Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93383
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張皓巽zh_TW
dc.contributor.advisorHao-Xun Changen
dc.contributor.author吳秉祜zh_TW
dc.contributor.authorPing-Hu Wuen
dc.date.accessioned2024-07-30T16:14:36Z-
dc.date.available2024-07-31-
dc.date.copyright2024-07-30-
dc.date.issued2024-
dc.date.submitted2024-07-27-
dc.identifier.citationAbdelfattah, A., Tack, A. J. M., Lobato, C., Wassermann, B., and Berg, G. 2022. From seed to seed: the role of microbial inheritance in the assembly of the plant microbiome. Trends Microbiol.
Abdelfattah, A., Wisniewski, M., Schena, L., and Tack, A. J. M. 2021. Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root. Environ. Microbiol. 23:2199–2214.
Abdullaeva, Y., Ambika Manirajan, B., Honermeier, B., Schnell, S., and Cardinale, M. 2021. Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota. J. Adv. Res. 31:75–86.
Achary, V. M. M., Ram, B., Manna, M., Datta, D., Bhatt, A., Reddy, M. K., et al. 2017. Phosphite: a novel P fertilizer for weed management and pathogen control. Plant Biotechnol. J. 15:1493–1508.
Adam, E., Bernhart, M., Müller, H., Winkler, J., and Berg, G. 2018. The Cucurbita pepo seed microbiome: genotype-specific composition and implications for breeding. Plant Soil. 422:35–49.
Akamatsu, H., Fujii, N., Saito, T., Sayama, A., Matsuda, H., Kato, M., et al. 2020. Factors affecting red crown rot caused by Calonectria ilicicola in soybean cultivation. J. Gen. Plant. Pathol. 86:363–375.
Akamatsu, H., Yamamoto, R., Nkayama, N., Takahashi, M., Ochi, S., and Fujii, N. 2020b. Diagnosis and management manual of soybean red crown root disease. Available at: https://www.naro.go.jp/project/research_activities/soybeankuroneFull20200311_1.pdf.
Allen, T., Mueller, D., and Sisson, A. 2022. Soybean disease loss estimates from the United States and Ontario, Canada. Crop Protection Network. Available at: doi.org/10.31274/cpn-20230421-1.
Andrews, S. 2010. FastQC: a quality control tool for high throughput sequence data. Available at: http://www.bioinformati/cs.babraham.ac.uk/projects/fastqc/.
Antwi-Boasiako, A., Jia, S., Liu, J., Guo, N., Chen, C., Karikari, B., et al. 2024. Identification and genetic dissection of resistance to red crown rot disease in a diverse soybean germplasm population. Plants 13:940.
Arnault, G., Mony, C., and Vandenkoornhuyse, P. 2023. Plant microbiota dysbiosis and the Anna Karenina Principle. Trends Plant Sci. 28:18–30.
Arsenault-Labrecque, G., Menzies, J. G., and Bélanger, R. R. 2012. Effect of silicon absorption on soybean resistance to Phakopsora pachyrhizi in different cultivars. Plant Dis. 96:37–42.
Bandara, A. Y., Weerasooriya, D. K., Bradley, C. A., Allen, T. W., and Esker, P. D. 2020. Dissecting the economic impact of soybean diseases in the United States over two decades. PLoS ONE. 15: e0231141
Banihashemian, S. N., Jamali, S., Golmohammadi, M., and Ghasemnezhad, M. 2023. Management of root-knot nematode in kiwifruit using resistance-inducing Bacillus altitudinis. Trop. Plant Pathol. 48:443–451.
Bell, D. K., and Sobers, E. K. 1966. A peg, pod, and root necrosis of Peanuts caused by a species of Calonectria. Phytopathology 56: 1361–1364
Berg, G., and Raaijmakers, J. M. 2018. Saving seed microbiomes. ISME J. 12:1167–1170.
Bergna, A., Cernava, T., Rändler, M., Grosch, R., Zachow, C., and Berg, G. 2018. Tomato seeds preferably transmit plant beneficial endophytes. Phytobiomes J. 2:183–193.
Bernaux, P. 1979. Identification de quelques maladies du soja au Cameroun [Identification of some diseases of soybean in Cameroon]. Agronomie Tropicale, 34: 301–304.
Berner, D. 1991. Distribution and management of and soybean resistance to Calonectria crotalariae, the causal pathogen of red crown rot of soybean. LSU Hist. Diss. Theses.
Berner, D. K., Berggren, G. T., Pace, M. E., White, E. P., Gershey, J. A., Freedman, J. A., et al. 1986. Red crown rot: now a major disease of soybeans. Louisiana Agri. 29:4–5.
Bintarti, A. F., Sulesky-Grieb, A., Stopnisek, N., and Shade, A. 2022. Endophytic microbiome variation among single plant seeds. Phytobiomes J. 6:45–55.
Blin, K., Shaw, S., Augustijn, H. E., Reitz, Z. L., Biermann, F., Alanjary, M., et al. 2023. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51:W46–W50.
Bordel, S., Martín-González, D., Muñoz, R., and Santos-Beneit, F. 2023. Genome sequence analysis and characterization of Bacillus altitudinis B12, a polylactic acid- and keratin-degrading bacterium. Mol. Genet. Genomics. 298:389–398.
Broders, K. D., Lipps, P. E., Paul, P. A., and Dorrance, A. E. 2007. Evaluation of Fusarium graminearum associated with corn and soybean seed and seedling disease in ohio. Plant Dis. 91:1155–1160.
Brunda, K., Jahagirdar, S., and DN, K. 2018. Antagonistic activity of bacterial endophytes against major soilborne pathogens of soybean. J. Entomol. Zool. Stud. 6:43–46.
Cai, Z.-G. 2005. Edamame diseases and management. In Edamame cultivation and pest and disease management, eds. Zhu-Gu Cai, Z.-F. Lin. 68 pages. National Chiayi University Agricultural Extension Center. p. 41-54. (In Chinese).
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13: 581–583.
Callahan, B.J., Wong, J., Heiner, C., Oh, S., Theriot, C.M., Gulati, A.S., et al. 2019. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 47: e103.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics. 10: 421.
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., et al. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108:4516–4522.
Carrión, V. J., Perez-Jaramillo, J., Cordovez, V., Tracanna, V., Hollander, M. de, Ruiz-Buck, D., et al. 2019. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science. 366: 606-612
Chandel, A., Mann, R., Kaur, J., Tannenbaum, I., Norton, S., Edwards, J., et al. 2022. Australian native Glycine clandestina seed microbiota hosts a more diverse bacterial community than the domesticated soybean Glycine max. Environ. Microbiome. 17:56.
Chang, H.-X., Sang, H., Wang, J., McPhee, K. E., Zhuang, X., Porter, L. D., et al. 2018. Exploring the genetics of lesion and nodal resistance in pea (Pisum sativum L.) to Sclerotinia sclerotiorum using genome-wide association studies and RNA-Seq. Plant Direct 2:e00064.
Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R., et al. 2013. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ. Microbiol. 15:848–864.
Chen, Y.-K., Kuo, C.-H., and Chen, L.-C. 1998. Cylindrocladium root and petiole rot of Spathiphyllum spp. New to Taiwan. Jpn. J. Phytopathol. 64:481–484.
Chesneau, G., Laroche, B., Préveaux, A., Marais, C., Briand, M., Marolleau, B., et al. 2022. Single seed microbiota: assembly and transmission from parent plant to seedling. mBio. 13:e01648-22.
Chioccioli, M., Hankamer, B., and Ross, I. L. 2014. Flow cytometry pulse width data enables rapid and sensitive estimation of biomass dry weight in the microalgae Chlamydomonas reinhardtii and Chlorella vulgaris. PLOS One. 9:e97269.
Chou, K.-L. 2021. New vegetable soybean variety: Kaohsiung No. 13 (Green Crystal). Agricultural technology report No. 160. Council of Agriculture Kaohsiung District Agricultural Improvement Station. Taiwan. (In Chinese).
Compant, S., Samad, A., Faist, H., and Sessitsch, A. 2019. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19:29–37.
Cortese, I. J., Castrillo, M. L., Onetto, A. L., Bich, G. Á., Zapata, P. D., and Laczeski, M. E. 2021. De novo genome assembly of Bacillus altitudinis 19RS3 and Bacillus altitudinis T5S-T4, two plant growth-promoting bacteria isolated from Ilex paraguariensis St. Hil. (yerba mate). PLOS ONE. 16:e0248274.
Cox, K. D., Quello, K., Deford, R. J., and Beckerman, J. L. 2009. A rapid method to quantify fungicide sensitivity in the brown rot pathogen Monilinia fructicola. Plant Dis. 93:328–331.
Crous, P. W. 2002. Taxonomy and pathology of Cylindrocladium (Calonectria) and allied genera. St Paul, MN. The American Phytopathological Society Press
Crous, P. W., Groenewald, J. Z., Risède, J.-M., and Simoneau, P. 1993. Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Mycol. Res. 97:889–896.
Dang, J. L., Gleason, M. L., Niu, C. K., Liu, X., Guo, Y. Z., Zhang, R., et al. 2017. Effects of fungicides and spray application interval on controlling Marssonina blotch of apple in the loess plateau region of China. Plant Dis. 101:568–575.
Dianese, J., Ribeiro, W. R. C., and Urben, A. F. 1986. Root rot of soybean caused by Cylindrocladium clavatum in central Brazil. Plant Dis. 70:977-980.
Dinglasan, E., Periyannan, S., and Hickey, L. T. 2022. Harnessing adult-plant resistance genes to deploy durable disease resistance in crops. Essays Biochem. 66:571–580.
Djaeni, M. 1991. Effect of depth of soil on the inoculum population of Calonectria crotolariae. In: Seminar Hasil Penelitian Tanaman Pangan, Balittan Bogor (Indonesia), 21–22 Feb 1990. Padang: Balittan-Sukarami.
Dorrance, A. E., and McClure, S. A. 2001. Beneficial effects of fungicide seed treatments for soybean cultivars with partial resistance to Phytophthora sojae. Plant Dis. 85:1063–1068.
Earl, J. P., Adappa, N. D., Krol, J., Bhat, A. S., Balashov, S., Ehrlich, R. L., et al. 2018. Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes. Microbiome. 6:190.
EU, 2020. Commission implementing regulation (EU) 2020/2087. OJEU. 423:50-52
Fan, H., Zhang, Z., Li, Y., Zhang, X., Duan, Y., and Wang, Q. 2017. Biocontrol of bacterial fruit blotch by Bacillus subtilis 9407 via surfactin-mediated antibacterial activity and colonization. Front. Microbiol. 8:1973
Fehr, W. R., Caviness, C. E., Burmood, D. T., and Pennington, J. S. 1971. Stage of development descriptions for soybeans, Glycine Max (L.). Crop Sci. 11: 1971.
Frąc, M., Gryta, A., Oszust, K., and Kotowicz, N. 2016. Fast and accurate microtiter plate method (Biolog MT2) for detection of Fusarium fungicides resistance/sensitivity. Front. Microbiol. 7:489
Fraser, M., Hwang, S.-F., Ahmed, H. U., Akhavan, A., Stammler, G., Barton, W., et al. 2017. Sensitivity of Leptosphaeria maculans to pyraclostrobin in Alberta, Canada. Can. J. Plant Sci. 97:83–91.
Friesen, M. L., Porter, S. S., Stark, S. C., von Wettberg, E. J., Sachs, J. L., and Martinez-Romero, E. 2011. Microbially mediated plant functional traits. Annu. Rev. Ecol. Evol. Syst. 42:23–46.
Fukui, R. 1994. Growth patterns and metabolic activity of Pseudomonads in sugar beet spermospheres: relationship to pericarp colonization by Pythium ultimum. Phytopathology. 84:1331.
Furukawa, T., van Rhijn, N., Fraczek, M., Gsaller, F., Davies, E., Carr, P., et al. 2020. The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nat. Commun. 11:427.
Gai, Y., Deng, Q., Chen, X., Guan, M., Xiao, X., Xu, D., et al. 2017. Phylogenetic diversity of Calonectria ilicicola causing Cylindrocladium black rot of peanut and red crown rot of soybean in southern China. J. Gen. Plant Pathol. 83:273–282.
Gao, X., Lu, X., Wu, M., Zhang, H., Pan, R., Tian, J., et al. 2012. Co-inoculation with rhizobia and AMF inhibited soybean red crown rot: From field study to plant defense-related gene expression analysis. PLOS ONE. 7:e33977.
Gao, X., Wu, M., Xu, R., Wang, X., Pan, R., Kim, H.-J., et al. 2014. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. PLOS ONE. 9:e95031.
Geis, S., Fleming, K., Korthals, E., Searle, G., Reynolds, L., and Karner, D. 2000. Modifications to the algal growth inhibition test for use as a regulatory assay. Environ. Toxicol. Chem. 19:36–41.
Geiser, D. M., Al-Hatmi, A. M. S., Aoki, T., Arie, T., Balmas, V., Barnes, I., et al. 2021. Phylogenomic Analysis of a 55.1-kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani species complex. Phytopathology 111:1064–1079.
Gond, S. K., Bergen, M. S., Torres, M. S., and White Jr, J. F. 2015. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol. Res. 172:79–87.
Gongora-Canul, C. C., and Leandro, L. F. S. 2011. Plant age affects root infection and development of foliar symptoms of soybean sudden death syndrome. Plant Dis. 95:242–247.
Guan, M., Pan, R., Gao, X., Xu, D., Deng, Q., and Deng, M. 2010. First report of red crown rot caused by Cylindrocladium parasiticum on soybean in Guangdong, Southern China. Plant Dis. 94:485–485.
Guo, M., Li, B., Xiang, Q., Wang, R., Liu, P., and Chen, Q. 2021. Phosphite translocation in soybean and mechanisms of Phytophthora sojae inhibition. Pestic. Biochem. Phy. 172:104757.
