Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93401
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor卿建業zh_TW
dc.contributor.advisorJianye Chingen
dc.contributor.author李明澤zh_TW
dc.contributor.authorMing-Tse Lien
dc.date.accessioned2024-07-31T16:08:37Z-
dc.date.available2024-08-01-
dc.date.copyright2024-07-31-
dc.date.issued2024-
dc.date.submitted2024-07-29-
dc.identifier.citationAoki, N., & Velloso, D. D. A. (1975, November). An approximate method to estimate the bearing capacity of piles. Proc., 5th Pan-American Conf. of Soil Mechanics and Foundation Engineering, 1, 367-376. Buenos Aires: International Society of Soil Mechanics and Geotechnical Engineering.
Bazaraa, A. R., & Kurkur, M. M. (1986). N-values used to predict settlements of piles in Egypt. In Use of in situ Tests in Geotechnical Engineering (pp. 462-474). ASCE.
Ching, J., & Phoon, K.-K. (2014). Correlations among some clay parameters—the multivariate distribution. Canadian Geotechnical Journal, 51(6), 686-704.
Ching, J., & Phoon, K.-K. (2015). Constructing multivariate distributions for soil parameters. Risk and reliability in geotechnical engineering, 3, 3-76.
Ching, J., & Phoon, K.-K. (2019). Constructing site-specific multivariate probability distribution model using Bayesian machine learning. Journal of Engineering Mechanics, 145(1), 04018126.
Ching, J., Wu, S., & Phoon, K.-K. (2021). Constructing quasi-site-specific multivariate probability distribution using hierarchical Bayesian model. Journal of Engineering Mechanics, 147(10), 04021069.
Das, B. M., & Sivakugan, N. (2018). Principles of foundation engineering. Boston, MA: Cengage Learning.
Decourt, L. (1995). Prediction of load settlement relationships for foundations on the basis of the SPT-T. Ciclo de Conferencias Inter.“Leonardo Zeevaert”, UNAM, Mexico, 85-104.
Hirany, A., & Kulhawy, F. H. (2002). On the interpretation of drilled foundation load test results. In Deep foundations 2002: An international perspective on theory, design, construction, and performance (pp. 1018-1028).
Machairas, N., Highley, G. A., & Iskander, M. G. (2018). Evaluation of FHWA pile design method against the FHWA deep foundation load test database version 2.0. Transportation Research Record, 2672(52), 268-277.
Meyerhof, G. G. (1976). Bearing capacity and settlement of pile foundations. Journal of the Geotechnical Engineering Division, 102(3), 197-228.
Obeta, I. N., Onyia, M. E., & Obiekwe, D. A. (2018). Comparative analysis of methods of pile-bearing capacity evaluation using CPT logs from tropical soils. Journal of the South African Institution of Civil Engineering, 60(1), 44-55.
Paik, K., Salgado, R., Lee, J., & Kim, B. (2003). Behavior of open-and closed-ended piles driven into sands. Journal of Geotechnical and Geoenvironmental Engineering, 129(4), 296-306.
Philipponnat, G. (1980). Practical method of calculating an isolated pile, using the static penetrometer. Revue Francaise de Geotechnique, (10), 55-64.
Shioi, Y., & Fukui, J. (2021). Application of N-value to design of foundations in Japan. In Penetration Testing, volume 1 (pp. 159-164). Routledge.
Shooshpasha, I., Hasanzadeh, A., & Taghavi, A. (2013). Prediction of the axial bearing capacity of piles by SPT-based and numerical design methods. Geomate Journal, 4(8), 560-564.
Skempton, A. W. (1986). Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation. Geotechnique, 36(3), 425-447.
Tang, C., & Phoon, K. K. (2018). Statistics of model factors in reliability-based design of axially loaded driven piles in sand. Canadian Geotechnical Journal, 55(11), 1592-1610.
Tang, C., & Phoon, K. K. (2019). Characterization of model uncertainty in predicting axial resistance of piles driven into clay. Canadian Geotechnical Journal, 56(8), 1098-1118.
Yang, Z. X., Jardine, R. J., Guo, W. B., & Chow, F. (2015). A new and openly accessible database of tests on piles driven in sands. Géotechnique Letters, 5(1), 12-20.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93401-
dc.description.abstract本研究旨在通過數據分析方法預測打擊樁在承受軸向載重時的承載能力表現。將收集來自全球各地的打擊樁資料和相關場址數據,並將這些真實數據存儲在一個新建的資料庫中。通過對這些數據的深入分析,建立了一個多變數機率分布模型,以預測打擊樁的極限承載力及其在軸向載重下的受力行為。
在文獻回顧階段,識別並收集了與打擊樁在軸向載重下承載能力相關的各種參數。在資料庫構建完成後,依據先前文獻中提出的經驗公式進行了初步檢核,以觀察數據趨勢並確認所收集數據的有效性。
該資料庫包含了多種與極限承載力相關的參數及現場試驗數據,包括SPT標準貫入試驗和CPT圓錐貫入試驗的結果。主要參數包括:樁的長度(L)、樁的直徑(B)、極限承載力(𝑞𝑢𝑙𝑡)、SPT-N值和CPT-qc值。
採用了階層式貝氏模型(HBM)及改良後的階層式貝氏模型(RHBM),並結合Johnson分布系統、吉布斯抽樣和貝氏分析,來研究不同土壤參數之間的相關性並期望得到打擊樁資料庫中場址統計特性。同時利用目標場址的有限已知數據推估未知數據的分布。結果表明,隨著已知信息的增加,階層式貝氏模型能有效降低對打擊樁承載力預測的不確定性,若進一步應用於可靠性設計,可顯著提高精準度並降低成本。
zh_TW
dc.description.abstractThis study aims to predict the bearing capacity performance of driven piles under axial loading using data analysis methods. Data on driven piles and relevant site conditions will be collected from around the world and stored in a newly established database. Through thorough analysis of this data, a multivariate probabilistic model has been developed to predict the ultimate bearing capacity of driven piles under axial loading.
During the literature review phase, various parameters related to the bearing capacity of driven piles under axial loading were identified and collected. After the database construction, preliminary checks were conducted based on empirical formulas proposed in previous literature to observe data trends and confirm the validity of the collected data.
The database contains various parameters related to ultimate bearing capacity and field test data, including results from cone penetration tests (CPT) and standard penetration tests (SPT). The main parameters include pile length (L), pile diameter (B), ultimate bearing capacity (𝑞𝑢𝑙𝑡), SPT-N values, and CPT-qc values.
The Hierarchical Bayesian Model (HBM) was employed, combined with the Johnson distribution system, Gibbs sampling, and conjugate conditions in Bayesian analysis, to study the correlations between parameters and capture the statistical behavior of the sites within the database. Concurrently, limited known data from target sites were used to estimate the distribution of unknown data. The results indicate that as the amount of known information increases, the HBM effectively reduces the uncertainty in predicting the bearing capacity of driven piles. If further applied in reliability design, this approach can significantly enhance accuracy and reduce costs.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-31T16:08:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-31T16:08:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目次 iv
圖次 vii
表次 x
第一章 前言 1
1.1 研究背景與動機 1
1.2 研究方法 2
1.3 研究流程 3
1.4 本文內容 4
第二章 文獻回顧 5
2.1 打擊樁介紹 5
2.2 基樁極限垂直承載力理論 6
2.3 基樁載重試驗(Pile Load Test) 7
2.3.1 基樁承載力判釋方法 7
2.3.2 L1-L2方法 8
2.4 標準貫入試驗及其設計方法 9
2.4.1 標準貫入試驗(Standard Penetration Test, SPT) 9
2.4.2 SPT-Based Method 11
2.4.2.1 Aoki and De Alencar Method (1975) 12
2.4.2.2 Bazaraa and Kurkur Method (1986) 13
2.4.2.3 Decourt Method (1995) 13
2.4.2.4 Meyerhof Method (1976) 14
2.4.2.5 Shioi and Fukui Method (1982) 15
2.5 圓錐貫入試驗及其設計方法 15
2.5.1 圓錐貫入試驗(Cone Penetration Test, CPT) 15
2.5.2 CPT-Based Method 16
2.5.2.1 Aoki and De Alencar Method (1975) 16
2.5.2.2 Philipponnat Method (1980) 17
2.5.2.3 Penpile Method (1978) 18
2.5.2.4 Meyerhof Method (1956) 18
2.6 模型因子 (Model Factor) 19
第三章 資料庫 20
3.1 資料庫介紹 20
3.1.1「Drivenpiles/7/336」資料庫 20
3.1.2「Drivenpiles_CPT /5/164」資料庫 27
3.2 檢驗資料庫 32
3.3本研究資料庫資料與前人預測模型比對 33
第四章 多變數機率分布模型建置與模擬 40
4.1 簡介 40
4.2 Johnson分佈系統 42
4.3貝氏分析 51
4.4 HBM架構 52
4.4.1共軛先驗(Conjugate prior) 53
4.4.2學習階段(Learning stage)與推估階段(Inference stage) 55
4.5RHBM架構 58
4.5.1 共軛先驗(Conjugate prior) 59
4.5.2 學習階段(Learning stage)與推估階段(Inference stage) 62
第五章 實地案例模擬及比較 65
5.1 案例一(七根樁) 66
5.2 案例二(四根樁) 80
5.3 案例三(一根樁) 90
5.4 案例四(一根樁) 95
第六章 結論與未來建議 100
6.1 結論 100
6.2 未來建議 100
參考文獻 101
附錄I「Drivenpiles/7/336」資料庫 103
附錄II 「HBM」吉普森取樣迭代過程 120
附錄III 「RHBM」吉普森取樣迭代過程 122
-
dc.language.isozh_TW-
dc.subject極限承載力zh_TW
dc.subject數據分析zh_TW
dc.subject軸向載重zh_TW
dc.subject打擊樁zh_TW
dc.subject階層式貝氏模型zh_TW
dc.subject多變數機率分布模型zh_TW
dc.subjectAxial loadingen
dc.subjectUltimate bearing capacityen
dc.subjectMultivariate Probability Distribution Modelen
dc.subjectHierarchical Bayesian Modelen
dc.subjectDriven pilesen
dc.subjectData analysisen
dc.title以數據分析方法預測打擊樁於軸向載重下之承載力zh_TW
dc.titleData Analysis Method for Predicting the Bearing Capacity of Driven Piles under Axial Loadingen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉家男;王瑞斌zh_TW
dc.contributor.oralexamcommitteeChia-Nan Liu;Jui-Pin Wangen
dc.subject.keyword極限承載力,數據分析,軸向載重,打擊樁,階層式貝氏模型,多變數機率分布模型,zh_TW
dc.subject.keywordUltimate bearing capacity,Data analysis,Axial loading,Driven piles,Hierarchical Bayesian Model,Multivariate Probability Distribution Model,en
dc.relation.page124-
dc.identifier.doi10.6342/NTU202402348-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-30-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf7.14 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved