Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93404Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林偲妘 | zh_TW |
| dc.contributor.advisor | Szu-Yun Lin | en |
| dc.contributor.author | 郭文妮 | zh_TW |
| dc.contributor.author | Wen-Ni Kuo | en |
| dc.date.accessioned | 2024-07-31T16:09:33Z | - |
| dc.date.available | 2024-08-01 | - |
| dc.date.copyright | 2024-07-31 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-26 | - |
| dc.identifier.citation | GIS and Artificial Intelligence for Precise Damage Assessments. (2024, March 29). Industry Blogs. https://www.esri.com/en-us/industries/blog/articles/gis-and-artificial-intelligence-for-precise-damage-assessments/
Elvas, L. B., Mataloto, B. M., Martins, A. L., & Ferreira, J. C. (2021). Disaster Management in Smart Cities. Smart Cities, 4(2), 819–839. Munawar, H. S., Ullah, F., Qayyum, S., Khan, S. I., & Mojtahedi, M. (2021). UAVs in Disaster Management: Application of Integrated Aerial Imagery and Convolutional Neural Network for Flood Detection. Sustainability, 13(14), 7547. Xu, Y., Li, Y., Zheng, X., Zheng, X., & Zhang, Q. (2023). Computer-Vision and Machine-Learning-Based Seismic Damage Assessment of Reinforced Concrete Structures. Buildings, 13(5), 1258. Ge, P., Gokon, H., & Meguro, K. (2020). A review on synthetic aperture radar-based building damage assessment in disasters. Remote Sensing of Environment, 240, 111693. Mangalathu, S., Sun, H., Nweke, C. C., Yi, Z., & Burton, H. V. (2020). Classifying earthquake damage to buildings using machine learning. Earthquake Spectra, 36(1), 183–208. Bommer, J. J., & Crowley, H. (2006). The Influence of Ground-Motion Variability in Earthquake Loss Modelling. Bulletin of Earthquake Engineering, 4(3), 231–248. Earle, P. S., Wald, D. J., Jaiswal, K. S., Allen, T. I., Hearne, M. G., Marano, K. D., Hotovec, A. J., & Fee, J. (2009). Prompt Assessment of Global Earthquakes for Response (PAGER): A System for Rapidly Determining the Impact of Earthquakes Worldwide. U.S. Geological Survey Open File Report/Open-file Report. Riedel, I., & Guéguen, P. (2017). Modeling of damage-related earthquake losses in a moderate seismic-prone country and cost–benefit evaluation of retrofit investments: application to France. Natural Hazards, 90(2), 639–662. Lin, Q., Ci, T., Wang, L., Mondal, S. K., Yin, H., & Wang, Y. (2022). Transfer Learning for Improving Seismic Building Damage Assessment. Remote Sensing, 14(1), 201. 邱聰智, 何郁姍, 張毓文, 鍾立來, & 黃世建. (2019). 0206美濃及花蓮地震震損建物資料庫之分析與應用. Airiti Library 華藝線上圖書館. Harirchian, E., Kumari, V., Jadhav, K., Rasulzade, S., Lahmer, T., & Das, R. R. (2021). A Synthesized Study Based on Machine Learning Approaches for Rapid Classifying Earthquake Damage Grades to RC Buildings. Applied Sciences, 11(16), 7540. Ghimire, S., Guéguen, P., Giffard-Roisin, S., & Schorlemmer, D. (2022). Testing machine learning models for seismic damage prediction at a regional scale using building-damage dataset compiled after the 2015 Gorkha Nepal earthquake. Earthquake Spectra, 38(4), 2970–2993. Xiong, C., Li, Q., & Lu, X. (2020). Automated regional seismic damage assessment of buildings using an unmanned aerial vehicle and a convolutional neural network. Automation in Construction, 109, 102994. Zheng, Z., Zhong, Y., Wang, J., Ma, A., & Zhang, L. (2021). Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters. Remote Sensing of Environment, 265, 112636. Kakooei, M., Ghorbanian, A., Baleghi, Y., Amani, M., & Nascetti, A. (2022). Remote sensing technology for postdisaster building damage assessment. In Elsevier eBooks (pp. 509–521). Yin, S., Fu, C., Zhao, S., Li, K., Sun, X., Xu, T., & Chen, E. (2023, June 23). A Survey on Multimodal Large Language Models. arXiv.org. Baltrusaitis, T., Ahuja, C., & Morency, L. P. (2019). Multimodal Machine Learning: A Survey and Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2), 423–443. Xu, P., Zhu, X., & Clifton, D. A. (2023). Multimodal Learning With Transformers: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–20. Dumas, B., Lalanne, D., & Oviatt, S. (2009). Multimodal Interfaces: A Survey of Principles, Models and Frameworks. In Lecture notes in computer science (pp. 3–26). Li, J., Hong, D., Gao, L., Yao, J., Zheng, K., Zhang, B., & Chanussot, J. (2022). Deep learning in multimodal remote sensing data fusion: A comprehensive review. International Journal of Applied Earth Observation and Geoinformation, 112, 102926. Stahlschmidt, S. R., Ulfenborg, B., & Synnergren, J. (2022). Multimodal deep learning for biomedical data fusion: a review. Briefings in Bioinformatics, 23(2). Ehatisham-Ul-Haq, M., Javed, A., Azam, M. A., Malik, H. M. A., Irtaza, A., Lee, I. H., & Mahmood, M. T. (2019). Robust Human Activity Recognition Using Multimodal Feature-Level Fusion. IEEE Access, 7, 60736–60751. Huang, Y., Du, C., Xue, Z., Chen, X., Zhao, H., & Huang, L. (2021, June 8). What Makes Multi-modal Learning Better than Single (Provably). arXiv.org. Generalization in Multimodal Language Learning from Simulation. (2021, July 18). IEEE Conference Publication | IEEE Xplore. Khan, H., Vasilescu, L. G., & Khan, A. (2008). DISASTER MANAGEMENT CYCLE – A THEORETICAL APPROACH. Management and Marketing, 6(1), 43–50. Sawalha, I. H. (2020). A contemporary perspective on the disaster management cycle. Foresight, 22(4), 469–482. Disaster Management Cycle | Disaster Management Manual - PIARC. (n.d.). https://disaster-management.piarc.org/en/management-disaster-management/disaster-management-cycle Denis, G., De Boissezon, H., Hosford, S., Pasco, X., Montfort, B., & Ranera, F. (2016). The evolution of Earth Observation satellites in Europe and its impact on the performance of emergency response services. Acta Astronautica, 127, 619–633. Klomp, J. (2016). Economic development and natural disasters: A satellite data analysis. Global Environmental Change, 36, 67–88. Voigt, S., Kemper, T., Riedlinger, T., Kiefl, R., Scholte, K., & Mehl, H. (2007). Satellite Image Analysis for Disaster and Crisis-Management Support. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1520–1528. Trogrlić, R. A., Van Den Homberg, M., Budimir, M., McQuistan, C., Sneddon, A., & Golding, B. (2022). Early Warning Systems and Their Role in Disaster Risk Reduction. In Springer eBooks (pp. 11–46). Cassidy, E. D. (2002). Development and Structural Testing of FRP Reinforced OSB Panels for Disaster Resistant Construction. Boccardo, P., & Tonolo, F. G. (2014). Remote Sensing Role in Emergency Mapping for Disaster Response. In Springer eBooks (pp. 17–24). Copernicus Emergency Management Service. (n.d.). https://emergency.copernicus.eu/ Sentinel Asia. (n.d.). https://sentinel-asia.org/ Wisner, B., & Adams, J. (2003). Environmental Health in Emergencies and Disasters: A Practical Guide. Vallance, S. A. (2011). Early disaster recovery: a guide for communities. Wilson, P. A. (2008). Deliberative Planning for Disaster Recovery: Remembering New Orleans. Journal of Deliberative Democracy, 5(1). Silva, T., Wuwongse, V., & Sharma, H. N. (2012). Disaster mitigation and preparedness using linked open data. Journal of Ambient Intelligence & Humanized Computing/Journal of Ambient Intelligence and Humanized Computing, 4(5), 591–602. Hazard Mitigation Assistance Grants. (2020, August 30). FEMA.gov. https://www.fema.gov/grants/mitigation Seismic Vulnerability Assessment of Low-Rise Buildings in Regions with Infrequent Earthquakes. (1997). ACI Structural Journal, 94(1). Chiu, C. K., Sung, H. F., & Chiou, T. C. (2022). Post-earthquake preliminary seismic assessment method for low-rise RC buildings in Taiwan. Journal of Building Engineering, 46, 103709. Fan, C., Chen, M., Wang, X., Wang, J., & Huang, B. (2021). A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Frontiers in Energy Research, 9. Kotsiantis, S. B., Kanellopoulos, D., & Pintelas, P. E. (2007). Data Preprocessing for Supervised Leaning. World Academy of Science, Engineering and Technology, International Journal of Computer, Electrical, Automation, Control and Information Engineering, 1(12), 4104–4109. Alasadi, S. A., & Bhaya, W. S. (2017). Review of data preprocessing techniques in data mining. Journal of Engineering and Applied Sciences, 12(16), 4102-4107. Hancock, J. T., & Khoshgoftaar, T. M. (2020). Survey on categorical data for neural networks. Journal of Big Data, 7(1). Fitkov-Norris, E., Vahid, S., & Hand, C. (2012). Evaluating the Impact of Categorical Data Encoding and Scaling on Neural Network Classification Performance: The Case of Repeat Consumption of Identical Cultural Goods. In Communications in computer and information science (pp. 343–352). De Sousa, A. a. S. R., Da Silva Coelho, J., Machado, M. R., & Dutkiewicz, M. (2023). Multiclass Supervised Machine Learning Algorithms Applied to Damage and Assessment Using Beam Dynamic Response. Journal of Vibration Engineering & Technologies, 11(6), 2709–2731. HoThu, H., & Mita, A. (2013). Damage Detection Method Using Support Vector Machine and First Three Natural Frequencies for Shear Structures. Open Journal of Civil Engineering, 03(02), 104–112. Zhang, H., Cheng, X., Li, Y., He, D., & Du, X. (2023). Rapid seismic damage state assessment of RC frames using machine learning methods. Journal of Building Engineering, 65, 105797. Chun, P. J., Ujike, I., Mishima, K., Kusumoto, M., & Okazaki, S. (2020). Random forest-based evaluation technique for internal damage in reinforced concrete featuring multiple nondestructive testing results. Construction & Building Materials, 253, 119238. Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5). Tan, S. (2005). Neighbor-weighted K-nearest neighbor for unbalanced text corpus. Expert Systems With Applications, 28(4), 667–671. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. Kernbach, J. M., & Staartjes, V. E. (2021). Foundations of Machine Learning-Based Clinical Prediction Modeling: Part II—Generalization and Overfitting. In Acta neurochirurgica. Supplementum (pp. 15–21). Bouchard, I., Rancourt, M. V., Aloise, D., & Kalaitzis, F. (2022). On Transfer Learning for Building Damage Assessment from Satellite Imagery in Emergency Contexts. Remote Sensing, 14(11), 2532. Gupta, R., Goodman, B., Patel, N., Hosfelt, R., Sajeev, S., Heim, E. T., Doshi, J., Lucas, K., Choset, H., & Gaston, M. E. (2019). Creating xBD: A Dataset for Assessing Building Damage from Satellite Imagery. 10–17. Xia, H., Wu, J., Yao, J., Zhu, H., Gong, A., Yang, J., Hu, L., & Mo, F. (2023). A Deep Learning Application for Building Damage Assessment Using Ultra-High-Resolution Remote Sensing Imagery in Turkey Earthquake. International Journal of Disaster Risk Science/International Journal of Disaster Risk Science, 14(6), 947–962. Silva, V., Brzev, S., Scawthorn, C., Yepes, C., Dabbeek, J., & Crowley, H. (2022). A Building Classification System for Multi-hazard Risk Assessment. International Journal of Disaster Risk Science/International Journal of Disaster Risk Science, 13(2), 161–177. Al-Wassai, F. A., & Kalyankar, N. (2013). MAJOR LIMITATIONS OF SATELLITE IMAGES. arXiv (Cornell University), 4(5), 51–59. Gruen, A. (2000). Potential and limitations of highresolution satellite imagery. Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2017). Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 645–657. Pritt, M., & Chern, G. (2017). Satellite Image Classification with Deep Learning. Fujita, A., Sakurada, K., Imaizumi, T., Ito, R., Hikosaka, S., & Nakamura, R. (2017). Damage detection from aerial images via convolutional neural networks. Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. Towards Accurate High Resolution Satellite Image Semantic Segmentation. (2019). IEEE Journals & Magazine | IEEE Xplore. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In Lecture notes in computer science (pp. 234–241). Da, Y., Ji, Z., & Zhou, Y. (2022). Building Damage Assessment Based on Siamese Hierarchical Transformer Framework. Mathematics, 10(11), 1898. Fujita, A., Sakurada, K., Imaizumi, T., Ito, R., Hikosaka, S., & Nakamura, R. (2017b). Damage detection from aerial images via convolutional neural networks. Koch, G., Zemel, R., & Salakhutdinov, R. (2015). Siamese Neural Networks for One-shot Image Recognition. Gholami, S., Robinson, C., Ortiz, A., Yang, S., Margutti, J., Birge, C., Dodhia, R., & Ferres, J. L. (2022). On the Deployment of Post-Disaster Building Damage Assessment Tools using Satellite Imagery: A Deep Learning Approach. 2022 IEEE International Conference on Data Mining Workshops (ICDMW). Xu, J. Z., Lu, W., Li, Z., Khaitan, P., & Zaytseva, V. (2019, October 14). Building Damage Detection in Satellite Imagery Using Convolutional Neural Networks. arXiv.org. Hoffmann, E. J., Wang, Y., Werner, M., Kang, J., & Zhu, X. X. (2019). Model Fusion for Building Type Classification from Aerial and Street View Images. Remote Sensing, 11(11), 1259. Saad, M., He, S., Thorstad, W., Gay, H., Barnett, D., Zhao, Y., Ruan, S., Wang, X., & Li, H. (2022). Learning-Based Cancer Treatment Outcome Prognosis Using Multimodal Biomarkers. IEEE Transactions on Radiation and Plasma Medical Sciences, 6(2), 231–244. Cha, G. W., Hong, W. H., & Kim, Y. C. (2023). Performance Improvement of Machine Learning Model Using Autoencoder to Predict Demolition Waste Generation Rate. Sustainability, 15(4), 3691. Thomas, S. A. (2021). Combining Image Features and Patient Metadata to Enhance Transfer Learning. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine &Amp; Biology Society (EMBC). Liu, Y., Liu, L., Guo, Y., & Lew, M. S. (2018). Learning visual and textual representations for multimodal matching and classification. Pattern Recognition, 84, 51–67. Ofli, F., Alam, F., & Imran, M. (2020, April 14). Analysis of Social Media Data using Multimodal Deep Learning for Disaster Response. arXiv.org. Kang, T., Lim, D. Y., Tayara, H., & Chong, K. T. (2020). Forecasting of Power Demands Using Deep Learning. Applied Sciences, 10(20), 7241. Cai, G., Zhu, Y., Wu, Y., Jiang, X., Ye, J., & Yang, D. (2022). A multimodal transformer to fuse images and metadata for skin disease classification. The Visual Computer/˜the œVisual Computer, 39(7), 2781–2793. Yuan, Z., Jiang, Y., Li, J., & Huang, H. (2020, May 18). Hybrid-DNNs: Hybrid Deep Neural Networks for Mixed Inputs. arXiv.org. Duong, C. T., Lebret, R., & Aberer, K. (2017, August 7). Multimodal Classification for Analysing Social Media. arXiv.org. Jing, L., Wang, T., Zhao, M., & Wang, P. (2017). An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox. Sensors, 17(2), 414. Potrimba, P. (2024, April 15). Multimodal Models and Computer Vision: A Deep Dive. Roboflow Blog. https://blog.roboflow.com/multimodal-models/ Liu, T., Huang, J., Liao, T., Pu, R., Liu, S., & Peng, Y. (2022). A Hybrid Deep Learning Model for Predicting Molecular Subtypes of Human Breast Cancer Using Multimodal Data. IRBM, 43(1), 62–74. Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., & Beijbom, O. (2020). nuScenes: A Multimodal Dataset for Autonomous Driving. Early vs Late Fusion in Multimodal Convolutional Neural Networks. (2020, July 1). IEEE Conference Publication | IEEE Xplore. Stahlschmidt SR, Ulfenborg B, Synnergren J. Multimodal deep learning for biomedical data fusion: a review. Brief Bioinform. 2022 Mar 10;23(2):bbab569. doi: 10.1093/bib/bbab569. PMID: 35089332; PMCID: PMC8921642. Wang, Y., Peng, J., Zhang, J., Yi, R., Wang, Y., & Wang, C. (2023, March 1). Multimodal Industrial Anomaly Detection via Hybrid Fusion. arXiv.org. Bayoudh, K., Knani, R., Hamdaoui, F., & Mtibaa, A. (2021). A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets. The Visual Computer/the Visual Computer, 38(8), 2939–2970. Bakkali, S., Ming, Z., Coustaty, M., & Rusinol, M. (2020). Visual and Textual Deep Feature Fusion for Document Image Classification. Hu, A., & Flaxman, S. (2018). Multimodal Sentiment Analysis To Explore the Structure of Emotions. datacenterhub. (n.d.). https://datacenterhub.org/ 2015 Nepal Earthquake: Open Data Portal. (n.d.). http://eq2015.npc.gov.np/#/download 中心首頁. (n.d.-b). 國家地震工程研究中心. https://www.ncree.narl.org.tw/home Nawi, N. M., Atomi, W. H., & Rehman, M. (2013). The Effect of Data Pre-processing on Optimized Training of Artificial Neural Networks. Procedia Technology, 11, 32–39. Hancock, J. T., & Khoshgoftaar, T. M. (2020b). Survey on categorical data for neural networks. Journal of Big Data, 7(1). 楊靜子(2004)。九二一震災重傷影響因素之探討。﹝碩士論文。高雄醫學大學﹞臺灣博碩士論文知識加值系統。 Patro, S. K., & Sahu, K. K. (2015). Normalization: A Preprocessing Stage. International Advanced Research Journal in Science, Engineering and Technology, 20–22. Massumi, A., & Gholami, F. (2016). The influence of seismic intensity parameters on structural damage of RC buildings using principal components analysis. Applied Mathematical Modelling, 40(3), 2161–2176. USGS.gov | Science for a changing world. (n.d.). https://www.usgs.gov/ Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. Open Data Program. (n.d.). https://www.maxar.com/open-data 農業部林業及自然保育署. (n.d.). 航測及遙測分署. 航測及遙測分署. https://www.asrs.gov.tw/ Grünthal, G. (1998). European macroseismic scale 1998 : EMS-98. Damage assessment. (n.d.). Copernicus EMS - Mapping. https://emergency.copernicus.eu/mapping/ems/damage-assessment#_ftnref1 DIUx-xView. (n.d.). GitHub - DIUx-xView/xView2_first_place: 1st place solution for “xView2: Assess Building Damage” challenge. GitHub. https://github.com/DIUx-xView/xView2_first_place Tong, E., Grøvik, E., Emblem, K. E., Chen, K., Fan, A., Yu, Y., Zhu, G., Zhao, M., Niri, S., & Zaharchuk, G. (2023). CNS Machine Learning. In Springer eBooks (pp. 1347–1375). Deng, H., Zhou, Y., Wang, L., & Zhang, C. (2021). Ensemble learning for the early prediction of neonatal jaundice with genetic features. BMC Medical Informatics and Decision Making, 21(1). Chen, T., & Guestrin, C. (2016). XGBoost. Wang, W., Chakraborty, G., & Chakraborty, B. (2020). Predicting the Risk of Chronic Kidney Disease (CKD) Using Machine Learning Algorithm. Applied Sciences, 11(1), 202. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106. Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93404 | - |
| dc.description.abstract | 本研究旨在建立一個多模態模型搭配建築物元數據以及災前與災後衛星影像應用於預測地震後建築物災損程度。一套完整的多模態模型的運作流程在本研究中被建立,此外還包含數據蒐集與配對、建立針對單一資料的模型、特徵融合以及最終預測模型。為了探討多模態模型的影響力,本研究亦比較了多模態模型和單一資料源模型的效能,並以兩個案例進行討論。
