Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93398
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor冀宏源zh_TW
dc.contributor.advisorHung-Yuan Chien
dc.contributor.author楊雅晴zh_TW
dc.contributor.authorYa-Ching Yangen
dc.date.accessioned2024-07-31T16:07:15Z-
dc.date.available2024-08-01-
dc.date.copyright2024-07-31-
dc.date.issued2024-
dc.date.submitted2024-07-29-
dc.identifier.citation1. Rosenberg, L.E., and Rosenberg, D.D. (2012). Human genes and genomes: science, health, society (Academic Press).
2. Marston, A.L., and Amon, A. (2005). Erratum: Meiosis: Cell-cycle controls shuffle and deal. Nature reviews Molecular cell biology 6, 818-818.
3. Petronczki, M., Siomos, M.F., and Nasmyth, K. (2003). Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423-440.
4. Keeney, S., Giroux, C.N., and Kleckner, N. (1997). Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375-384.
5. McKim, K.S., and Hayashi-Hagihara, A. (1998). mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes & development 12, 2932-2942.
6. Baudat, F., Manova, K., Yuen, J.P., Jasin, M., and Keeney, S. (2000). Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Molecular cell 6, 989-998.
7. Hartung, F., Wurz-Wildersinn, R., Fuchs, J., Schubert, I., Suer, S., and Puchta, H. (2007). The catalytically active tyrosine residues of both SPO11-1 and SPO11-2 are required for meiotic double-strand break induction in Arabidopsis. The Plant Cell 19, 3090-3099.
8. Mirzaghaderi, G., and Horandl, E. (2016). The evolution of meiotic sex and its alternatives. Proc Biol Sci 283. 10.1098/rspb.2016.1221.
9. Grey, C., and De Massy, B. (2021). Chromosome organization in early meiotic prophase. Frontiers in Cell and Developmental Biology 9, 688878.
10. Uversky, V.N., Kuznetsova, I.M., Turoverov, K.K., and Zaslavsky, B. (2015). Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates. FEBS letters 589, 15-22.
11. Zhang, H., Ji, X., Li, P., Liu, C., Lou, J., Wang, Z., Wen, W., Xiao, Y., Zhang, M., and Zhu, X. (2020). Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Science China Life Sciences 63, 953-985.
12. Zhang, R., Liu, Y., and Gao, J. (2023). Phase separation in controlling meiotic chromosome dynamics. Curr Top Dev Biol 151, 69-90. 10.1016/bs.ctdb.2022.04.004.
13. Alberti, S., Gladfelter, A., and Mittag, T. (2019). Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176, 419-434.
14. Garaizar, A., Sanchez-Burgos, I., Collepardo-Guevara, R., and Espinosa, J.R. (2020). Expansion of intrinsically disordered proteins increases the range of stability of liquid–liquid phase separation. Molecules 25, 4705.
15. Claeys Bouuaert, C., Pu, S., Wang, J., Oger, C., Daccache, D., Xie, W., Patel, D.J., and Keeney, S. (2021). DNA-driven condensation assembles the meiotic DNA break machinery. Nature 592, 144-149. 10.1038/s41586-021-03374-w.
16. Panizza, S., Mendoza, M.A., Berlinger, M., Huang, L., Nicolas, A., Shirahige, K., and Klein, F. (2011). Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell 146, 372-383.
17. Rog, O., Köhler, S., and Dernburg, A.F. (2017). The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors. Elife 6, e21455.
18. Phadnis, N., Cipak, L., Polakova, S., Hyppa, R.W., Cipakova, I., Anrather, D., Karvaiova, L., Mechtler, K., Smith, G.R., and Gregan, J. (2015). Casein kinase 1 and phosphorylation of cohesin subunit Rec11 (SA3) promote meiotic recombination through linear element formation. PLoS Genetics 11, e1005225.
19. Sakuno, T., Tashiro, S., Tanizawa, H., Iwasaki, O., Ding, D.Q., Haraguchi, T., Noma, K.I., and Hiraoka, Y. (2022). Rec8 Cohesin-mediated Axis-loop chromatin architecture is required for meiotic recombination. Nucleic Acids Res 50, 3799-3816. 10.1093/nar/gkac183.
20. Fowler, K.R., Gutiérrez-Velasco, S., Martín-Castellanos, C., and Smith, G.R. (2013). Protein determinants of meiotic DNA break hot spots. Molecular cell 49, 983-996.
21. Ma, L., Fowler, K.R., Martin-Castellanos, C., and Smith, G.R. (2017). Functional organization of protein determinants of meiotic DNA break hotspots. Sci Rep 7, 1393. 10.1038/s41598-017-00742-3.
22. Miyoshi, T., Ito, M., Kugou, K., Yamada, S., Furuichi, M., Oda, A., Yamada, T., Hirota, K., Masai, H., and Ohta, K. (2012). A central coupler for recombination initiation linking chromosome architecture to S phase checkpoint. Molecular cell 47, 722-733.
23. Miyoshi, T., Ito, M., and Ohta, K. (2013). Spatiotemporal regulation of meiotic recombination by Liaisonin. Bioarchitecture 3, 20-24.
24. Lorenz, A., Wells, J.L., Pryce, D.W., Novatchkova, M., Eisenhaber, F., McFarlane, R.J., and Loidl, J. (2004). S. pombe meiotic linear elements contain proteins related to synaptonemal complex components. Journal of cell science 117, 3343-3351.
25. Loidl, J. (2006). S. pombe linear elements: the modest cousins of synaptonemal complexes. Chromosoma 115, 260-271.
26. Colaiácovo, M.P., MacQueen, A.J., Martinez-Perez, E., McDonald, K., Adamo, A., La Volpe, A., and Villeneuve, A.M. (2003). Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Developmental cell 5, 463-474.
27. Bähler, J., Wyler, T., Loidl, J., and Kohli, J. (1993). Unusual nuclear structures in meiotic prophase of fission yeast: a cytological analysis. The Journal of cell biology 121, 241-256.
28. Chuang, Y.-C., and Smith, G.R. (2022). Dynamic configurations of meiotic DNA-break hotspot determinant proteins. Journal of Cell Science 135, jcs259061.
29. Molnar, M., Doll, E., Yamamoto, A., Hiraoka, Y., and Kohli, J.r. (2003). Linear element formation and their role in meiotic sister chromatid cohesion and chromosome pairing. Journal of cell science 116, 1719-1731.
30. Lorenz, A., Estreicher, A., Kohli, J., and Loidl, J. (2006). Meiotic recombination proteins localize to linear elements in Schizosaccharomyces pombe. Chromosoma 115, 330-340.
31. Spirek, M., Estreicher, A., Csaszar, E., Wells, J., McFarlane, R.J., Watts, F.Z., and Loidl, J. (2010). SUMOylation is required for normal development of linear elements and wild-type meiotic recombination in Schizosaccharomyces pombe. Chromosoma 119, 59-72.
32. Estreicher, A., Lorenz, A., and Loidl, J. (2012). Mug20, a novel protein associated with linear elements in fission yeast meiosis. Current genetics 58, 119-127.
33. Wintrebert, M., Nguyen, M.-C., and Smith, G.R. (2021). Activation of meiotic recombination by nuclear import of the DNA break hotspot-determining complex in fission yeast. Journal of Cell Science 134, jcs253518.
34. Hyppa, R.W., Cho, J.D., Nambiar, M., and Smith, G.R. (2022). Redirecting meiotic DNA break hotspot determinant proteins alters localized spatial control of DNA break formation and repair. Nucleic Acids Res 50, 899-914. 10.1093/nar/gkab1253.
35. Kroschwald, S., Maharana, S., and Simon, A. (2017). Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments. Matters 3, e201702000010.
36. Lee, M.-Y., Chi, P. (2022). Biochemical attributes of Rec25-Rec27-Mug20 complex in regulating meiotic recombination. Master's Thesis (National Taiwan University)
37. Wang, F.-Y., Chi, P. (2023). Deciphering the functional role of Rec10 in Schizosaccharomyces pombe meiotic recombination. Master's Thesis (National Taiwan University)
38. Sänger, M., De Mecquenem, N., Lewińska, K.E., Bountris, V., Lehmann, F., Leser, U., and Kosch, T. (2024). A qualitative assessment of using ChatGPT as large language model for scientific workflow development. GigaScience 13. 10.1093/gigascience/giae030.
39. Giglio, A.D., and Costa, M. (2023). The use of artificial intelligence to improve the scientific writing of non-native english speakers. Rev Assoc Med Bras (1992) 69, e20230560. 10.1590/1806-9282.20230560.
40. Fowler, K.R., Hyppa, R.W., Cromie, G.A., and Smith, G.R. (2018). Physical basis for long-distance communication along meiotic chromosomes. Proceedings of the National Academy of Sciences 115, E9333-E9342.
41. Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., et al. (2021). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research 50, D439-D444. 10.1093/nar/gkab1061.
42. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589. 10.1038/s41586-021-03819-2.
43. Ibrahim, A.I., Khaodeuanepheng, N., Amarasekara, D., Correia, J.J., Lewis, K., Fitzkee, N.C., Whitten, S.T., and Hough, L. (2023). Intrinsically disordered regions that drive phase separation form a robustly distinct protein class. Biophysical Journal 122, 207a.
44. Fukuda, T., Fukuda, N., Agostinho, A., Hernández-Hernández, A., Kouznetsova, A., and Höög, C. (2014). STAG3-mediated stabilization of REC8 cohesin complexes promotes chromosome synapsis during meiosis. Embo j 33, 1243-1255. 10.1002/embj.201387329.
45. Sakuno, T., and Hiraoka, Y. (2022). Rec8 Cohesin: A Structural Platform for Shaping the Meiotic Chromosomes. Genes (Basel) 13. 10.3390/genes13020200.
46. Molnar, M., Bähler, J., Sipiczki, M., and Kohli, J. (1995). The rec8 gene of Schizosaccharomyces pombe is involved in linear element formation, chromosome pairing and sister-chromatid cohesion during meiosis. Genetics 141, 61-73. 10.1093/genetics/141.1.61.
47. Xu, H., Beasley, M.D., Warren, W.D., van der Horst, G.T., and McKay, M.J. (2005). Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev Cell 8, 949-961. 10.1016/j.devcel.2005.03.018.
48. Davis, L., Rozalén, A.E., Moreno, S., Smith, G.R., and Martín-Castellanos, C. (2008). Rec25 and Rec27, novel linear-element components, link cohesin to meiotic DNA breakage and recombination. Current Biology 18, 849-854.
49. OLSON, L.W., EDÉN, U., EGEL‐MITANI, M., and EGEL, R. (1978). Asynaptic meiosis in fission yeast? Hereditas 89, 189-199.
50. Zhang, Z., Xie, S., Wang, R., Guo, S., Zhao, Q., Nie, H., Liu, Y., Zhang, F., Chen, M., Liu, L., et al. (2020). Multivalent weak interactions between assembly units drive synaptonemal complex formation. J Cell Biol 219. 10.1083/jcb.201910086.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93398-
dc.description.abstract減數分裂重組是細胞分裂的一個過程,透過同源染色體之間的遺傳物質交換促進遺傳多樣性。減數分裂中,DNA雙股斷裂啟動重組,而對於許多物種來說,聯會複合體(synaptonemal complex)透過液-液相分離(liquid-liquid phase separation)的形成,以連接和排列同源染色體,從而調節交叉(crossover)形成。然而,這種液-液相分離的特性是否在其他生物中也保守存在則仍不清楚。與其他物種中典型的聯會複合體有所不同,裂殖酵母菌(fission yeast)具有線性元素(linear elements)的非典型聯會複合體。線性元素的構造是由四種蛋白質組成:Rec10、Rec25、Rec27和Mug20。Rec25、Rec27和Mug20蛋白統稱為RRM複合體,優先聚集於雙股斷裂的熱點(hotspots)上,並發揮重要作用。過去我們的研究表明,RRM複合體具有DNA結合能力,形成液-液相分離,並與另一線性元素Rec10蛋白相互作用。值得注意的是,Rec10蛋白可以顯著促進RRM介導的液-液相分離形成。然而,RRM生化特性如何促進液-液相分離和減數分裂中的雙股斷裂形成仍不清楚。在本研究中,我確認了幾個在遺傳分析中具有顯著減數分裂表現型的RRM突變基因。我進行了生化分析,並闡明這些突變如何導致所觀察到的減數分裂表現型。結果顯示,這些突變蛋白仍然保留DNA結合和相分離特性;然而,這些突變破壞了Rec10 和RRM彼此蛋白的相互作用。因此,Rec10並無法促進RRM突變蛋白所介導液-液相分離的能力。除此之外,可以與RRM複合體交互作用的Rec10羧基端突變體亦能促進RRM複合體相分離的發生。結合上述,我的研究為RRM-Rec10在減數分裂期間的液-液相分離、雙股斷裂和交叉形成中的相互作用功能提供了重要證據。zh_TW
dc.description.abstractMeiotic recombination, a process of cell division, facilitates genetic diversity by exchanging genetic material between homologous chromosomes. DNA double-strand breaks (DSBs) initiate recombination in meiosis, and the synaptonemal complex (SC) forms through liquid-liquid phase separation (LLPS) in many organisms to physically connect and align homologous chromosomes, regulating crossover formation. However, whether this LLPS property is conserved in other organisms remains unclear. In contrast to the typical SCs found in other species, Schizosaccharomyces pombe features atypical SCs known as Linear Elements (LinEs). LinEs comprise four proteins: Rec10, Rec25, Rec27, and Mug20. The Rec25, Rec27, and Mug20 proteins, collectively referred to as the RRM complex, are preferentially enriched in DSB hotspots and play an essential role in DSB formation. Previously, our studies have highlighted that the RRM complex harbors DNA-binding ability, forms LLPS and interacts with the other linear element protein Rec10. Notably, Rec10 could significantly promote the RRM-mediated LLPS formation. However, how those RRM biochemical attributes contribute to LLPS and DSB formation in meiosis remains elusive. In this study, I have identified several RRM missense mutants that exhibit a strong meiotic phenotype in genetic analysis. I conducted biochemical analyses to characterize these mutant variants and to elucidate how these mutations contribute to the observed meiotic phenotypes. The results show that while these mutant variants still retain DNA-binding and phase-separation properties; however, they abolish the physical interaction with Rec10. Consequently, Rec10 lacks the ability to facilitate RRM mutants-mediated LLPS. In addition, the Rec10 C-terminal fragment mutant which can interact with the RRM complex also can promote the RRM condensate formation. In conclusion, my study provides crucial evidence for the functional interaction of the RRM-Rec10 axis in LLPS, DSB, and crossover formation during meiosis.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-31T16:07:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-31T16:07:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT III
CONTENT V
LIST OF FIGURES IX
CHAPTER 1 INTRODUCTION 1
1-1 The primary process of meiotic recombination 1
1-2 Regulating the dynamics of meiotic chromosomes via phase separation. 2
1-3 Meiotic recombination in Schizosaccharomyces pombe 3
1-4 The assembly and functional role of LinEs during meiosis 4
1-5 The liquid-liquid phase separation (LLPS) property in LinEs 5
1-6 Research Motivation 6
CHAPTER 2 MATERIAL & METHODS 8
2-1 DNA substrate 8
2-2 Plasmid 8
2-2-1 Rec27 expression plasmid 8
2-2-2 Rec25-Mug20 co-expression plasmid 8
2-2-3 Rec27-sfGFP expression plasmid 9
2-2-4 Rec25-Mug20(L52P) co-expression plasmid 9
2-2-5 Rec25(L90P)-Mug20 co-expression plasmid 10
2-3 Protein expression and purification 10
2-3-1 Rec27-Rec25-Mug20 complex 10
2-3-2 Rec27-sfGFP-Rec25-Mug20 complex 13
2-3-3 Rec27-Rec25-Mug20(L52P) complex 13
2-3-4 Rec27-Rec25(L90P)-Mug20 complex 13
2-3-5 Rec27-sfGFP-Rec25-Mug20(L52P) complex 14
2-3-6 Rec27-sfGFP-Rec25(L90P)-Mug20 complex 14
2-3-7 Rec10MBP 14
2-4 Protein pull-down assay 15
2-5 Electrophoretic mobility shift assay (EMSA) 16
2-6 In vitro condensate assay 17
2-7 Article Editing 18
CHAPTER 3 RESULTS 19
3-1 The expression and purification of the linear elements (LinEs) 19
3-2 The biochemical property of the RRM complex 20
3-3 Rec10-RRM interaction promotes the RRM-mediated LLPS property. 20
3-4 Characterize RRM missense mutant variants in meiosis 21
3-5 The RRM mutants were defective in interaction with Rec10. 22
3-6 The DNA binding abilities of RRM mutants were defective. 22
3-7 The phase separation properties of RRM mutants were comparable to wild-type. 23
3-8 Rec10-RRM interaction facilitates RRM-mediated condensate formation 24
3-9 The RRM-mediated LLPS properties are crucial for linear elements assembly 25
CHAPTER 4 DISCUSSION 27
4-1 Conclusion of the findings 27
4-2 The Rec10-RRM interaction contributes to DNA double-strand break 28
4-3 The role of Rec10 contributes to liquid-liquid phase separation 29
4-4 Cohesin-mediated meiotic chromosome axis structure facilitates LinE assembly. 30
4-5 The biological significance of LinE assemble in Schizosaccharomyces pombe and its comparison with synaptonemal complex 30
FIGURES 32
TABLES 53
REFERENCE 55
-
dc.language.isoen-
dc.subject裂殖酵母菌zh_TW
dc.subject減數分裂zh_TW
dc.subjectRRM複合體zh_TW
dc.subjectRec10zh_TW
dc.subject液-液相分離zh_TW
dc.subject雙股斷裂形成zh_TW
dc.subjectMeiotic recombinationen
dc.subjectSchizosaccharomyces pombeen
dc.subjectDSB formationen
dc.subjectPhase separationen
dc.subjectRec10en
dc.subjectRRM complexen
dc.title探討Rec25-Rec27-Mug20複合體與Rec10蛋白的交互作用於減數分裂染色體中的內在功能zh_TW
dc.titleInvestigate the intrinsic function of Rec25-Rec27-Mug20 complex-Rec10 interaction to contribute to meiotic chromosome dynamicen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李弘文;黃介嶸zh_TW
dc.contributor.oralexamcommitteeHung-Wen Li;Jie-Rong Huangen
dc.subject.keyword裂殖酵母菌,減數分裂,RRM複合體,Rec10,液-液相分離,雙股斷裂形成,zh_TW
dc.subject.keywordSchizosaccharomyces pombe,Meiotic recombination,RRM complex,Rec10,Phase separation,DSB formation,en
dc.relation.page63-
dc.identifier.doi10.6342/NTU202402169-
dc.rights.note未授權-
dc.date.accepted2024-07-30-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科學研究所-
Appears in Collections:生化科學研究所

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
2.31 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved