請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93420
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅世強 | zh_TW |
dc.contributor.advisor | Shyh-Chyang Luo | en |
dc.contributor.author | 陳家渝 | zh_TW |
dc.contributor.author | Chia-Yu Chen | en |
dc.date.accessioned | 2024-07-31T16:14:24Z | - |
dc.date.available | 2024-08-01 | - |
dc.date.copyright | 2024-07-31 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-29 | - |
dc.identifier.citation | Dunn, B., H. Kamath, and J.M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices. Science, 2011. 334(6058): p. 928-935.
Abaza, A., et al., Experimental study of internal and external short circuits of commercial automotive pouch lithium-ion cells. Journal of Energy Storage, 2018. 16: p. 211-217. Goodenough, J.B., How we made the Li-ion rechargeable battery. Nature Electronics, 2018. 1(3): p. 204-204. Feng, X.N., et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 2018. 10: p. 246-267. Love, C.T., et al., Innovating Safe Lithium-Ion Batteries Through Basic to Applied Research. Journal of Electrochemical Energy Conversion and Storage, 2018. 15(1): p. 7. Finegan, D.P., et al., Identifying the Cause of Rupture of Li-Ion Batteries during Thermal Runaway. Advanced Science, 2018. 5(1): p. 13. Li, H., et al., A temperature-sensitive poly(3-octylpyrrole)/carbon composite as a conductive matrix of cathodes for building safer Li-ion batteries. Energy Storage Materials, 2019. 17: p. 275-283. Liang, Z., Y. Zhao, and Y.X. Li, Electrospun Core-Shell Nanofiber as Separator for Lithium-Ion Batteries with High Performance and Improved Safety. Energies, 2019. 12(17): p. 10. Li, M., et al., New Concepts in Electrolytes. Chemical Reviews, 2020. 120(14): p. 6783-6819. Zhou, Q., et al., Intermolecular Chemistry in Solid Polymer Electrolytes for High-Energy-Density Lithium Batteries. Advanced Materials, 2019. 31(50): p. 21. Liu, W., et al., Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives. Advanced Materials, 2017. 29(1): p. 34. Ye, T.T., L.H. Li, and Y. Zhang, Recent Progress in Solid Electrolytes for Energy Storage Devices. Advanced Functional Materials, 2020. 30(29): p. 20. Liu, Y.J., P. He, and H.S. Zhou, Rechargeable Solid-State Li-Air and Li-S Batteries: Materials, Construction, and Challenges. Advanced Energy Materials, 2018. 8(4): p. 22. Zhang, Z.Z., et al., New horizons for inorganic solid state ion conductors. Energy & Environmental Science, 2018. 11(8): p. 1945-1976. Huang, Y., et al., Multifunctional Energy Storage and Conversion Devices. Advanced Materials, 2016. 28(38): p. 8344-8364. Zhou, D., et al., Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem, 2019. 5(9): p. 2326-2352. Li, Y., et al., A single-ion conducting and shear-thinning polymer electrolyte based on ionic liquid-decorated PMMA nanoparticles for lithium-metal batteries. Journal of Materials Chemistry A, 2016. 4(47): p. 18543-18550. Ma, Q., et al., Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. Angewandte Chemie-International Edition, 2016. 55(7): p. 2521-2525. Manjuladevi, R., et al., Preparation and characterization of blend polymer electrolyte film based on poly(vinyl alcohol)-poly(acrylonitrile)/MgCl2 for energy storage devices. Ionics, 2018. 24(4): p. 1083-1095. Wang, X.E., et al., Enhancement of ion dynamics in organic ionic plastic crystal/PVDF composite electrolytes prepared by co-electrospinning. Journal of Materials Chemistry A, 2016. 4(25): p. 9873-9880. Forsyth, M., et al., Innovative Electrolytes Based on Ionic Liquids and Polymers for Next-Generation Solid -State Batteries. Accounts of Chemical Research, 2019. 52(3): p. 686-694. Porcarelli, L., et al., Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries. Acs Applied Materials & Interfaces, 2016. 8(16): p. 10350-10359. Bouchet, R., et al., Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nature Materials, 2013. 12(5): p. 452-457. Wang, L.F., et al., Tough, Adhesive, Self-Healable, and Transparent Ionically Conductive Zwitterionic Nanocomposite Hydrogels as Skin Strain Sensors. Acs Applied Materials & Interfaces, 2019. 11(3): p. 3506-3515. Civera, M., et al., Molecular dynamics simulation of aqueous solutions of glycine betaine. Chemical Physics Letters, 2003. 367(1-2): p. 238-244. Yang, B.W. and W.Z. Yuan, Highly Stretchable, Adhesive, and Mechanical Zwitterionic Nanocomposite Hydrogel Biomimetic Skin. Acs Applied Materials & Interfaces, 2019. 11(43): p. 40620-40628. Biggs, C.I., et al., Polymer mimics of biomacromolecular antifreezes. Nature Communications, 2017. 8: p. 12. Wu, J., et al., Investigation of the Hydration of Nonfouling Material Poly(sulfobetaine methacrylate) by Low-Field Nuclear Magnetic Resonance. Langmuir, 2012. 28(19): p. 7436-7441. Ma, M.Q., et al., Bioinspired Polydopamine/Polyzwitterion Coatings for Underwater Anti-Oil and -Freezing Surfaces. Langmuir, 2019. 35(5): p. 1895-1901. Wang, C., et al., Antifreeze Hydrogels from Amphiphilic Statistical Copolymers. Chemistry of Materials, 2019. 31(1): p. 135-145. He, X.Y., et al., Preparation and Application of Zwitterionic Polymers. Progress in Chemistry, 2013. 25(6): p. 1023-1030. Li, M.L., B.L. Zhuang, and J. Yu, Functional Zwitterionic Polymers on Surface: Structures and Applications. Chemistry-an Asian Journal, 2020. 15(14): p. 2060-2075. Kumar, R. and G.H. Fredrickson, Theory of polyzwitterion conformations. Journal of Chemical Physics, 2009. 131(10): p. 16. Chen, H., et al., Salt-responsive polyzwitterionic materials for surface regeneration between switchable fouling and antifouling properties. Acta Biomaterialia, 2016. 40: p. 62-69. Cao, Z.Q. and S.Y. Jiang, Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today, 2012. 7(5): p. 404-413. Kim, Y.S., et al., Succinonitrile as a Corrosion Inhibitor of Copper Current Collectors for Overdischarge Protection of Lithium Ion Batteries. Acs Applied Materials & Interfaces, 2014. 6(3): p. 2039-2043. Kim, Y.S., et al., Electronegativity-induced enhancement of thermal stability by succinonitrile as an additive for Li ion batteries. Energy & Environmental Science, 2011. 4(10): p. 4038-4045. Kim, G.Y., R. Petibon, and J.R. Dahn, Effects of Succinonitrile (SN) as an Electrolyte Additive on the Impedance of LiCoO2 Graphite Pouch Cells during Cycling. Journal of the Electrochemical Society, 2014. 161(4): p. A506-A512. Alarco, P.J., et al., The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nature Materials, 2004. 3(7): p. 476-481. Anouti, M., et al., Sulfonium Bis(trifluorosulfonimide) Plastic Crystal Ionic Liquid as an Electrolyte at Elevated Temperature for High-Energy Supercapacitors. Journal of Physical Chemistry C, 2012. 116(17): p. 9412-9418. Suleman, M., Y. Kumar, and S.A. Hashmi, Structural and Electrochemical Properties of Succinonitrile-Based Gel Polymer Electrolytes: Role of Ionic Liquid Addition. Journal of Physical Chemistry B, 2013. 117(24): p. 7436-7443. Taib, N.U. and N.H. Idris, Plastic crystal-solid biopolymer electrolytes for rechargeable lithium batteries. Journal of Membrane Science, 2014. 468: p. 149-154. Singh, M.K., et al., A novel configuration of electrical double layer capacitor with plastic crystal based gel polymer electrolyte and graphene nano-platelets as electrodes: A high rate performance. Energy, 2015. 80: p. 465-473. Fan, L.Z., et al., Succinonitrile as a versatile additive for polymer electrolytes. Advanced Functional Materials, 2007. 17(15): p. 2800-2807. Bi, J.Y., et al., A hybrid solid electrolyte Li0.33La0.557TiO3 poly(acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries. Journal of Materials Chemistry A, 2020. 8(2): p. 706-713. Wang, J., et al., An Adjustable-Porosity Plastic Crystal Electrolyte Enables High-Performance All-Solid-State Lithium-Oxygen Batteries. Angewandte Chemie-International Edition, 2020. 59(24): p. 9382-9387. Hu, P., et al., Progress in nitrile-based polymer electrolytes for high performance lithium batteries. Journal of Materials Chemistry A, 2016. 4(26): p. 10070-10083. Min, H.J., et al., Excellent film-forming, ion-conductive, zwitterionic graft copolymer electrolytes for solid-state supercapacitors. Chemical Engineering Journal, 2021. 412: p. 10. Fernandes, T.C.D., et al., Highly Conducting Bombyx mori Silk Fibroin-Based Electrolytes Incorporating Glycerol, Dimethyl Sulfoxide and Bmim PF6. Journal of the Electrochemical Society, 2020. 167(7): p. 10. Park, S.J., et al., Influence of Crystallinity on Ion Conductivity of PEO-based Solid Electrolytes for Lithium Batteries. Macromolecular Research, 2010. 18(4): p. 336-340. Polu, A.R., et al., Development of solid polymer electrolytes based on poly (ethylene oxide) complexed with 2-trifluoromethyl-4, 5-dicyanoimidazole lithium salt and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid for Li-ion batteries. High Performance Polymers, 2023. 35(1): p. 4-9. Li, Y.H., et al., A composite solid polymer electrolyte incorporating MnO2 nanosheets with reinforced mechanical properties and electrochemical stability for lithium metal batteries. Journal of Materials Chemistry A, 2020. 8(4): p. 2021-2032. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93420 | - |
dc.description.abstract | 在所有的能量儲存裝置中,鋰離子電池由於其出色的能量密度和使用壽命,因此在1990年首次商業化後,受到了廣泛的研究。鋰離子電池的構造主要分為陰極、陽極、電解質三個部分,其中電解質又分成液態電解質和固態電解質,液態電解質雖然有較高的電導性以及良好的離子傳遞速率,但其安全性和穩定性一直是為人詬病的問題之一;固態電解質雖然具有較高的安全性和化學穩定性,但在電導性方面仍需進一步的研究和改進。為了解決電導性問題,本研究將合成一新型固態電解質,此固態電解質使用聚乙烯醇(poly(vinyl alcohol), PVA)和兩性離子甲基丙烯酸磺基甜菜鹼(Sulfobetaine methacrylate, SBMA),經由自由基聚合(free-radical polymerization)的方式合成共聚物PVA-g-SBMA,其中作為主鏈的PVA提供機械性質,而作為側鏈的兩性離子SBMA將增強鋰離子的遷移率,從而提高離子電導率。電解質薄膜的製備過程,首先將合成完成的共聚物PVA-g-SBMA充分溶解於溶劑中,再加入鋰鹽(雙(三氟甲基磺醯)氨基鋰(Lithium bis(trifluoromethanesulfonyl)imide, LiTFSI)、過氯酸鋰(Lithium perchlorate, LiClO4) )以及添加劑琥珀腈 (Succinonitrile, SN),攪拌溶液以確保鋰鹽和添加劑在共聚物溶液中能夠均勻混合後,將溶液轉移到適當的模具上,並在真空控溫下乾燥,以去除水和任何其他溶劑,最終製得新型固態電解質薄膜。此研究的主要目的是研究在共聚物固態電解質中添加不同類型和比例的鋰鹽或添加劑將如何影響電解質的電導率以及溶解度;此外,也進行了一系列特性分析與測試,包含表面分析、熱分析、和離子電導率測量,以評估合成的共聚物及固態電解質薄膜的性質。溶解度的觀察主要是在光學顯微鏡下監測電解質薄膜,以觀察是否有鋰沉澱的跡象;熱分析是利用示差掃描熱量分析儀了解電解質薄膜因鋰鹽比例的改變,對於薄膜熔點及結晶性的影響;離子導電度是使用電化學阻抗光譜進行測定,通過在薄膜上施加小的交流電壓並測量結果電流,可以使用適當的方程式計算導電度。本研究最後得到在鋰鹽r = 0.1的濃度下,擁有有最高的熔點,溶解度以及離子導電度也最佳;加入SN後能夠增加鋰鹽溶解度,並提升離子導電度的穩定度。 | zh_TW |
dc.description.abstract | Since its commercialization in 1990, lithium-ion batteries have been extensively researched due to their high energy density and long lifespan. However, liquid electrolytes, while offering good conductivity, pose safety concerns. Solid-state electrolytes provide enhanced safety and stability, yet their conductivity needs improvement. This study aims to synthesize a novel solid-state electrolyte by polymerizing poly(vinyl alcohol) (PVA) and zwitterionic methacrylate (SBMA). The resulting copolymer, PVA-g-SBMA, combines PVA's mechanical properties with SBMA's ability to enhance lithium-ion migration, thereby improving conductivity. Different lithium salts are added to the copolymer solution to facilitate ion conduction. The prepared electrolyte membrane undergoes analysis including solubility observation under an optical microscope, thermal analysis via Differential Scanning Calorimetry (DSC), and ionic conductivity measurement using Electrochemistry Impedance Spectroscopy (EIS). This study explores the relationship between lithium salt composition, solubility, and membrane conductivity to enhance the understanding and performance of solid-state electrolytes. In this study, the highest melting point, the best solubility, and the best ionic conductivity were obtained at the concentration of lithium salt r = 0.1. The addition of SN increased the solubility of lithium salt and improved the stability of ionic conductivity. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-31T16:14:24Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-31T16:14:24Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員會審定書
學位論文學術倫理暨原創性比對聲明書 謝辭------------------------------------------------------------------------ii 中文摘要--------------------------------------------------------------------iii ABSTRACT--------------------------------------------------------------------v 目次------------------------------------------------------------------------vii 圖次-------------------------------------------------------------------------x 表次----------------------------------------------------------------------xiii 第一章、前言與文獻回顧-----------------------------------------------------------1 1.1 鋰離子電池介紹-------------------------------------------------------------1 1.2 固態電解質-----------------------------------------------------------------4 1.3兩性離子高分子--------------------------------------------------------------6 1.4 塑性晶體 (Plastic Crystal) -----------------------------------------------7 1.5 研究目標------------------------------------------------------------------9 第二章、實驗材料與方法----------------------------------------------------------10 2.1 實驗藥品與儀器------------------------------------------------------------10 2.1.1 實驗藥品---------------------------------------------------------------10 2.1.2 實驗儀器---------------------------------------------------------------11 2.2 PVA-g-SBMA高分子的合成----------------------------------------------------11 2.3 PVA-g-SBMA薄膜的製備------------------------------------------------------12 2.4 PVA-g-SBMA高分子之示性分析-------------------------------------------------12 2.4.1 傅立葉轉換紅外光譜儀-----------------------------------------------------12 2.4.2 核磁共振光譜法----------------------------------------------------------13 2.4.3 凝膠滲透層析法----------------------------------------------------------13 2.5 PVA-g-SBMA薄膜之表面分析--------------------------------------------------14 2.5.1偏光顯微鏡---------------------------------------------------------------14 2.5.2 X光繞射儀--------------------------------------------------------------14 2.6 PVA-g-SBMA薄膜之熱分析----------------------------------------------------15 2.6.1 示差掃描熱量分析儀-------------------------------------------------------15 2.6.2 機械動態分析儀----------------------------------------------------------15 2.7 PVA-g-SBMA薄膜之電化學阻抗頻譜法分析----------------------------------------15 第三章、結果與討論-------------------------------------------------------------17 3.1 PVA-g-SBMA高分子之示性分析-------------------------------------------------17 3.1.1 FT-IR圖譜--------------------------------------------------------------17 3.1.2 NMR光譜----------------------------------------------------------------18 3.1.3 GPC之測量結果-----------------------------------------------------------20 3.2 PVA-g-SBMA薄膜的製備------------------------------------------------------21 3.2.1 PVA-g-SBMA薄膜溶劑的選擇------------------------------------------------21 3.2.2 PVA-g-SBMA薄膜濃度的選擇------------------------------------------------23 3.2.3 PVA-g-SBMA薄膜---------------------------------------------------------24 3.3 熱性質分析----------------------------------------------------------------26 3.3.1 DSC熱性質分析-----------------------------------------------------------26 3.3.2 DMA分析----------------------------------------------------------------30 3.4 PVA-g-SBMA薄膜之表面分析--------------------------------------------------34 3.4.1 POM影像觀測------------------------------------------------------------34 3.4.2 XRD量測----------------------------------------------------------------42 3.5 PVA-g-SBMA薄膜之電化學阻抗頻譜法分析----------------------------------------44 3.6 加入塑性晶體SN------------------------------------------------------------48 3.6.1 電解質薄膜成膜性---------------------------------------------------------48 3.6.2 DSC熱性質分析-----------------------------------------------------------49 3.6.3 DMA分析----------------------------------------------------------------55 3.6.4 POM影像觀測------------------------------------------------------------59 3.6.5 XRD鑑定----------------------------------------------------------------67 3.6.6 EIS量測----------------------------------------------------------------68 第四章、結論------------------------------------------------------------------71 第五章、未來工作與建議----------------------------------------------------------72 參考文獻---------------------------------------------------------------------73 | - |
dc.language.iso | zh_TW | - |
dc.title | 探討鋰鹽對PVA-g-SBMA聚合物薄膜熱性質及導電性的影響 | zh_TW |
dc.title | Exploring the Impact of Lithium Salt Variations on Thermal Properties and Conductivity in PVA-g-SBMA Polymer Films | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 康敦彥;林興安 | zh_TW |
dc.contributor.oralexamcommittee | Dun-Yen Kang;Hsing-An Lin | en |
dc.subject.keyword | 兩性離子高分子,高分子電解質,離子電導率,鋰鹽溶解度,接枝共聚物, | zh_TW |
dc.subject.keyword | graft copolymer,polymer electrolyte,zwitterionic polymer,salt solubility,conductivity, | en |
dc.relation.page | 76 | - |
dc.identifier.doi | 10.6342/NTU202402070 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-07-30 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 材料科學與工程學系 | - |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 25.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。