本研究首先調查了僅使用單一資料模型的影響力,分別是使用建築物元數據以及衛星影像。針對元數據首先進行資料前處理,模型部份採用的是傳統的多層感知器(MLP)。本研究發現元數據模型在某些類別中有其侷限性,特別是在’Destroyed’這個類別。而衛星影像的模型則採用孿生-UNet架構,透過圖像分割將建築物所在位置標記出來再進行分類,發現影像模型在’Major’這個損害類別中難以正確辨識。這些發現指出本研究需要考慮更多元的資料型態,來解決現階段預測錯誤的問題。 透過建物元數據搭配衛星影像建立成多模態模型的數據集,並分為案例一(2010年海地地震+2015年尼泊爾地震)以及案例二(2016年美濃地震+2018年花蓮地震)。案例分類的方法是依照房屋類型,在案例一中,磚土造的房屋佔多數,而在案例二中以鋼筋混凝土建築為大宗,透過不同型態的測試資料可用以驗證多模態模型的泛用性。 由案例一的結果可以發現,和使用單一資料模型相比,通過多模態模型,本研究在每個類別中都取得了改進,特別是在’Major’和’Destroyed’這兩個類別效果更顯著。這說明考慮更多元的資料類型可以幫助提升預測的準確性。而案例二在單一資料模型中於’No Damage’和’Minor’這兩個類別已達到不錯的水準,通過多模態模型後效能提升雖不顯著,但亦有修正幾個被錯誤判斷的案例。儘管多模態模型在案例一中效果顯著,但透過案例二可以說明輸入特徵的多樣性對於多模態模型修正單一資料模型的預測結果而言很重要。 總結來說,這項研究建立了一個多模態模型用以預測地震後建築物的災損程度,強調了提高數據的多樣性可以提升預測的準確度。在未來可以利用本研究建立好的完整流程,納入更多能夠幫助判別建築物損害程度的資料型態,亦可利用在其他災害,為自動化災後評估損害開創了一條新的道路。 | zh_TW |
| dc.description.abstract | This research establishes a multimodal model combined with building metadata and pre- and post-disaster satellite imagery to predict the extent of earthquake-induced building damage. We have developed a comprehensive workflow for the multimodal model, which includes data collection and pairing, creating models for single types of data, feature fusion, and final prediction models. To explore the impact of the multimodal model, we compared its performance with that of single-source data models and discussed the results in two case studies.
Initially, we investigated the impact of using single-modal models, specifically using building metadata and satellite imagery. For the metadata, we performed data preprocessing and utilized a traditional Multilayer Perceptron (MLP) for modeling. We found that the metadata model had limitations in some categories, especially in the 'Destroyed' category. The image model used a Siamese-UNet architecture, which marks the location of buildings through image segmentation before classification. We observed that the image model struggled to accurately identify the 'Major' damage category. These findings highlight the need to consider a more diverse set of data types to address current predictive errors. By integrating building metadata with satellite imagery, we established a multimodal dataset, divided into Case Study 1 (2010 Haiti earthquake + 2015 Nepal earthquake) and Case Study 2 (2016 Meinong earthquake + 2018 Hualien earthquake). The method of categorization was based on the type of housing, with masonry structures predominating in Case Study 1 and reinforced concrete buildings in Case Study 2. Testing with different types of test data verified the versatility of the multimodal model. Results from Case Study 1 showed improvements in every category compared to single-modal models, particularly significant in the 'Major' and 'Destroyed' categories. This illustrates that considering a more diverse range of data types can help enhance prediction accuracy. In Case Study 2, the single-modal models already performed well in the 'No Damage' and 'Minor' categories. While the improvement through the multimodal model was not significant, it did correct several cases that were misjudged. Although the multimodal model was highly effective in Case Study 1, Case Study 2 demonstrated the importance of input feature diversity for correcting predictions of single-modal models. In summary, this study has established a multimodal model for predicting post-earthquake building damage, emphasizing that increasing data diversity can improve prediction accuracy. In the future, our established comprehensive process can incorporate more data types that help determine building damage levels, and can also be used in other disasters, paving a new path for automated post-disaster damage assessment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-31T16:09:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-31T16:09:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENT i
摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Background 1 1.2 Research Scope and Objectives 2 1.3 Organization 3 Chapter 2 Literature Review 5 2.1 Introduction 5 2.2 Disaster Management 7 2.3 Automated Building Damage Assessment Using Building Metadata 9 2.3.1 Building Metadata for Post-Earthquake Damage Assessment 9 2.3.2 Data Preprocessing Methods 10 2.3.3 Machine Learning Models and Multi-Layer Perceptron (MLP) 11 2.4 Automated Building Damage Assessment Using Satellite Imagery 14 2.4.1 Remote Sensing and Satellite Imagery for Post-Earthquake Damage Assessment 14 2.4.2 Image Classification and Segmentation Models for Damage Assessment 15 2.5 Multimodal Model 18 2.5.1 Architecture of Multimodal Models 18 2.5.2 Feature Fusion Methods 20 2.6 Concluding Remarks 23 Chapter 3 Research Methodology 25 3.1 Introduction 25 3.2 Metadata Model Design and Datasets 27 3.2.1 Building Metadata Datasets 27 3.2.2 Data Preprocessing 29 3.2.3 Metadata Model Design 35 3.3 Image Model Design and Datasets 37 3.3.1 Satellite Imagery Datasets 37 3.3.2 Data Preprocessing 41 3.3.3 Image Model Design 43 3.4 Multimodal Model Design and Datasets 45 3.4.1 Pairing metadata and satellite imagery 45 3.4.2 Multimodal Model Design 46 3.4.3 Methods of Feature Fusion 49 3.4.4 Combine Model Design 51 3.5 Performance Metrics 59 3.6 Concluding Remarks 62 Chapter 4 Experimental Results and Discussion 64 4.1 Introduction 64 4.2 Case Study 1 - Multi-Paired Dataset 1 65 4.2.1 Dataset Description 65 4.2.2 Metadata Model Training and Fine Tuning 67 4.2.3 Metadata Model Performance 71 4.2.4 Image Model Training and Fine Tuning 74 4.2.5 Image Model Performance 78 4.2.6 Multimodal Model Training 83 4.2.7 Multimodal Model Performance 84 4.2.8 Comprehensive Discussion on Models 90 4.3 Case Study 2 - Multi-Paired Dataset 2 92 4.3.1 Dataset Description 92 4.3.2 Metadata Model Training and Fine Tuning 95 4.3.3 Metadata Model Performance 98 4.3.4 Image Model Training and Fine Tuning 101 4.3.5 Image Model Performance 102 4.3.6 Multimodal Model Training 105 4.3.7 Multimodal Model Performance 107 4.3.8 Comprehensive Discussion on Models 112 4.4 Discussion 115 4.4.1 Single-modal Models vs. Multimodal Models 115 4.4.2 Comprehensive Comparison Between Case Studies 116 4.5 Concluding Remarks 118 Chapter 5 Conclusion 120 5.1 Conclusion and Suggestion 120 5.2 Application of This Study 123 5.3 Future Research 123 REFERENCE 126 | - |
| dc.language.iso | en | - |
| dc.subject | 建築損害評估 | zh_TW |
| dc.subject | 特徵融合 | zh_TW |
| dc.subject | 建築物元數據 | zh_TW |
| dc.subject | 衛星影像 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 圖像分割 | zh_TW |
| dc.subject | 特徵提取 | zh_TW |
| dc.subject | 多模態模型 | zh_TW |
| dc.subject | Building Damage Assessment | en |
| dc.subject | Multimodal Models | en |
| dc.subject | Building Metadata | en |
| dc.subject | Satellite Imagery | en |
| dc.subject | Machine Learning | en |
| dc.subject | Image Segmentation | en |
| dc.subject | Feature Extraction | en |
| dc.subject | Feature Fusion | en |
| dc.title | 利用元數據和衛星影像的多模態模型進行地震災後建築損壞預測 | zh_TW |
| dc.title | Multimodal Models for Earthquake Post-Disaster Building Damage Prediction Using Metadata and Satellite Imagery | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林之謙;吳日騰 | zh_TW |
| dc.contributor.oralexamcommittee | Jacob J. Lin;Rih-Teng Wu | en |
| dc.subject.keyword | 多模態模型,建築損害評估,建築物元數據,衛星影像,機器學習,圖像分割,特徵提取,特徵融合, | zh_TW |
| dc.subject.keyword | Multimodal Models,Building Damage Assessment,Building Metadata,Satellite Imagery,Machine Learning,Image Segmentation,Feature Extraction,Feature Fusion, | en |
| dc.relation.page | 132 | - |
| dc.identifier.doi | 10.6342/NTU202402071 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2026-07-26 | - |
| Appears in Collections: | 土木工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Until 2026-07-26 | 4.45 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
