請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93418完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳信希 | zh_TW |
| dc.contributor.advisor | Hsin-Hsi Chen | en |
| dc.contributor.author | 林晉毅 | zh_TW |
| dc.contributor.author | Chin-Yi Lin | en |
| dc.date.accessioned | 2024-07-31T16:13:49Z | - |
| dc.date.available | 2024-08-01 | - |
| dc.date.copyright | 2024-07-31 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-27 | - |
| dc.identifier.citation | Alhamzeh, A., Fonck, R., Versmée, E., Egyed-Zsigmond, E., Kosch, H., and Brunie, L. (2022). It’s time to reason: Annotating argumentation structures in financial earnings calls: The FinArg dataset. In Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP), pages 163–169, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.
Amer, M., Daim, T. U., and Jetter, A. (2013). A review of scenario planning. Futures, 46:23–40. Araci, D. (2019). Finbert: Financial sentiment analysis with pre-trained language models. arXiv preprint arXiv:1908.10063. Basile, V., Cabitza, F., Campagner, A., and Fell, M. (2021). Toward a perspectivist turn in ground truthing for predictive computing. arXiv preprint arXiv:2109.04270. Beltagy, I., Peters, M. E., and Cohan, A. (2020). Longformer: The long-document transformer. arXiv:2004.05150. Bender, E. M. and Friedman, B. (2018). Data statements for natural language processing: Toward mitigating system bias and enabling better science. Transactions of the Association for Computational Linguistics, 6:587–604. Cabrio, E. and Villata, S. (2018). Five years of argument mining: A data-driven analysis. In IJCAI, volume 18, pages 5427–5433. Chen, C.-C., Huang, H.-H., and Chen, H.-H. (2021). From opinion mining to financial argument mining. Springer Nature. Chen, C.-C., Huang, H.-H., Tsai, C.-W., and Chen, H.-H. (2019). Crowdpt: Summarizing crowd opinions as professional analyst. In The World Wide Web Conference, pages 3498–3502. Chen, C.-C. and Takamura, H. (2024). Term-driven forward-looking claim synthesis in earnings calls. In Calzolari, N., Kan, M.-Y., Hoste, V., Lenci, A., Sakti, S., and Xue, N., editors, Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 15752–15760, Torino, Italia. ELRA and ICCL. Chen, W.-F., Chen, M.-H., Mudgal, G., and Wachsmuth, H. (2022). Analyzing culture-specific argument structures in learner essays. In Lapesa, G., Schneider, J., Jo, Y., and Saha, S., editors, Proceedings of the 9th Workshop on Argument Mining, pages 51–61, Online and in Gyeongju, Republic of Korea. International Conference on Computational Linguistics. Chiang, C.-H. and Lee, H.-y. (2023). Can large language models be an alternative to human evaluations? In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15607–15631, Toronto, Canada. Association for Computational Linguistics. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20:37 – 46. Danni Yu, Luyang Li, H. S. and Fuoli, M. (2023). Assessing the potential of llm-assisted annotation for corpus-based pragmatics and discourse analysis: The case of apologies. International Journal of Corpus Linguistics. Dator, J. and Dator, J. (2019). Alternative futures at the manoa school. Jim Dator: A Noticer in Time: Selected work, 1967-2018, pages 37–54. Devitt, A. and Ahmad, K. (2007). Sentiment polarity identification in financial news: A cohesion-based approach. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 984–991, Prague, Czech Republic. Association for Computational Linguistics. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics. El Baff, R., Wachsmuth, H., Al-Khatib, K., and Stein, B. (2018). Challenge or empower: Revisiting argumentation quality in a news editorial corpus. In Korhonen, A. and Titov, I., editors, Proceedings of the 22nd Conference on Computational Natural Language Learning, pages 454 464, Brussels, Belgium. Association for Computational Linguistics. Falk, N., Jundi, I., Vecchi, E. M., and Lapesa, G. (2021). Predicting moderation of deliberative arguments: Is argument quality the key? In Al-Khatib, K., Hou, Y., and Stede, M., editors, Proceedings of the 8th Workshop on Argument Mining, pages 133–141, Punta Cana, Dominican Republic. Association for Computational Linguistics. Gilardi, F., Alizadeh, M., and Kubli, M. (2023). Chatgpt outperforms crowd workers for text annotation tasks. Proceedings of the National Academy of Sciences, 120(30):e2305016120. Gleize, M., Shnarch, E., Choshen, L., Dankin, L., Moshkowich, G., Aharonov, R., and Slonim, N. (2019). Are you convinced? choosing the more convincing evidence with a Siamese network. In Korhonen, A., Traum, D., and Màrquez, L., editors, Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 967–976, Florence, Italy. Association for Computational Linguistics. Gretz, S., Friedman, R., Cohen-Karlik, E., Toledo, A., Lahav, D., Aharonov, R., and Slonim, N. (2019). A large-scale dataset for argument quality ranking: Construction and analysis. Hamborg, F. and Donnay, K. (2021). NewsMTSC: A dataset for (multi-)target-dependent sentiment classification in political news articles. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 1663 1675, Online. Association for Computational Linguistics. Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30. He, X., Lin, Z.-W., Gong, Y., Jin, A., Zhang, H., Lin, C., Jiao, J., Yiu, S. M., Duan, N., and Chen, W. (2023). Annollm: Making large language models to be better crowdsourced annotators. ArXiv, abs/2303.16854. Hutto, C. and Gilbert, E. (2014). Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Proceedings of the international AAAI conference on web and social media, volume 8, pages 216–225. Jaggi, M., Mandal, P., Narang, S., Naseem, U., and Khushi, M. (2021). Text mining of stocktwits data for predicting stock prices. Applied System Innovation, 4(1). Jin, Z., Lalwani, A., Vaidhya, T., Shen, X., Ding, Y., Lyu, Z., Sachan, M., Mihalcea, R., and Schoelkopf, B. (2022). Logical fallacy detection. In Goldberg, Y., Kozareva, Z., and Zhang, Y., editors, Findings of the Association for Computational Linguistics: EMNLP 2022, pages 7180 7198, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics. Jo, Y., Poddar, S., Jeon, B., Shen, Q., Rosé, C., and Neubig, G. (2018). Attentive interaction model: Modeling changes in view in argumentation. In Walker, M., Ji, H., and Stent, A., editors, Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 103 116, New Orleans, Louisiana. Association for Computational Linguistics. Latif, S., Usama, M., Malik, M. I., and Schuller, B. W. (2023). Can large language models aid in annotating speech emotional data? uncovering new frontiers. arXiv preprint arXiv:2307.06090. Lauscher, A., Ng, L., Napoles, C., and Tetreault, J. (2020). Rhetoric, logic, and dialectic: Advancing theory-based argument quality assessment in natural language processing. In Scott, D., Bel, N., and Zong, C., editors, Proceedings of the 28th International Conference on Computational Linguistics, pages 4563–4574, Barcelona, Spain (Online). International Committee on Computational Linguistics. Lawrence, J. and Reed, C. (2019). Argument mining: A survey. Computational Linguistics, 45(4):765–818. Liu, Y. (2023). The importance of human-labeled data in the era of llms. arXiv.org. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized BERT pretraining approach. CoRR, abs/1907.11692. Malkiel, B. G. (1989). Efficient market hypothesis. Finance, pages 127–134. Malkiel, B. G. (2003). The efficient market hypothesis and its critics. Journal of economic perspectives, 17(1):59–82. Malo, P., Sinha, A., Takala, P., Korhonen, P., and Wallenius, J. (2014). Good debt or bad debt: Detecting semantic orientations in economic texts. Journal of the American Society for Information Science and Technology. Pangakis, N., Wolken, S., and Fasching, N. (2023). Automated annotation with generative ai requires validation. Persing, I. and Ng, V. (2017). Why can’t you convince me? modeling weaknesses in unpersuasive arguments. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pages 4082–4088. Sadvilkar, N. and Neumann, M. (2020). PySBD: Pragmatic sentence boundary disambiguation. In Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS), pages 110–114, Online. Association for Computational Linguistics. Shaheen, S. and Wong, S. (2021). Future of public transit and shared mobility: Scenario planning for covid-19 recovery. Skitalinskaya, G., Klaff, J., and Wachsmuth, H. (2021). Learning from revisions: Quality assessment of claims in argumentation at scale. In Merlo, P., Tiedemann, J., and Tsarfaty, R., editors, Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 1718–1729, Online. Association for Computational Linguistics. Toulmin, S. E. (2003). The Uses of Argument. Cambridge University Press. Tseng, Y.-M., Chen, C.-C., Huang, H.-H., and Chen, H.-H. (2023). Dynamicesg: A dataset for dynamically unearthing esg ratings from news articles. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pages 5412–5416. Wachsmuth, H., Naderi, N., Hou, Y., Bilu, Y., Prabhakaran, V., Thijm, T. A., Hirst, G., and Stein, B. (2017). Computational argumentation quality assessment in natural language. In Lapata, M., Blunsom, P., and Koller, A., editors, Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 176–187, Valencia, Spain. Association for Computaional Linguistics. Wang, S., Liu, Y., Xu, Y., Zhu, C., and Zeng, M. (2021). Want to reduce labeling cost? GPT-3 can help. In Moens, M.-F., Huang, X., Specia, L., and Yih, S. W.-t., editors, Findings of the Association for Computational Linguistics: EMNLP 2021, pages 4195– 4205, Punta Cana, Dominican Republic. Association for Computational Linguistics. Yang, J., Zhang, Y., Li, L., and Li, X. (2018). YEDDA: A lightweight collaborative text span annotation tool. In Proceedings of ACL 2018, System Demonstrations, pages 31–36, Melbourne, Australia. Association for Computational Linguistics. Yao, Y., Luo, S., Zhao, H., Deng, G., and Song, L. (2024). Can llm substitute human labeling? A case study of fine-grained chinese address entity recognition dataset for uav delivery. In Companion Proceedings of the ACM on Web Conference 2024, WWW ’24, page 1099–1102, New York, NY, USA. Association for Computing Machinery. Zong, S., Ritter, A., and Hovy, E. (2020). Measuring forecasting skill from text. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 5317–5331, Online. Association for Computational Linguistic | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93418 | - |
| dc.description.abstract | 在日常生活中,人們常常會討論對未來的展望或趨勢,如職業規劃、財務規劃或時尚趨勢,不僅如此,在各種專業領域中也很常需要對未來前景的推估,包括制定商業策略、探討社會變遷、經濟政策和環境保護等等。這些未來導向的分析在各領域的決策中發揮著至關重要的作用,然而,要評估這類前瞻性論述的品質是相當困難的。
在這些不同領域中,我們特別選擇一個具專業性的前瞻性分析文件:證券研究報告。這些報告由專業分析師撰寫,提供對上市公司的評估,分析其當前狀況,討論影響其表現的關鍵因素,並且最重要的是,對公司的未來前景和股票估值做出預測。鑑於這些報告在投資決策中的重要性,評估分析師意見的預測能力至關重要。然而,由於證券研究報告本身已具有較高的品質,如何進一步評估這些報告中論點的預測能力變得更加具有挑戰性。 本研究提出了一種結合細粒度論點探勘及情感分析的證券研究報告之分析方法。鑑於傳統方法在捕捉未來導向分析的細微差別存在侷限性,我們提出了一種細緻的論點單元分類方法,將其劃分為主張、前提和情景,並結合了獨特的情感分析框架。此外,我們還引入了時間維度,對市場事件的預期影響持續時間進行分類。為了進行這項研究,我們也建立了證券研究報告的標記資料集(Equity-AMSA)。本研究探討了在特定領域中資料標記能夠達到的細緻化程度以及在現今大型語言模型時代下細粒度標記資料的必要性,也探討我們提出的框架是否能較傳統方法在評估論點品質的任務中取得更好的表現。 實驗結果顯示了細粒度人工標記的重要性,尤其是針對情景的識別和情感分析而言。總結來說,我們提出的標記框架和資料集有助於更透徹地理解證券研究報告的內容及提升模型在預測力評估之表現。 | zh_TW |
| dc.description.abstract | In daily life, people often discuss future outlooks or trends, such as career planning, financial planning, or fashion trends. Moreover, in various professional fields, it is common to need to estimate future prospects, including formulating business strategies, exploring social changes, economic policies, and environmental protection. These forward-looking analyses play a crucial role in decision-making across different domains. However, evaluating the quality of such prospective discussions is quite challenging.
Among these different fields, we specifically choose a professional forward-looking analysis document: the equity research report. Authored by financial experts, these reports provide in-depth assessments of publicly traded companies, analyzing their current position, identifying key factors influencing their performance, and most importantly, offering predictions about their future growth and stock valuations. Given the critical role these reports play in investment decisions, it becomes crucial to evaluate the forecasting skill of the analysts' opinions. However, since equity research reports already possess a high level of quality, further assessing the forecasting skill of the arguments within these reports becomes even more challenging. This paper introduces a novel approach to the analysis of equity research reports by integrating argument mining with sentiment analysis. Recognizing the limitations of traditional models in capturing the nuances of future-oriented analysis, we propose a refined categorization of argument units into claims, premises, and scenarios, coupled with a unique sentiment analysis framework. Furthermore, we incorporate a temporal dimension to categorize the anticipated impact duration of market events. To facilitate this study, we present the Equity Argument Mining and Sentiment Analysis (Equity-AMSA) dataset. Our research investigates the extent to which detailed domain-specific annotations can be provided, the necessity of fine-grained human annotations in the era of large language models, and whether our proposed framework can improve performance in downstream tasks over traditional methods. Experimental results reveal the significance of manual annotations, especially for scenario identification and sentiment analysis. The study concludes that our annotation scheme and dataset contribute to a deeper understanding of forward-looking statements in equity research reports. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-31T16:13:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-31T16:13:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Master’s Thesis Acceptance Certificate i
Acknowledgements ii 摘要 iii Abstract v Contents viii List of Figures xi List of Tables xii Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 3 1.3 Thesis Organization 7 Chapter 2 Related Work 8 2.1 Financial Dataset 8 2.2 Argument Quality Assessment 9 2.3 Significance of Human-Annotated Data 10 Chapter 3 Datasets 13 3.1 Dataset Collection and Preprocess 13 3.2 Annotation Scheme 14 3.3 Inter-Annotator Agreement 15 3.4 Dataset Statistics and Analysis 20 Chapter 4 Methodology 23 4.1 Fine-Grained Argument Analysis 23 4.1.1 Problem Definition 23 4.1.2 Encoder-based Models and LLMs 24 4.2 Opinion Quality Assessment via Forecasting Skill of Equity Research Reports 26 4.2.1 Problem Definition 26 4.2.2 Opinion Graph Construction and GNN Framework 27 Chapter 5 Experiment 29 5.1 Experimental Setup 29 5.2 Experimental Results 29 5.3 Significance of Human Annotation 32 Chapter 6 Forecasting Skill Assessment 34 6.1 Experimental Setup 34 6.2 Experimental Results 35 6.3 Human Performance 36 Chapter 7 Discussion 38 7.1 Comparison Between the Taiwanese and U.S. Markets 38 7.2 Comparison Between Achievable and Non-achievable Reports 40 Chapter 8 Conclusion, Limitations and Future Work 42 8.1 Conclusion 42 8.2 Limitation and Future Work 43 References 45 | - |
| dc.language.iso | en | - |
| dc.subject | 時間推理 | zh_TW |
| dc.subject | 論點品質評估 | zh_TW |
| dc.subject | 證券研究報告 | zh_TW |
| dc.subject | 情感分析 | zh_TW |
| dc.subject | 論點探勘 | zh_TW |
| dc.subject | 資料標記 | zh_TW |
| dc.subject | 預測力評估 | zh_TW |
| dc.subject | Equity Research Report | en |
| dc.subject | Argument Mining | en |
| dc.subject | Sentiment Analysis | en |
| dc.subject | Temporal Inference | en |
| dc.subject | Predictability Assessment | en |
| dc.subject | Argument Quality Assessment | en |
| dc.subject | Data Annotation | en |
| dc.title | 基於圖神經網路的細粒度論點探勘及其在預測力評估之應用 | zh_TW |
| dc.title | Utilizing Fine-Grained Argument Mining with Graph Neural Network for Forecasting Skill Assessment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳建錦;蔡宗翰;陳柏琳 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Chin Chen;Tzong-Han Tsai;Berlin Chen | en |
| dc.subject.keyword | 論點探勘,情感分析,時間推理,預測力評估,證券研究報告,論點品質評估,資料標記, | zh_TW |
| dc.subject.keyword | Argument Mining,Sentiment Analysis,Temporal Inference,Predictability Assessment,Equity Research Report,Argument Quality Assessment,Data Annotation, | en |
| dc.relation.page | 52 | - |
| dc.identifier.doi | 10.6342/NTU202402410 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-29 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| dc.date.embargo-lift | 2029-07-26 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 1.34 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
