請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93428完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曹承礎 | zh_TW |
| dc.contributor.advisor | Seng-Cho Chou | en |
| dc.contributor.author | 蔡立倫 | zh_TW |
| dc.contributor.author | Li-Luan Tsai | en |
| dc.date.accessioned | 2024-07-31T16:16:45Z | - |
| dc.date.available | 2024-08-01 | - |
| dc.date.copyright | 2024-07-31 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-26 | - |
| dc.identifier.citation | [1] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, & A. H. Byers. Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. 2011
[2] A. Katal, M. Wazid and R. H. Goudar. Big data: Issues, challenges, tools and Good practices 2013 Sixth International Conference on Contemporary Computing (IC3),Noida, India, pp. 404-409, doi: 10.1109/IC3.2013.6612229. 2013 [3] B. Marr. Where Big Data projects fail. Forbes Tech. 2015 [4] S. Kaisler, F. Armour, J. A. Espinosa and W. Money. Big Data: Issues and Challenges Moving Forward. 2013 46th Hawaii International Conference on System Sciences, Wailea, HI, USA, 2013, pp. 995-1004, doi: 10.1109/HICSS.2013.645. 2013. [5] Ishwarappa and J. Anuradha. A Brief Introduction on Big Data 5Vs Characteristics and Hadoop Technology. Procedia Computer Science, vol. 48, no. 48, pp. 319–324, 2015, doi: https://doi.org/10.1016/j.procs.2015.04.188. 2015 [6] AtScale. 2018 Big Data Maturity Survey. 2018. [7] A. Chamberlain. Using Aspects of Data Governance Frameworks to Manage Big Data as an Asset, a PhD thesis at University of Oregon. 2013 [8] K. Weber, L. Cheong, B. Otto, and V. Chang. Organising Accountabilities for Data Quality Management-A Data Governance Case Study. Data Warehousing, 347–362. 2008.doi:10.6342/NTU202402325 [9] S. Soares. Big data governance: An emerging imperative. Mc Press. 2012. [10] Z. A. Al-Sai, R. Abdullah, and M. H. Husin. Critical success factors for big data: a systematic literature review. IEEE Access, 8, 118940-118956. 2020. [11] J. Merkus, R. Helms, and R. Kusters. Data Governance Capabilities: Maturity Model Design with Generic Capabilities Reference Model.10.5220/0010651300003064. 2021. [12] G. Cheng, Y. Li, Z. Gao and X. Liu. Cloud data governance maturity model. 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 2017, pp. 517-520, doi: 10.1109/ICSESS.2017.8342968. 2017. [13] B. Otto. A Morphology of the Organisation of Data Governance, ECIS 2011 Proceedings. p.272. 2011. [14] J. Merkus, R. W. Helms, and R. J. Kusters. Data Governance and Information Governance: Set of Definitions in Relation to Data and Information as Part of DIKW. In ICEIS 2019 - Proceedings of the 21th International Conference on Enterprise Information Systems (p. 12). Crete. 2019. [15] V. Khatri, and C. Brown. Designing data governance. Commun. ACM. 53. 148-152. 10.1145/1629175.1629210. 2010. [16] F. J. Riggins, and B. K. Klamm. Data governance case at KrauseMcMahon LLP in an era of self-service BI and Big Data, Journal of Accounting Education, vol. 38, pp. 23-36. 2017. [17] ISO. Corporate governance of information technology, International Organizationdoi:10.6342/NTU202402325 for Standardization. 2008. [18] Eckerson. The Path to Modern Data Governance. 2019. [19] Data Governance Institute. The DGI data governance framework. 2009 [20] B. Petzold, M. Roggendorf, K. Rowshankish, and Christoph Sporleder. Designing data governance that delivers value. 2020. [21] DAMA. The DAMA guide to the data management body of knowledge. New York: Technics Publications. 2009. [22] R. Abraham, J. Brocke, and J. Schneider. Data Governance: A conceptual framework, structured review, and research agenda. International Journal of Information Management. 49. 10.1016/j.ijinfomgt.2019.07.008. 2019. [23] M. Lycett. Datafication: making sense of (big) data in a complex world. European Journal of Information Systems, Vol. 22 No. 4, pp. 381-386. 2013. [24] T. Davenport. Big Data at Work: Dispelling the Myths, Uncovering the Opportunities, Harvard Business Review Press, Boston. 2014. [25] S. Sagiroglu and D. Sinanc. Big data: A review. 2013 International Conference on Collaboration Technologies and Systems (CTS), San Diego, CA, USA, 2013, pp. 42-47, doi: 10.1109/CTS.2013.6567202. 2013. [26] A. McAfee, and E. Brynjolfsson. Big data: The management revolution. Harvard Business Review, 90(10), 60-68. 2012. [27] T. Armes, and M. Refern. Using big data and predictive machine learning in aerospace test environments, In the proceeding of AUTOTESTCON, 1-5.doi:10.6342/NTU202402325 Schaumburg, IL, USA, 16-19 sept. 2013. [28] A. B. Alnafoosi, and T. Steinbach. An integrated framework for evaluating big-data storage solutions-IDA case study, In the proceeding of Science and Information Conference (SAI), 947-956.London, UK, 7-9 Oct. 2013. [29] A. Zarate Santovena. Big data: evolution, components, challenges and opportunities, a PhD thesis at Massachusetts Institute of Technology. 2013. [30] V. Morabito. Big Data and Analytics: Strategic and Organizational Impacts. 10.1007/978-3-319-10665-6. 2015. [31] S. I. H. Shah, V.Peristeras, and I. Magnisalis. DaLiF: a data lifecycle framework for data-driven governments. Journal of Big Data, 8(1), 1-44. 2021. [32] A. Al-Badi, A. Tarhini, and A. I. Khan. Exploring big data governance frameworks. Procedia computer science, 141, 271-277. 2018. [33] J. Yebenes Serrano and M. Zorrilla. A Data Governance Framework for Industry 4.0, in IEEE Latin America Transactions, vol. 19, no. 12, pp. 2130-2138, doi: 10.1109/TLA.2021.9480156. 2021. [34] DataFlux. Data Governance Maturity Model. [Online]. Available at: https://www.fstech.co.uk/fst/whitepapers/The_Data_Governance_Maturity_Model.pdf. 2010. [35] H. Kim, and J. Cho. Data Governance Framework for Big Data Implementation with a Case of Korea. 384-391. 10.1109/BigDataCongress.2017.56. 2017. [36] Oracle. Enterprise Information Management: Best Practices in Data Governance.doi:10.6342/NTU202402325 [Online]. Available at: https://www.oracle.com/assets/oea-best-practices-data-gov- 1357848.pdf. 2011. [37] F. Halper and K. Krishnan. Tdwi Big Data Maturity Model Guide. RDWi Resarch, vol. 2013–2014, pp. 1–20, 2013. [38] G. Lahrmann, and F. Marx. Systematization of Maturity Model Extensions. In Proceedings of the DESRIST 2010: Global Perspectives on Design Science Research, St. Gallen, Switzerland, 4–5 June 2010; Springer: Cham, Switzerland, 2010; pp. 522–525. 2010. [39] M. Mach-Król. A survey and assessment of maturity models for big data adoption. 2015. [40] K. M. Hüner, M. Ofner, and B. Otto. Towards a maturity model for corporate data quality management. In Proceedings of the 2009 ACM symposium on Applied Computing - SAC ’09 (p.231). New York, New York, USA: ACM Press. 2009. [41] A. Schumacher, S. Erol, and W. Sihn. A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises. Procedia CIRP. 52.161-166.10.1016/j.procir.2016.07.040. 2016. [42] I.L. Ong and P.H. Siew. An Empirical Analysis on Business Intelligence Maturity in Malaysian Organizations. Int. J. Inf. Syst. Eng., 1, 1–10. 2013. [43] M. Sonntag, S. Mehmann, J. Mehmann, and F. Teuteberg. Development and Evaluation of a Maturity Model for AI Deployment Capability of Manufacturing Companies. Information Systems Management, 1–31. https://doi.org/10.1080/10580530.2024.2319041. 2024.doi:10.6342/NTU202402325 [44] T. de Bruin, R. Freeze, U. Kulkarni, and M. Rosemann. Understanding the Main Phases of Developing a Maturity Assessment Model. Australasian Conference on Information Systems. 2005. [45] M. C. Paulk, B. Curtis, M. B. Chrissis and C. V. Weber. Capability maturity model, version 1.1. IEEE Software, vol. 10, no. 4, pp. 18-27, doi: 10.1109/52.219617. 1993. [46] D. T. Moore. Roadmaps and Maturity Models: Pathways toward Adopting Big Data Proc. Conf. Inf. Syst. Appl. Res., pp. 1–8. 2014. [47] CMMI Product Team. CMMI for Development, Version 1.3. (Technical Report CMU/SEI-2010-TR-033). Retrieved September 21, 2023, from https://doi.org/10.1184/R1/6572342.v1. 2010. [48] S. Rivera, N. Loarte, C. Raymundo, and F. Domínguez-Mateos. Data Governance Maturity Model for Micro Financial Organizations in Peru. International Conference on Enterprise Information Systems. 2017. [49] M. Comuzzi and A. Patel. How organisations leverage Big Data: A maturity model. Industrial Management & Data Systems. 116. 1468-1492. 10.1108/IMDS-12-2015-0495. 2016. [50] C. Adrian, R. Abdullah, R. Atan, and Y. Jusoh. Towards Developing Strategic Assessment Model for Big Data Implementation: A Systematic Literature Review. International Journal of Advances in Soft Computing and its Applications. 8. 2016. [51] I. Hausladen and M. Schosser. Towards a maturity model for big data analytics in airline network planning. Journal of Air Transport Management. 82. 101721.10.1016/j.jairtraman.2019.101721. 2020.doi:10.6342/NTU202402325 [52] Z. Al-Sai, H. Husin, S. Syed-Mohamad, R. Abdullah, R. Zitar, L. Abualigah, and A. Gandomi. Big Data Maturity Assessment Models: A Systematic Literature Review. Big Data and Cognitive Computing. 7. 2. 10.3390/bdcc7010002. 2022. [53] W.N. Dunn. Public policy analysis: An introduction. Englewood Cliffs, N.J: Prentice Hall. Chicago. 1994. [54] J. W. Murry, and J. O. Hammons. Delphi: A Versatile methodology for Conducting Qualitative Research. Review of Higher Education, 18(4): 423-436. 1995. [55] K. O. Hill, and J. Fowles. The method of logical worth of the Delphi forecasting technique. Technological Forecasting and Social Change, 7: 179-192. 1975. [56] A. L. Delbecq, A. H. Van de Ven, and D.H. Gustafson. Group techniques for program planning: A guide to nominal group and delphi processes. Chicago, NJ: Scott. Foresman and Company. 1975. [57] N. C. Dalkey. The Delphi method: An experimental study of group opinion. Santa Monica, CA: The Rand Corporation. 1969. [58] V. Faherty. Continuing social work education: Results of a Delphi survey. Journal of Education for Social Work,15(1), 12-19. 1979. [59] I. Diamond, R. Grant, & B. Feldman, P. Pencharz, S. Ling, A. Moore, and P. Wales. Defining Consensus: A Systematic Review Recommends Methodologic Criteria for Reporting of Delphi Studies. Journal of Clinical Epidemiology. 67. 401–409.10.1016/j.jclinepi.2013.12.002. 2014. [60] T. L. Saaty. The analytic hierarchy process: New York: McGraw-Hill New York.1980.doi:10.6342/NTU202402325 [61] P.J.M Laarhoven, and W. Pedrycz. A fuzzy extension of Saaty’s priority theory.Fuzzy Sets and Systems, 11, 299-241. 1983. [62] J. J. Buckley. Fuzzy hierarchical analysis, Fuzzy Sets and Systems, 17, 233-247.1985. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93428 | - |
| dc.description.abstract | 在現代全球經濟中,數據是驅動業務效率、提升公共服務和提供消費者利益的重要元素。然而,大數據的管理因其規模、多樣性、高速度和真實性而變得非常複雜,帶來了顯著的挑戰。大數據治理已成為一個關鍵議題,許多組織在建立有效的框架以管理和利用數據方面面臨困難。儘管大數據治理的重要性顯而易見,過去研究針對大數據治理及其成熟度模型的關注卻有限。
本研究旨在填補這一空白,通過開發一個綜合的大數據治理成熟度模型來解決這一問題。該模型整合了現有學術及業界之模型,並利用修正式德菲法(Modified Delphi Method)以獲得專家共識,後使用模糊層級分析法(FAHP, Fuzzy Analytic Hierarchy Process)為模型中不同的構面及因素分配相對權重。通過應用這些權重,該模型能夠準確反映每個構面和因素的重要性,使組織能夠精確地識別需要改進的領域。此模型使組織能夠評估其當前的大數據治理成熟度水平,並識別改進的領域,確保更好的戰略規劃和資源分配從而增強其大數據治理能力。 本研究的主要貢獻包括:開發了一個大數據治理成熟度模型,通過專家共識進行實證驗證,以及應用模糊層級分析法對構面及因素進行加權評估。這一模型讓組織能對其大數據治理能力進行精確評估,從而制定針對性的改進計畫及更有效的治理策略,以迎接大數據時代的挑戰。 | zh_TW |
| dc.description.abstract | In the modern global economy, data is a foundational element driving business efficiency, enhancing public services, and delivering consumer benefits. However, the complexities of managing big data, characterized by its volume, variety, velocity, and veracity, present significant challenges. Big Data governance has emerged as a critical issue, with organizations struggling to establish effective frameworks to manage and leverage data. Despite the importance of big data governance, existing research has paid limited attention to big data governance and its maturity models.
This study addresses this gap by developing a comprehensive Big Data Governance Maturity Model. This model integrates insights from various existing models and utilizes the Modified Delphi Method to gather expert consensus and the Fuzzy Analytic Hierarchy Process (FAHP) to assign relative weights to different dimensions and factors. By applying weights, the model can accurately reflect the importance of each dimension and factor, allowing organizations to pinpoint specific areas needing improvement. This weighted approach ensures that organizations can prioritize resources effectively, enhancing their big data governance capabilities. The proposed model allows organizations to assess their current level of big data governance maturity and identify areas for improvement, helping them navigate the complexities of big data, ensuring better strategic planning and resource allocation. Key contributions of this research include the development of a Big Data Governance Maturity Model, the introduction of specific dimensions and detailed factors to enhance model practicality, empirical validation through expert consensus, and the application of FAHP for a weighted assessment approach. This innovative model offers a precise evaluation of organizational capabilities, facilitating targeted improvement recommendations and more effective governance strategies in the era of big data. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-31T16:16:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-31T16:16:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Table of Contents v List of Tables viii List of Figures x Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Object and Main Contribution 2 1.3 Thesis Organization 4 Chapter 2 Literature Review 5 2.1 Data Governance and Data Governance Framework 5 2.2 Big Data, Big Data Governance, and Big Data Governance Frameworks 7 2.3 Maturity and Maturity Models 8 2.4 Data Governance Maturity Model 11 2.5 Big Data Maturity Model 12 2.6 Conclusion: Big Data Governance Maturity Model 13 Chapter 3 Methodology 15 3.1 Research Framework 15 3.2 Research Method 15 3.2.1 Building Big Data Governance Maturity Model 15 3.2.2 Modified Delphi 27 3.2.3 Analytic Hierarchy Process 31 3.2.4 Fuzzy Analytic Hierarchy Process 34 Chapter 4 Results 40 4.1 Model Dimensions and Factors Evaluation through Modified Delphi 40 4.1.1 Expert Selection and Procedure 40 4.1.2 Consolidation of Expert Opinions 41 4.1.3 Confirmation of Dimensions and Factors 44 4.2 Analysis of Dimension and Factor Weights through FAHP 49 4.2.1 Dimension Analysis 50 4.2.2 Factor Analysis 50 4.2.3 Overall Weight Results Analysis 54 Chapter 5 Discussion 57 5.1 Final Big Data Governance Maturity Model 57 5.2 Maturity Assessment Questionnaire 60 5.3 Evaluating Organization Maturity Score 61 5.3.1 Evaluating Specific Dimension’s Maturity Score 62 5.3.2 Evaluating Overall Maturity Score 63 5.3.3 Interpreting Results 63 Chapter 6 Conclusion 65 6.1 Contributions 65 6.2 Limitations 66 6.3 Future Work 67 References 70 | - |
| dc.language.iso | en | - |
| dc.subject | 多準則決策法 | zh_TW |
| dc.subject | 大數據治理 | zh_TW |
| dc.subject | 專家共識 | zh_TW |
| dc.subject | 成熟度模型 | zh_TW |
| dc.subject | Big Data Governance | en |
| dc.subject | Maturity Model | en |
| dc.subject | Expert Consensus | en |
| dc.subject | Multi-Criteria Decision-Making Method | en |
| dc.title | 基於專家共識與多準則決策法構建大數據治理成熟度模型 | zh_TW |
| dc.title | Constructing Big Data Governance Maturity Model Based on Expert Consensus and Multi Criteria Decision Making Methods | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳建錦;杜志挺 | zh_TW |
| dc.contributor.oralexamcommittee | Chien Chin Chen;Timon Du | en |
| dc.subject.keyword | 大數據治理,成熟度模型,專家共識,多準則決策法, | zh_TW |
| dc.subject.keyword | Big Data Governance,Maturity Model,Expert Consensus,Multi-Criteria Decision-Making Method, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202402325 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-07-29 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 901.42 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
