請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93406完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛承輝 | zh_TW |
| dc.contributor.advisor | Chun-Hway Hsueh | en |
| dc.contributor.author | 陳品妤 | zh_TW |
| dc.contributor.author | Pin-Yu Chen | en |
| dc.date.accessioned | 2024-07-31T16:10:09Z | - |
| dc.date.available | 2024-08-01 | - |
| dc.date.copyright | 2024-07-31 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-29 | - |
| dc.identifier.citation | [1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303.
[2] C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition, Metall. Mater. Trans. A 35 (2004) 1465–1469. [3] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating, Adv. Eng. Mater. 6 (2004) 74–78. [4] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375–377 (2004) 213–218. [5] J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. Sci. Mater. 31 (2006) 633–648. [6] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448–511. [7] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater. 61 (2013) 4887–4897. [8] R. Wang, Y. Tang, S. Li, Y. Ai, Y. Li, B. Xiao, L. Zhu, X. Liu, S. Bai, Effect of lattice distortion on the diffusion behavior of high-entropy alloys, J. Alloys Compd. 825 (2020) 154099. [9] S. Ranganathan, Alloyed pleasures: Multimetallic cocktails, Curr. Sci. 85 (2003) 1404–1406. [10] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 343 (2014) 1153–1158. [11] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater. 128 (2017) 292–303. [12] F. Cao, P. Munroe, Z. Zhou, Z. Xie, Medium entropy alloy CoCrNi coatings: Enhancing hardness and damage-tolerance through a nanotwinned structuring, Surf. Coat. Technol. 335 (2018) 257–264. [13] L.J. Zhang, P.F. Yu, M.D. Zhang, D.J. Liu, Z. Zhou, M.Z. Ma, P.K. Liaw, G. Li, R.P. Liu, Microstructure and mechanical behaviors of GdxCoCrCuFeNi high-entropy alloys, Mater. Sci. Eng. A 707 (2017) 708–716. [14] C. Wang, T.H. Li, Y.C. Liao, C.L. Li, J.S.C. Jang, C.H. Hsueh, Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping, Mater. Sci. Eng. A 764 (2019) 138192. [15] Z. Gu, P. Mao, Y. Gou, Y. Chao, S. Xi, Microstructure and properties of MgMoNbFeTi2Yx high entropy alloy coatings by laser cladding, Surf. Coat. Technol. 402 (2020) 126303. [16] Y. Zhao, X. Zhang, H. Quan, Y. Chen, S. Wang, S. Zhang, Effect of Mo addition on structures and properties of FeCoNiCrMn high entropy alloy film by direct current magnetron sputtering, J. Alloys Compd. 895 (2022) 162709. [17] X. Li, Z. Li, Z. Wu, S. Zhao, W. Zhang, H. Bei, Y. Gao, Strengthening in Al-, Mo- or Ti-doped CoCrFeNi high entropy alloys: A parallel comparison, J. Mater. Sci. Technol. 94 (2021) 264–274. [18] M.H. Tsai, J.W. Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett. 2 (2014) 107–123. [19] S. Chen, Z.H. Aitken, S. Pattamatta, Z. Wu, Z.G. Yu, R. Banerjee, D.J. Srolovitz, Chemical-affinity disparity and exclusivity drive atomic segregation, short-range ordering, and cluster formation in high-entropy alloys, Acta Mater. 206 (2021) 116638. [20] S. Gorsse, D.B. Miracle, O.N. Senkov, Mapping the world of complex concentrated alloys, Acta Mater. 135 (2017) 177–187. [21] L. Liu, X. Liang, J. Liu, X. Sun, Precipitation process of TiC in low alloy martensitic steel and its effect on wear resistance, ISIJ Int. 60 (2020) 168–174. [22] J.B. Seol, J.W. Bae, Z. Li, J. C. Han, J.G. Kim, D. Raabe, H.S. Kim, Boron doped ultrastrong and ductile high-entropy alloys, Acta Mater. 151 (2018) 366–376. [23] L. Chen, Z. Li, P. Dai, P. Fu, J. Chen, Q. Tang, Effects of carbon addition on microstructure and mechanical properties of Fe50Mn30Co10Cr10 high-entropy alloy prepared by powder metallurgy, J. Mater. Res. Technol. 20 (2022) 73–87. [24] P. Sathiyamoorthi, J.W. Bae, P. Asghari Rad, J.M. Park, J.G. Kim, H.S. Kim, Effect of annealing on microstructure and tensile behavior of CoCrNi medium entropy alloy processed by high-pressure torsion, Entropy 20(11) (2018) 849. [25] S. Praveen, J.W. Bae, P. Asghari Rad, J.M. Park, H.S. Kim, Annealing-induced hardening in high-pressure torsion processed CoCrNi medium entropy alloy, Mater. Sci. Eng. A 734 (2018) 338–340. [26] S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Friction stress and hall-petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing, Scr. Mater. 134 (2017) 33–36. [27] H.W. Deng, Z.M. Xie, B.L. Zhao, Y.K. Wang, M.M. Wang, J.F. Yang, T. Zhang, Y. Xiong, X.P. Wang, Q.F. Fang, C.S. Liu, Tailoring mechanical properties of a CoCrNi medium-entropy alloy by controlling nanotwin-HCP lamellae and annealing twins, Mater. Sci. Eng. A 744 (2019) 241–246. [28] Y. Lin , Y.C. Lu , C.L. Li , C.H. Hsueh, Modifying crystallinity and mechanical properties of (CoCrNi)95.8Ce4.2 medium entropy alloy films by post-annealing treatment, Surf. Coat. Technol. 456 (2023) 129265. [29] C. Wei, Y. Lu, X. Du, J. Wang, T. Wang, Effects of deformation and annealing on the microstructures and properties of a nonequiatomic Co29Cr29Fe29Ni12.5W0.5 high-entropy alloy, Mater. Sci. Eng. A 805 (2021) 140548. [30] C. Dai, Y. Fu, Y. Pan, Y. Yin, C. Du, Z. Liu, Microstructure and mechanical properties of FeCoCrNiMo0.1 high-entropy alloy with various annealing treatments, Mater. Charact. 179 (2021) 111313. [31] P. Sathiyamoorthi, J. Bae, A.R. Peyman, J.M. Park, J.G. Kim, H. Kim, Effect of annealing on microstructure and tensile behavior of CoCrNi medium entropy alloy processed by high-pressure torsion, Entropy 20(11) (2018) 849. [32] D. Lee, M.P. Agustianingrum, N. Park, N. Tsuji, Synergistic effect by Al addition in improving mechanical performance of CoCrNi medium-entropy alloy, J. Alloys Compd. 800 (2019) 372–378. [33] R. Chang, W. Fang, X. Bai, C. Xia, X. Zhang, H. Yu, B. Liu, F. Yin, Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys, J. Alloys Compd. 790 (2019) 732–743. [34] N. Li, J. Gu, B. Gan, Q. Qiao, S. Ni, M. Song, Effects of Mo-doping on the microstructure and mechanical properties of CoCrNi medium entropy alloy, J. Mater. Res. 35(20) (2020) 2726–2736. [35] H. Chang, T.W. Zhang, S.G. Ma, D. Zhao, R.L. Xiong, T. Wang, Z.Q. Li, Z.H. Wang, Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off, Mater. Des. 197 (2021) 109202. [36] H. Jiang, C. Liu, J. Dong, M. Zhang, The effect of Mo and Ti elements on long-term microstructure stability of 617B nickel-base superalloy, J. Alloys Compd. 821 (2020) 153217. [37] F.F. Cardoso, P.L. Ferrandini, E.S.N. Lopes, A. Cremasc, R. Caram, Ti-Mo alloys employed as biomaterials: Effects of composition and aging heat treatment on microstructure and mechanical behavior, J. Mech. Behav. Biomed. Mater. 32 (2014) 31–38. [38] K. Mizuta, S. Miyake, M. Ikeda, M. Ueda, Influence of substitution of Fe by Mo on heat treatment behavior in Ti-Mo-Fe alloys, Mater. Sci. Forum 1016 (2021) 162–169. [39] J.W. Yeh, Alloy design strategies and future trends in high-entropy alloys, JOM 65 (2013) 1759–1771. [40] L. Qiao, Y. Liu, J. Zhu, A focused review on machine learning aided high-throughput methods in high entropy alloy, J. Alloys Compd. 877 (2021) 160295. [41] C.Y. Cheng, Y.C. Yang, Y.Z. Zhong, Y.Y. Chen, T. Hsu, J.W. Yeh, Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys, Curr. Opin. Solid State Mater. Sci. 21 (2017) 299–311. [42] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 10(6) (2008) 534–538. [43] J.W. Yeh, Physical metallurgy of high-entropy alloys, JOM 67 (2015) 2254–2261. [44] Z.G. Zhu, K.H. Ma, Q. Wang, C.H. Shek, Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/Al/Cu) high entropy alloys, Intermetallics 79 (2016) 1–11. [45] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high- entropy alloy, Acta Mater. 61 (2013) 5743–5755. [46] Z. Zeng, M. Xiang, D. Zhang, J. Shi, W. Wang, X. Tang, W. Tang, Y. Wang, X. Ma, Z. Chen, W. Ma, K. Morita, Mechanical properties of Cantor alloys driven by additional elements: A review, J. Mater. Res. Technol. 15 (2021) 1920–1934. [47] P.J. Kelly, R.D. Arnell, Magnetron sputtering: A review of recent developments and applications, Vacuum 56 (2000) 159–172. [48] S.K. Padamata, A. Yasinskiy, V. Yanov, G. Saevarsdottir, Magnetron sputtering high-entropy alloy coatings: A mini-review, Metals 12 (2022) 319. [49] X.H. Yan, J.S. Li, W.R. Zhang, Y. Zhang, A brief review of high-entropy films, Mater. Chem. Phys. 210 (2018) 12–19. [50] E. Klaus, Magnetron sputtering of transparent conductive zinc oxide: Relation between the sputtering parameters and the electronic properties, J. Phys. D: Appl. Phys. 33 (2000) R17. [51] A. Kauffmann, M. Stüber, H. Leiste, S. Ulrich, S. Schlabach, D.V. Szabó, S. Seils, B. Gorr, H. Chen, H.-J. Seifert, M. Heilmaier, Combinatorial exploration of the high entropy alloy system Co-Cr-Fe-Mn-Ni, Surf. Coat. Technol. 325 (2017) 174–180. [52] C. Dang, J.U. Surjadi, L. Gao, Y. Lu, Mechanical properties of nanostructured CoCrFeNiMn high-entropy alloy (HEA) coating, Front. Mater. Sci. 5 (2018) 41. [53] Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics 46 (2014) 131–140. [54] X. Dingfeng, W. Mingliang, L. Tianxin, W. Xiangsai, L. Yiping, A critical review of the mechanical properties of CoCrNi-based medium-entropy alloys, Microstructures 2 (2022) 2022001. [55] T.H. Huang, C.H. Hsueh, Microstructures and mechanical properties of (CoCrFeMnNi)100-xMox high entropy alloy films, Intermetallics 135 (2021) 107236–107246. [56] Y.C. Hsu, C.L. Li, C.H. Hsueh, Modifications of microstructures and mechanical properties of CoCrFeMnNi high entropy alloy films by adding Ti element, Surf. Coat. Technol. 399 (2020) 126149. [57] W. Soboyejo. (2002). Mechanical properties of engineered materials. Boca Raton: CRC Press. 238–241. [58] Y.C. Kuo, C.J. Wang, J.W. Lee, The microstructure and mechanical properties evaluation of CrTiAlSiN coatings: Effects of silicon content, Thin Solid Films 638 (2017) 220–229. [59] Q. Fang, L. Li, J. Li, H. Wu, Z. Huang, B. Liu, Y. Liu, P.K. Liaw, A statistical theory of probability-dependent precipitation strengthening in metals and alloys, J. Mech. Phys. Solids 122 (2019) 177–189. [60] S. Guo, C. Ng, J. Lu, et al., Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys. 109(10) (2011) 103505. [61] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans. 46(12) (2005) 2817–2829. [62] S. Guo, C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci.: Mater. Int. 21 (2011) 433–446. [63] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multicomponent alloys, Mater. Chem. Phys. 132 (2012) 233–238. [64] Y. Zhang, Z. Zhang, X. Wang, W. Yao, X. Liang, Structure and properties of high entropy amorphous thin films: A review, JOM 74 (2022) 794–807. [65] F.T.L. Muniz, M.A.R. Miranda, C. Morilla Dos Santos, J.M. Sasaki, The Scherrer equation and the dynamical theory of X-ray diffraction, Acta Crystallogr. Sect. A: Found. Adv. 72(Pt 3) (2016) 385–390. [66] Y. Cui, J. Shen, S.M. Manladan, K. Geng, S. Hu, Wear resistance of FeCoCrNiMnAlx high-entropy alloy coatings at high temperature, Appl. Surf. Sci. 512 (2020) 145736–145749. [67] X. Feng, K. Zhang, Y. Zheng, H. Zhou, Z. Wan, Effect of Zr content on structure and mechanical properties of (CrTaNbMoV)Zrx high-entropy alloy films, Nucl. Instrum. Meth. B. 457 (2019) 56–62. [68] N. Saowadee, K. Agersted, J.R. Bowen, Lattice constant measurement from electron backscatter diffraction patterns, J. Microsc. 266 (2017) 200–210. [69] C.Z. Hargather, S.L. Shang, Z.K. Liu, Data set for diffusion coefficients and relative creep rate ratios of 26 dilute Ni-X alloy systems from first-principles calculations, Data Br. 20 (2018) 1537–1551. [70] D. Noguchi, Y. Higashimaru, T. Eto, K. Kodama, S. Fukudome, Y. Kawano, F. Sei, I. Siono, Effect of nucleation layer of photocatalytic TiO2 thin film prepared by two-step deposition using radical-assisted sputtering, J. Appl. Phys. 51 (2012) 045504. [71] X. Hong, C.H. Hsueh, Effects of yttrium addition on microstructures and mechanical properties of CoCrNi medium entropy alloy, Intermetallics 140 (2022) 107405. [72] Y.S. Lin, Y.C. Lu, C.H. Hsueh, Strengthening of CoCrNi medium entropy alloy with gadolinium additions, Vacuum 211 (2023) 111969. [73] S.N. Chan, C.H. Hsueh, Effects of La addition on the microstructure and mechanical properties of CoCrNi medium entropy alloy, J. Alloys Compd. 894 (2022) 162401. [74] R.L. Zong, S.P. Wen, F. Zeng, Y. Gao, F. Pan, Nanoindentation studies of Cu–W alloy films prepared by magnetron sputtering, J. Alloys Compd. 464(1–2) (2008) 544–549. [75] M. Apreutesei, A. Billard, P. Steyer, Crystallization and hardening of Zr-40 at.% Cu thin film metallic glass: Effects of isothermal annealing, Mater. Des. 86 (2015) 555–563. [76] A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy, JOM 65(12) (2013) 1780–1789. [77] X. Chen, Y. Du, Y.W. Chung, Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings, Thin Solid Films 688 (2019) 137265–137267. [78] H. Fei, A. Abraham, N. Chawla, H. Jiang, Evaluation of micro-pillar compression tests for accurate determination of elastic-plastic constitutive relations, J. Appl. Mech. 79(6) (2012) 061011. [79] L. Jiang, N. Chawla, Mechanical properties of Cu6Sn5 intermetallic by micropillar compression testing, Scr. Mater. 63(5) (2010) 480–483. [80] G. Yang, S.J. Park, Deformation of single crystals, polycrystalline materials, and thin films: A review, Mater. 12(12):2003 (2019) doi: 10.3390/ma12122003. [81] A. Rauf, C.Y. Guo, Y.N. Fang, Z. Yu, B.A. Sun, T. Feng, Binary Cu-Zr thin film metallic glasses with tunable nanoscale structures and properties, J. Non-Cryst. Solids 498 (2018) 95–102. [82] C. Schuh, T. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Mater. 55(12) (2007) 4067–4109. [83] L.H. Dai, Y.L. Bai, Basic mechanical behaviors and mechanics of shear banding in BMGs, Int. J. Impact Eng. 35(8) (2008) 704–716. [84] W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Mater. Sci. Eng.: R: Rep. 44(2–3) (2004) 45–89. [85] A.L. Greer, Metallic glasses, Science 267(5206) (1995) 1947–1953. [86] F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metall. 25(4) (1977) 407–415. [87] W. Johnson, Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials, J. Non-Cryst. Solids 79(1–2) (1986) 297–309. [88] R.A. Perren, T. Suter, P.J. Uggowitzer, L. Weber, R. Magdowski, H. Bohni, M.O. Speidel, Corrosion resistance of super duplex stainless steels in chloride ion containing environments: Investigations by means of a new microelectrochemical method. I. Precipitation-free states, Corros. Sci. 43(4) (2001) 7074–7079. [89] J.O. Nilsson, Super duplex stainless steels, Mater. Sci. Technol. 8(8) (1992) 685–700. [90] P.J. Grobner, The 885°F (475°C) embrittlement of ferritic stainless steels, Metall. Mater. Trans. B 4 (1973) 251–260. [91] Y. Huang, B. Zhou, Y. Chiu, H. Fan, D. Wang, J. Sun, J. Shen, The structural relaxation effect on the nanomechanical properties of a Ti-based bulk metallic glass, J. Alloys Compd. 608 (2014) 148–152. [92] G. Wang, B. Jiang, X. Zhang, B. Zhou, L. Meng, Crystallization behavior and mechanical properties of Cu-based bulk metallic glass composites, Mater. Res. 22(3) (2019) doi: 10.1590/1980-5373-MR-2019-0078. [93] C.P. Frick, A.M. Ortega, J. Tyber, A.E.M. Maksound, H.J. Maier, Y. Liu, K. Gall, Thermal processing of polycrystalline NiTi shape memory alloys, Mater. Sci. Eng. A. 405(1–2) (2005) 34–49. [94] C. Wang, C. Jiang, M. Chen, L. Wang, L. Huabing, V. Ji, Residual stress and microstructure evolution of shot peened Ni-Al bronze at elevated temperatures, Mater. Sci. Eng. A. 707 (2017) 629–635. [95] A. Donohue, F. Spaepen, R.G. Hoagland, A. Misra, Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses, Appl. Phys. Lett. 91(24) (2007) 241905. [96] H. Guo, P.F. Yan, Y.B. Wang, J. Tan, Z.F. Zhang, M.L. Sui, E. Ma, Tensile ductility and necking of metallic glass, Nat. Mater. 6 (2007) 735–739. [97] Z. Fan, Q. Li, C.C. Fan, H.Y. Wang, X.H. Zhang, Strategies to tailor serrated flows in metallic glasses, J. Mater. Res. 34(9) (2019) 1595–1607. [98] Z.W. Shan, J. Li, Y.Q. Cheng, A.M. Minor, S.A.S. Asif, O.L. Warren, E. Ma, Plastic flow and failure resistance of metallic glass: Insight from in situ compression of nanopillars, Phys. Rev. B 77 (2008) 155419. [99] D. Jang, J.R. Greer, Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses, Nat. Mater 9 (2010) 215–219. [100] H.W. Peng, C.H. Hsueh, Effects of silicon and neodymium additions on microstructures and mechanical properties of CoCrNi medium entropy alloy films, Surf. Coat. Technol. 476 (2024) 130206. [101] Y.L. Wu, C.C. Tsai, P.Y. Chen, J.D. You, C.H. Hsueh, Transforming microstructures and mechanical properties of (CoCrNi)93-xAl7Ndx medium entropy alloy films by annealing, Surf. Coat. Technol. 477 (2024) 130331. [102] Y. Lin, C.L. Li, C.H. Hsueh, Effects of cerium addition on microstructures and mechanical properties of CoCrNi medium entropy alloy films, Surf. Coat. Technol. 424 (2021) 127645. [103] Y.H. Liang, C.L. Li, C.H. Hsueh, Effects of Nb addition on microstructures and mechanical properties of Nbx-CoCrFeMnNi high entropy alloy films, Coatings 11 (2021) 1539. [104] Y.C. Hsu, C.L. Li, C.H. Hsueh, Effects of Al addition on microstructures and mechanical properties of CoCrFeMnNiAlx high entropy alloy films, Entropy 22 (2020) 2. [105] S. Fang, C. Wang, C.L. Li, J.H. Luan, Z.B. Jiao, C.T. Liu, C.H. Hsueh, Microstructures and mechanical properties of CoCrFeMnNiVx high entropy alloy films, J. Alloys Compd. 820 (2020) 153388. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93406 | - |
| dc.description.abstract | 本論文研究了鈦、鉬含量以及後退火處理對CoCrNi中熵合金薄膜顯微組織和機械性能的影響。研究分為兩個主要部分:第一部分是探討CoCrNi中熵合金薄膜中不同鉬和鈦含量的影響,而第二部分是研究不同的退火溫度對非晶態Co29.72Cr31.19Ni26.39Mo8.59Ti4.11薄膜的影響。
在研究的第一部分中,使用磁控三靶共濺鍍將摻雜不同含量鉬和鈦的CoCrNi中熵合金薄膜沉積在p型矽基板上。施加到CoCrNi靶材的功率固定為200 W,而 鉬和鈦靶材的相同功率範圍控制從0到90W。隨著鉬和鈦的進一步添加,MoTi70獲得了5.87 GPa的最大降伏強度和11.96 GPa的最高硬度。MoTi80表現出奈米晶和非晶的混合結構,而MoTi90薄膜表現出完全非晶結構。機械性質的提升主要是由於固溶強化、析出強化和晶粒細化強化。 第二部分的重點是對沉積在氧化鋁基板上的Co29.72Cr31.19Ni26.39Mo8.59Ti4.11中熵合金薄膜進行後退火處理。這些薄膜在400至750°C的溫度範圍內進行退火,以分析其微觀結構和機械性能。X光繞射分析證實,隨著退火溫度的升高,結晶度會增加,而TEM分析則證實了析出物的形成。使用奈米壓痕和微柱壓縮測試量測其硬度、降伏強度和斷裂強度。機械性質在650℃退火溫度時達到最大值,硬度為10.79 GPa,降伏強度為6.35 GPa。硬度的增加歸因於奈米晶的形成和生長,以及 HCP Ni3Ti和Cr-Mo σ相的析出硬化。此外,在550、650和750°C退火的薄膜其斷裂應變超過40%,展現了良好的延展性。均勻的塑性流動機制克服了強度-延展性權衡,因為材料可以承受更高的應力並且塑性變形不會出現局部失效。 本研究的結果表明,在CoCrNi基中熵合金薄膜中控制鉬和鈦的含量,並對非晶Co29.72Cr31.19Ni26.39Mo8.59Ti4.11薄膜進行適當的退火處理,可顯著提高機械性能。 | zh_TW |
| dc.description.abstract | This thesis investigates the impact of titanium and molybdenum contents and post-annealing treatment on the microstructure and mechanical properties of CoCrNi medium entropy alloy films (MEAFs). The study is divided into two main parts: the effect of varying Mo and Ti contents in CoCrNi MEAFs, and the subsequent annealing-induced transformations in amorphous Co29.72Cr31.19Ni26.39Mo8.59Ti4.11 films on crystallinity.
In the first part of the study, CoCrNi MEAFs doped with different amounts of Mo and Ti were deposited on p-type silicon substrates using magnetron three-target co-sputtering. The power applied to the CoCrNi target was fixed at 200 W, while the Mo and Ti targets were subjected to the same power ranging from 0 to 90 W. For simplicity, the film was denoted as MoTi30 when Mo and Ti targets were subjected to 30 W power, and so on. The structural transformation from FCC to FCC + HCP was observed at MoTi50 due to the precipitation of HCP Ni3Ti. With the further additions of Mo and Ti, the maximum yield strength of 5.87 GPa and hardness of 11.96 GPa were obtained at MoTi70. The films exhibited a mixed nanocrystalline and amorphous structure at MoTi80 and a completely amorphous structure at MoTi90. The improvement in mechanical properties was primarily due to solid solution, precipitation, and grain refinement strengthenings. The second part of the study focused on the post-annealing treatment of amorphous Co29.72Cr31.19Ni26.39Mo8.59Ti4.11 MEAFs deposited on aluminum oxide substrates. The films were annealed at temperatures ranging from 400 to 750°C to examine the effects on their microstructures and mechanical properties. X-ray diffraction analysis confirmed an increase in crystallinity with higher annealing temperatures, while TEM analysis verified the formation of precipitates. The hardness, yield strength, and fracture strength were measured using nanoindentation and micropillar compression tests. The mechanical properties peaked at an annealing temperature of 650°C, with a hardness of 10.79 GPa and a yield strength of 6.35 GPa. The enhancements in hardness were attributed to the nanocrystalline formation and growth, and precipitation hardening from phases such as HCP Ni3Ti and Cr-Mo σ phases. Additionally, the fracture strain for films annealed at 550, 650, and 750°C exceeded 40%, indicating good ductility. The homogeneous plastic flow mechanism overcame the strength-ductility trade-off, as the material can sustain higher stresses and deform plastically without localized failure. This research demonstrates that the controlled addition of Mo and Ti contents to CoCrNi-based MEAFs and applying appropriate annealing treatments to amorphous Co29.72Cr31.19Ni26.39Mo8.59Ti4.11 films, can significantly improve the mechanical properties. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-31T16:10:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-31T16:10:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要. iv ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xiv Chapter 1 Introduction 1 Chapter 2 Literature review 7 2.1 High Entropy Alloys (HEAs) 7 2.1.1 Definition 7 2.1.2 Four Core Effects 8 2.1.3 CoCrFeMnNi HEAs 11 2.1.4 Magnetron Sputtering Deposition 14 2.1.5 CoCrFeMnNi HEAFs 16 2.2 Medium Entropy Alloys (MEAs) 18 2.2.1 Definition 18 2.2.2 Comparison between HEAs and MEAs 19 2.2.3 CoCrNi MEAFs 20 2.3 Effect of Element Addition 21 2.3.1 Mo Addition in HEAFs 21 2.3.2 Ti Addition in HEAFs 24 2.4 Strengthening Mechanisms 27 2.4.1 Solid Solution Strengthening 27 2.4.2 Grain Boundary Strengthening 28 2.4.3 Precipitation Strengthening 29 Chapter 3 Experimental Procedures 31 3.1 Experimental Flow 31 3.1.1 (CoCrNi)100–x–yMoxTiy MEAFs 31 3.1.2 Annealed Co29.72Cr31.19Ni26.39Mo8.59Ti4.11 MEAFs 31 3.2 Sample Preparation and Deposition Process 32 3.2.1 (CoCrNi)100–x–yMoxTiy MEAFs 32 3.2.2 Annealed Co29.72Cr31.19Ni26.39Mo8.59Ti4.11 MEAFs 33 3.3 Analytical Techniques 34 3.3.1 Electron Probe X-ray Microanalyzer (EPMA) 34 3.3.2 Scanning Electron Microscope (SEM) 34 3.3.3 X-ray Diffraction (XRD) 35 3.3.4 Transmission Electron Microscope (TEM) 35 3.3.5 Nanoindentation 35 3.3.6 Micropillar Compression Test 36 Chapter 4 Results and Discussion 37 4.1 (CoCrNi)100–x–yMoxTiy MEAFs 37 4.1.1 Chemical Composition 37 4.1.2 SEM Observation 38 4.1.3 XRD Results 39 4.1.4 TEM Observation 43 4.1.5 Nanoindentation 47 4.1.6 Micropillar Compression Test 49 4.2 Annealed Co29.72Cr31.19Ni26.39Mo8.59Ti4.11 MEAFs 52 4.2.1 Chemical Composition 52 4.2.2 SEM Observation 53 4.2.3 XRD Results 54 4.2.4 TEM Observation 58 4.2.5 Nanoindentation 62 4.2.6 Micropillar Compression Test 65 4.3 Comparison among (CoCrNi)100–x–yMoxTiy, annealed Co29.72Cr31.19Ni26.39Mo8.59Ti4.11 and other HEAFs and MEAFs 70 Chapter 5 Conclusion 71 5.1 (CoCrNi)100–x–yMoxTiy MEAFs 71 5.2 Annealed Co29.72Cr31.19Ni26.39Mo8.59Ti4.11 MEAFs 72 References 74 | - |
| dc.language.iso | en | - |
| dc.subject | 中熵合金薄膜 | zh_TW |
| dc.subject | 微觀結構 | zh_TW |
| dc.subject | 機械性質 | zh_TW |
| dc.subject | 後退火 | zh_TW |
| dc.subject | 結晶度 | zh_TW |
| dc.subject | 置換型固溶體 | zh_TW |
| dc.subject | 析出物 | zh_TW |
| dc.subject | Microstructure | en |
| dc.subject | Precipitation | en |
| dc.subject | Substitutional solid solution | en |
| dc.subject | Crystallinity | en |
| dc.subject | Post-annealing | en |
| dc.subject | Mechanical properties | en |
| dc.subject | Medium entropy alloy films | en |
| dc.title | 探討鈦和鉬含量及後退火處理對CoCrNi中熵合金薄膜微結構與機械性質的影響 | zh_TW |
| dc.title | Exploring Effects of Titanium and Molybdenum Contents and Post-Annealing Treatment on Microstructure and Mechanical Properties of CoCrNi Medium Entropy Alloy Films | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊哲人;林新智;姚栢文 | zh_TW |
| dc.contributor.oralexamcommittee | Jer-Ren Yang;Hsin-Chih Lin;Pak-Man Yiu | en |
| dc.subject.keyword | 中熵合金薄膜,微觀結構,機械性質,後退火,結晶度,置換型固溶體,析出物, | zh_TW |
| dc.subject.keyword | Medium entropy alloy films,Microstructure,Mechanical properties,Post-annealing,Crystallinity,Substitutional solid solution,Precipitation, | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202402250 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-07-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 5.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
