitting. Initial validation of the system's data accuracy and its capability to quantify optical parameters was performed using single-layer phantoms. Based on MRI images of three subjects, a three-dimensional head model consisting of six layers—scalp, skull, cerebrospinal fluid, gray matter, white matter, and frontal sinus—was constructed. Photon scattering and absorption events in the head were simulated using the Monte Carlo method, and photon travel path lengths in each tissue layer were obtained to calculate the DTOF. To accelerate the simulation, the White Monte Carlo method and smoothing techniques were employed to remove simulation noise, generating a large training dataset for neural network training. The neural network was then used to replace traditional Monte Carlo simulations as the forward model for iterative curve fitting, significantly reducing the fitting time. After evaluating the optimal source-detector distance and time intervals, the study used simulated spectra as the fitting target. By iteratively adjusting the fitting parameter values, the optimal set of optical parameters was identified, matching the fitting target. The process was validated using three head models, demonstrating that it could effectively find the optical parameters within a reasonable error range for each tissue layer. To further quantify the optical parameters at multiple wavelengths, the study simultaneously fitted the simulated spectra of continuous-wave near-infrared spectroscopy within the 700-900 nm wavelength range and the DTOF from TR-NIRS. The results confirmed that combining data from both systems significantly improved the accuracy of optical parameter quantification. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-01T16:08:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-01T16:08:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 I 中文摘要 II ABSTRACT III 目次 V 圖次 VIII 表次 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 1.3.1 NIRS系統概覽 3 1.3.2 NIRS系統定量大腦組織光學參數 4 1.4 研究目標 5 第二章 技術理論介紹 7 2.1 時域近紅外漫反射光譜 7 2.1.1 時間相關單光子計數系統 8 2.1.1.1 分數式鑑別器 10 2.1.1.2 時間對振幅轉換器 11 2.1.1.3 時間至數位轉換器 12 2.2 蒙地卡羅法 13 2.2.1 蒙地卡羅法應用於光學模擬 14 2.2.2 白蒙地卡羅法 18 2.3 類神經網路 18 2.4 曲線擬合 21 第三章 研究方法 24 3.1 TR-NIRS量測系統 24 3.1.1 系統架構 24 3.1.2 光子飛行時間分布 26 3.1.3 系統響應校正 30 3.1.4 仿體驗證 31 3.2 建立順向模型 32 3.2.1 頭部模型 32 3.2.2 光學參數 33 3.2.3 模擬產生訓練資料 36 3.2.4 去除模擬雜訊 37 3.2.5 建立類神經網路 43 3.3 曲線擬合 44 3.3.1 擬合參數 44 3.3.2 擬合方法 46 第四章 TR-NIRS量測系統驗證 48 4.1 雜訊特性與影響評估 48 4.1.1 系統雜訊 48 4.1.2 系統響應函數 50 4.1.3 綜合雜訊評估 54 4.2 單層仿體驗證 57 第五章 光學參數定量分析 62 5.1 順向模型誤差評估 62 5.2 靈敏度分析 67 5.3 定量理論誤差 71 5.4 文獻方法比較 75 5.5 結合連續波近紅外光譜系統進行擬合成效分析 77 第六章 結論與未來展望 83 6.1 結論 83 6.1.1 單層仿體驗證 83 6.1.2 順向模型建立 83 6.1.3 定量光學參數分析 83 6.2 未來展望 84 6.2.1 多層仿體驗證 84 6.2.2 於模擬資料中加入系統雜訊進行定量成效評估 84 6.2.3 結合CW-NIRS和TR-NIRS系統提升活體定量準確度 84 參考文獻 85 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 蒙地卡羅模擬 | zh_TW |
| dc.subject | 光學參數 | zh_TW |
| dc.subject | 光子飛行時間分布 | zh_TW |
| dc.subject | 寬頻近紅外漫反射光譜 | zh_TW |
| dc.subject | 時域近紅外漫反射光譜 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | Artificial neural network | en |
| dc.subject | Monte Carlo simulation | en |
| dc.subject | Optical parameters | en |
| dc.subject | Distribution of time of flight | en |
| dc.subject | Continuous-wave near-infrared spectroscopy | en |
| dc.subject | Time-resolved near-infrared spectroscopy | en |
| dc.title | 時域近紅外光譜術於人體頭部光學參數定量分析及系統驗證 | zh_TW |
| dc.title | Time-Resolved Near-Infrared Spectroscopy – Quantitative Analysis of Optical Parameters in the Human Head and System Validation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曾盛豪;吳文超 | zh_TW |
| dc.contributor.oralexamcommittee | Sheng-Hao Tseng;Wen-Chau Wu | en |
| dc.subject.keyword | 時域近紅外漫反射光譜,寬頻近紅外漫反射光譜,光子飛行時間分布,光學參數,蒙地卡羅模擬,類神經網路, | zh_TW |
| dc.subject.keyword | Time-resolved near-infrared spectroscopy,Continuous-wave near-infrared spectroscopy,Distribution of time of flight,Optical parameters,Monte Carlo simulation,Artificial neural network, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202402216 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-30 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | 2029-07-24 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 20.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