Guo, P., Yang, F., Ye, S., Li, J., Shen, F., and Ding, Y. 2022. Characterization of lipopeptide produced by Bacillus altitudinis Q7 and inhibitory effect on Alternaria alternata. J. Basic Microbiol. 63:26–38.
Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinforma. Oxf. Engl. 29:1072–1075.
Haas, D., Blumer, C., and Keel, C. 2000. Biocontrol ability of fluorescent pseudomonads genetically dissected: importance of positive feedback regulation. Curr. Opin. Biotechnol. 11:290–297.
Hartman, G. L., Rupe, J. C., Sikora, E. J., Domier, L. L., Davis, J. A., and Steffey, K. L. 2016. Compendium of soybean diseases and pests, fifth edition. The American Phytopathological Society. St. Paul. MN.
Hartman, G.L., Chang, H.-X., and Leandro, L. 2015. Research advances and management of soybean sudden death syndrome. Crop Prot. 73:60–66.
Hasan, N., Farzand, A., Heng, Z., Khan, I. U., Moosa, A., Zubair, M., et al. 2020. Antagonistic potential of novel endophytic Bacillus strains and mediation of plant defense against Verticillium wilt in upland cotton. Plants. 9:1438.
Hassani, M.-A., Gonzalez, O., Hunter, S. S., Holmes, G., Hewavitharana, S., Ivors, K., et al. 2023. Microbiome network connectivity and composition linked to disease resistance in strawberry plants. Phytobiomes J. 7:298-311.
Horuz, S. 2021. Pseudomonas oryzihabitans: a potential bacterial antagonist for the management of bacterial fruit blotch (Acidovorax citrulli) of cucurbits. J. Plant Pathol. 103:751–758.
Huang Q.-Z. 2005. Edamame pests and management. In Edamame cultivation and pest and disease management, eds. Zhu-Gu Cai, Z.-F. Lin. 68 pages. National Chiayi University Agricultural Extension Center. p. 21-30. (In Chinese).
Huang, C.-C., Yang, J.-i., Chou, K.-L., Lin, C.-H., and Chang, H.-X. 2021. Copy number quantification for the soybean cyst nematode resistance locus rhg1 in the soybean varieties of Taiwan. Agronomy 11:1346.
Huang, Y.-T., Liu, P.-Y., and Shih, P.-W. 2021. Homopolish: a method for the removal of systematic errors in nanopore sequencing by homologous polishing. Genome Biol. 22:95.
Hughes, J., Rees, S., Kalindjian, S., and Philpott, K. 2011. Principles of early drug discovery. Br. J. Pharmacol. 162:1239–1249.
Hunter, B. B. 1976. Production of microsclerotia by species of Cylindrocladium. Phytopathology 66:777.
Ikenaga, M., and Sakai, M. 2014. Application of locked nucleic acid (LNA) oligonucleotide–PCR clamping technique to selectively PCR amplify the SSU rRNA genes of bacteria in investigating the plant-associated community structures. Microbes Environ. 29:286-295.
Inglese, J., Auld, D. S., Jadhav, A., Johnson, R. L., Simeonov, A., Yasgar, A., et al. 2006. Quantitative high-throughput screening: A titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc. Natl. Acad. Sci. U.S.A. 103:11473–11478.
Jiang, C.-J., and Xie, X. 2022. Soybean red crown rot: Current knowledge and future challenges. Plant Pathol. 72:1557–1569.
Jiang, C.-J., Sugano, S., Ochi, S., Kaga, A., and Ishimoto, M. 2020. Evaluation of Glycine max and Glycine soja for resistance to Calonectria ilicicola. Agronomy 10:887.
Johnson, J. S., Spakowicz, D. J., Hong, B.-Y., Petersen, L. M., Demkowicz, P., Chen, L., et al. 2019. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10:5029.
Kapsalis, A. V., Gowen, S. R., and Gravanis, F. T. 2003. Seed treatment with a bacterial antagonist for reducing cotton damping-off caused by Pythium spp. BCPC Int Congr Crop Sci Technol 2003:655–658
Katoh, K., Standley, D.M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30: 772–780.
Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., et al. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 26:1463–1464.
Khalaf, E. M., and Raizada, M. N. 2018. Bacterial seed endophytes of domesticated cucurbits antagonize fungal and oomycete pathogens including powdery mildew. Front. Microbiol. 9:42
Kim, H., Lee, K. K., Jeon, J., Harris, W. A., and Lee, Y.-H. 2020. Domestication of Oryza species eco-evolutionarily shapes bacterial and fungal communities in rice seed. Microbiome. 8:20.
Kim, J., Roy, M., Ahn, S.-H., Shanmugam, G., Yang, J. S., Jung, H. W., et al. 2022. Culturable endophytes associated with soybean seeds and their potential for suppressing seed-borne pathogens. Plant Pathol. J. 38:313–322.
Kim, K. D. 1998. Variability in virulence of Calonectria ilicicola isolates on soybean. Plant Pathol. J. 14:571–577.
Kim, K. D., Russin, J. S., and Snow, J. P. 1998. Susceptibility to Calonectria ilicicola in soybean grown in greenhouse and field. Korean J. Crop Sci. 43:239–244.
Kim, K., Russin, J., and Snow, J. 1998b. Variability in virulence of Calonectria ilicicola isolates on soybean. Plant Pathol. J. 14:571–577.
Kleczewski, N. M., and Geisler, S. 2022. Assessment of selected commercially available seed treatments on suppressing the effects of red crown rot on soybeans under a controlled environment. Plant Dis. 106: 2060–2065.
Kleczewski, N. M., and Geisler, S. 2022. Screening of selected commercially available seed treatments for their impacts on red crown rot of soybean in a controlled setting. Plant Dis. 106:2060-2065
Kleczewski, N. M., Bradley, C. A., Hartman, G., Kandel, Y., Mueller, D., and Salamanca, L. R. 2023. A diagnostic guide for red crown rot of soybean. Plant Health Prog. 24:123–129.
Kleczewski, N., Plewa, D., Kangas, C., Phillippi, E., and Kleczewski, V. 2019. First report of red crown rot of soybeans caused by Calonectria ilicicola (Anamorph: Cylindrocladium parasiticum) in Illinois. Plant Dis. 103:1777–1777.
Kobayashi, M., Win, K. T., and Jiang, C.-J. 2022. Soybean hypocotyls prevent Calonectria ilicicola invasion by multi-layered defenses. Front. Plant Sci. 12: 813578.
Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P. A. 2019. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37:540–546.
Kucharek, T. 2000. Cylindrocladium black rot (CBR) of peanut, soybean, and forage legumes in florida. In FL: Florida Cooperative Extension Service, University of Florida, Plant Pathology Fact Sheet, p. 139. Available at: https://plantpath.ifas.u fl.edu/misc/media/factsheets/pp0139.pdf [Accessed March 22, 2024].
Kuklinsky-Sobral, J., Araújo, W. L., Mendes, R., Pizzirani-Kleiner, A. A., and Azevedo, J. L. 2005. Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil. 273:91–99.
Kumar, K., Verma, A., Pal, G., Anubha, White, J. F., and Verma, S. K. 2021. Seed endophytic bacteria of pearl millet (Pennisetum glaucum L.) promote seedling development and defend against a fungal phytopathogen. Front. Microbiol. 12:774293.
Kumawat, K. C., Singh, I., Nagpal, S., Sharma, P., Gupta, R. K., and Sirari, A. 2022. Co-inoculation of indigenous Pseudomonas oryzihabitans and Bradyrhizobium sp. modulates the growth, symbiotic efficacy, nutrient acquisition, and grain yield of soybean. Pedosphere. 32:438–451.
Kuruppu, P. U., Schneider, R. W., and Russin, J. S. 2004. Factors affecting soybean root colonization by Calonectria ilicicola and development of red crown rot following delayed planting. Plant Dis. 88:613–619.
Kuruppu, P. U., Schneider, R. W., and Russin, J. S. 2004. Effects of soil temperature on microsclerotia of Calonectria ilicicola and soybean root colonization by this fungus. Plant Dis. 88:620–624.
Lamichhane, J. R., You, M. P., Laudinot, V., Barbetti, M. J., and Aubertot, J.-N. 2020. Revisiting sustainability of fungicide seed treatments for field crops. Plant Dis. 104:610–623.
Lerch-Olson, E. R., Dorrance, A. E., and Robertson, A. E. 2020. Resistance of the SoyNAM parents to seed and root rot caused by four Pythium species. Plant Dis. 104:2489–2497.
Li, H., and Durbin, R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 25:1754–1760.
Li, N., Wang, Z., He, G., Xiang, M., and Zhang, Y. 2019. Pathogen identification and fungicide-screening of the peanut black rot. Chin. J. Trop. Crops. 40:6.
Lin, F., Chhapekar, S. S., Vieira, C. C., Da Silva, M. P., Rojas, A., Lee, D., et al. 2022. Breeding for disease resistance in soybean: a global perspective. Theor. Appl. Genet. 135:3773–3872.
Liu, H.-H., Shen, Y.-M., Chang, H.-X., Tseng, M.-N., and Lin, Y.-H. 2020. First report of soybean red crown rot caused by Calonectria ilicicola in Taiwan. Plant Dis. 104:979.
Liu, H.-H., Wang, J., Wu, P.-H., Lu, M.-Y., Li, J.-Y., Shen, Y.-M., Tseng, M.-N., Luo, C.-H., Lin, Y.-H., and Chang, H.-X. 2021. Whole-genome sequence resource of Calonectria ilicicola, the casual pathogen of soybean red crown rot. Mol. Plant Microbe Interact. 34:848–851.
Loos, C. A. 1950. Calonectria theae n.sp.—The perfect stage of Cercosporella theae Petch. Trans. Br. Mycol. Soc. 33:13–18.
Love, M.I., Huber, W., Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15: 550.
Lu, C., Dai, T., Zhang, H., Zeng, D., Wang, Y., Yang, W., et al. 2022. A novel LAMP assay using hot water in vacuum insulated bottle for rapid detection of the soybean red crown rot pathogen Calonectria ilicicola. Australas. Plant Pathol. 51:251–259.
Lu, X., Zhou, D., Chen, X., Zhang, J., Huang, H., and Wei, L. 2017. Isolation and characterization of Bacillus altitudinis JSCX-1 as a new potential biocontrol agent against Phytophthora sojae in soybean [Glycine max (L.) Merr.]. Plant Soil. 416:53–66.
Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D., and Dangl, J. L. 2013. Practical innovations for high-throughput amplicon sequencing. Nat. Methods. 10:999–1002.
Ma, Z. H., Zhang, Z. D., Wang, Y. X., and Yang, X. B. 2004. Cylindrocladium crotalariae causing red crown rot of soybean in China. Plant Pathol. 53:537.
MacKenzie, S. J., Mertely, J. C., and Peres, N. A. 2009. Curative and protectant activity of fungicides for control of crown rot of strawberry caused by Colletotrichum gloeosporioides. Plant Dis. 93:815–820.
Marla, S. R., Chu, K., Chintamanani, S., Multani, D. S., Klempien, A., DeLeon, A., et al. 2018. Adult plant resistance in maize to northern leaf spot is a feature of partial loss-of-function alleles of Hm1. PLOS Pathog. 14:e1007356.
Matsumoto, H., Fan, X., Wang, Y., Kusstatscher, P., Duan, J., Wu, S., et al. 2021. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants. 7:60–72.
Matsuzaki, Y., Uda, Y., Kurahashi, M., and Iwahashi, F. 2021. Microtiter plate test using liquid medium is an alternative method for monitoring metyltetraprole sensitivity in Cercospora beticola. Pest Manag. Sci. 77:1226–1234.
Matthiesen, R. L., and Robertson, A. E. 2023. Effect of infection timing by four Pythium spp. on soybean damping-off symptoms with and without cold stress. Plant Dis. 107:3975–3983.
Mesny, F., Hacquard, S., and Thomma, B. P. 2023. Co-evolution within the plant holobiont drives host performance. EMBO Rep. 24:e57455.
Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A., et al. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37: 1530–1534.
Minsonou, T. 1973. New black root rot disease in soybeans and peanuts caused by Calonectria crotalariae. Plant Prot. 27:77–82.
Miyazawa, K., Umeyama, T., Hoshino, Y., Abe, K., and Miyazaki, Y. Quantitative monitoring of mycelial growth of Aspergillus fumigatus in liquid culture by optical density. Microbiol. Spectr. 10:e00063-21.
Morales Moreira, Z. P., Helgason, B. L., and Germida, J. J. 2021. Crop, genotype, and field environmental conditions shape bacterial and fungal seed epiphytic microbiomes. Can. J. Microbiol. 67:161–173.
Moroenyane, I., Tremblay, J., and Yergeau, É. 2021. Soybean microbiome recovery after disruption is modulated by the seed and not the soil microbiome. Phytobiomes J. 5:418–431.
Myers, J. A., Curtis, B. S., and Curtis, W. R. 2013. Improving accuracy of cell and chromophore concentration measurements using optical density. BMC Biophysics. 6:4.
Nakagawa, A. 2004. Composition and method for biological control of soybean black root rot. Patent JP4310466B2 [filed 2016-09-29].
Nakagawa, A., and Ochi, S. 2006. Control effect of some chemicals on the incidence of soybean root necrosis caused by Calonectria ilicicola. Annu. Rep. Kanto-Tosan Plant Prot. Socitey. :13–21.
Nelson, R., Wiesner-Hanks, T., Wisser, R., and Balint-Kurti, P. 2018. Navigating complexity to breed disease-resistant crops. Nat. Rev. Genet. 19:21–33.
Neves, D., Mehl, K. M., and Bradley, C. A. 2023. First report of red crown rot, caused by Calonectria ilicicola, and its effect on soybean in Kentucky. Plant Health Prog. 24:303-305
Nishi, K. 2007. Calonectria ilicicola, the causal pathogen of soybean red crown rot. In Genetics Resources Manual No. 21, Ibaraki, Japan: National Institute of Agrobiological Sciences, p. 1–13.
Nishi, K., Kuniyasu, K., and Takahashi, A. 1990. Control of soybean red crown rot by soil sterilization with hot water injection. Rep. Tottori Mycol. Inst. 28:293–305.
Nishi, K., Sato, F., Karasawa, T., Fukuda, T., and Takahashi, H. 1999. Ecology and control of root necrosis of soybean caused by Calonectria crotalariae. Bull. Natl. Agric. Res. Cent. 30:11–109.
Nobori, T., Mine, A., and Tsuda, K. 2018. Molecular networks in plant–pathogen holobiont. FEBS Lett. 592:1937–1953.
Noel, Z. A., Rojas, A. J., Jacobs, J. L., and Chilvers, M. I. 2019. A high-throughput microtiter-based fungicide sensitivity assay for oomycetes using Z′-factor statistic. Phytopathology 109:1628–1637.
Nolla, A., Korndörfer, G. H., and Coelho, L. 2006. Efficiency of calcium silicate and carbonate in soybean disease control. J. Plant Nutr. 29:2049–2061.
Ochi, S. 2017. Studies on the epidemiology and control of red crown rot of soybean. J. Gen. Plant Pathol. 83:427–428.
Ochi, S., and Kuroda, T. 2020. Developing a qPCR assay for the quantification of Calonectria ilicicola in soil of soybean field. Trop. Plant Pathol. 46: 186–194..
Ochi, S., and Nakagawa, A. 2010. A simple method for long-term cryopreservation of Calonectria ilicicola on barley grains. J. Gen. Plant Pathol. 76:112–115.
Ochi, S., Yoshida, M., Nakagawa, A., and Natsume, M. 2011. Identification and activity of a phytotoxin produced by Calonectria ilicicola, the causal agent of soybean red crown rot. Can. J. Plant Pathol. 33:347–354.
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P., O’Hara, R., et al. 2013. Vegan: community ecology package. R Package Version. 2.0-10. CRAN.
Padgett, G. B. 1992. The epidemiology of the soybean/Diaporthe phaseolorum var. caulivora pathosystem in Louisiana. LSU His. Diss. Theses. 5458.
Padgett, G., Kuruppu, P., and Russin, J. 2015. Red crown rot. In Compendium of soybean diseases and pests, eds. G. L. Hartman, J. C. Rupe, E. J. Sikora, L. L. Domier, J. A. Davis, and K. L. Steffey. St Paul, MN: The American Phytopathological Society Press, p. 79–80.
Pal, G., Kumar, K., Verma, A., and Verma, S. K. 2022. Seed inhabiting bacterial endophytes of maize promote seedling establishment and provide protection against fungal disease. Microbiol. Res. 255:126926.
Park, S.-W., Kang, B.-K., Kim, H.-S., Woo, S.-H., and Kim, H.-T. 2007. Selection of fungicides for the control of soybean black root rot caused by Calonectria ilicicola. Korean J. Pestic. Sci. 11:18–26.
Park, S.-W., Kim, H.-S., Woo, S.-H., Shim, H.-K., and Kim, H.-T. 2006. Morphological characteristics and molecular identification of Calonectria ilicicola causing soybean red crown rot. Res. Plant Dis. 12:178–184.
Phillips, D. V. 1972. Influence of photoperiod, plant age, and stage of development on brown stem rot of soybean. Phytopathology 62:1334-1337
Phipps, P. M. 1976. An elutriation method for quantitative isolation of Cylindrocladium crotalariae microsclerotia from peanut field soil. Phytopathology 66:1255.
Phipps, P., and Beute, M. 1977. Influence of soil temperature and moisture on the severity of Cylindrocladium black rot in peanut. Phytopathology 67:104-101
Pijls, C. F. N., Shaw, M. W., and Parker, A. 1994. A rapid test to evaluate in vitro sensitivity of Septoria tritici to flutriafol, using a microtiter plate reader. Plant Pathol. 43:726–732.
Poudel, R., Jumpponen, A., Schlatter, D. C., Paulitz, T. C., Gardener, B. B. M., Kinkel, L. L., et al. 2016. Microbiome networks: A systems framework for identifying candidate microbial assemblages for disease management. Phytopathology. 106:1083–1096.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41: D590–D596.
Raaijmakers, J. M., and Weller, D. M. 1998. Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol. Plant-Microbe Interactions. 11:144–152.
Raaijmakers, J. M., Bonsall, R. F., and Weller, D. M. 1999. Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology. 89:470–475.
Raposo, R., Colgan, R., Delcan, J., and Melgarejo, P. 1995. Application of an automated quantitative method to determine fungicide resistance in Botrytis cinerea. Plant Dis. 79:294.
Rasoolizadeh, A., Labbé, C., Sonah, H., Deshmukh, R. K., Belzile, F., Menzies, J. G., et al. 2018. Silicon protects soybean plants against Phytophthora sojae by interfering with effector-receptor expression. BMC Plant Biol. 18:1–13.
Richardson, A. E., and Simpson, R. J. 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 156:989–996.
Ritpitakphong, U., Falquet, L., Vimoltust, A., Berger, A., Métraux, J.-P., and L’Haridon, F. 2016. The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol. 210:1033–1043.
Ritz, C., Baty, F., Streibig, J. C., and Gerhard, D. 2015. Dose-response analysis using R. PLOS ONE 10:e0146021.
Rochefort, A., Simonin, M., Marais, C., Guillerm-Erckelboudt, A.-Y., Barret, M., and Sarniguet, A. 2021. Transmission of seed and soil microbiota to seedling. mSystems. 6:e00446-21.
Rowe, R. C., Beute, M. K., and Well, J. C. 1973. Cylindrocladium black rot of peanuts in North Carolina -1972. Plant Dis. Rep. 57:387–389.
Rowe, R., Beute, M., Wells, J., and Wynne, J. 1974. Incidence and control of Cylindrocladium black rot of peanuts in North Carolina during 1973. Plant Dis. Rep. 58:348-352
Rowe, R., Beute, M.K, and Wells, J.C. 1973. Cylindrocladium black rot of peanuts in North Carolina,1972. Plant Dis. Rep. 57: 387-389
Roy, K. W., McLean, K. S., Lawrence, G. W., Patel, M. V., and Moore, W. F. 1989. First report of red crown rot on soybeans in Mississippi. Plant Dis. 73:273.
Russell, P. E. 2004. Sensitivity baselines in fungicide resistance research and management. Crop Life International, Brussels, Belgium p.43
Rybakova, D., Mancinelli, R., Wikström, M., Birch-Jensen, A.-S., Postma, J., Ehlers, R.-U., et al. 2017. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens. Microbiome. 5:104.
Salvatierra-Martinez, R., Arancibia, W., Araya, M., Aguilera, S., Olalde, V., Bravo, J., et al. 2018. Colonization ability as an indicator of enhanced biocontrol capacity—An example using two Bacillus amyloliquefaciens strains and Botrytis cinerea infection of tomatoes. J. Phytopathol. 166:601–612.
Seber, G. A. F. and Wild, C. J .1989. Nonlinear regression. Wiley & Sons. New York. p. 330.
Seemann, T. 2014. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 30:2068–2069.
Shah, D. A., Dillard, H. R., and Cobb, A. 2002. Alternatives to Vinclozolin (Ronilan) for controlling gray and white mold on snap bean pods in New York. Plant Health Prog. 3:4.
Shivaji, S., Chaturvedi, P., Suresh, K., Reddy, G. S. N., Dutt, C. B. S., Wainwright, M., et al. 2006. Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int. J. Syst. Evol. Microbiol. 56:1465–1473.
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., and Zdobnov, E. M. 2015. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 31:3210–3212.
Sjarpe, D. A., Kandel, Y. R., Chilvers, M. I., Giesler, L. J., Malvick, D. K., McCarville, M. T., et al. 2020. Multi-location evaluation of fluopyram seed treatment and cultivar on root infection by Fusarium virguliforme, foliar symptom development, and yield of soybean. Can. J. Plant Pathol. 42:192–202.
Smith, E. and Backman, P. 1989. Epidemiology of soybean stem canker in the southeastern United States: relationship between time of exposure to inoculum and disease severity. Plant Dis. 73:464–468.
Stammler, G., and Speakman, J. 2006. Microtiter method to test the sensitivity of Botrytis cinerea to boscalid. J. Phytopathol. 154:508–510.
Sun, M., Ye, S., Xu, Z., Wan, L., and Zhao, Y. 2021. Endophytic Bacillus altitudinis Q7 from Ginkgo biloba inhibits the growth of Alternaria alternata in vitro and its inhibition mode of action. Biotechnol. Biotechnol. Equip. 35:880–894.
Sun, Z., Liu, K., Zhang, J., Zhang, Y., Xu, K., Yu, D., et al. 2017. IAA producing Bacillus altitudinis alleviates iron stress in Triticum aestivum L. seedling by both bioleaching of iron and up-regulation of genes encoding ferritins. Plant Soil. 419:1–11.
Sung, J.-M. 1980. An investigation of undescribed black root rot disease of soybean caused by Cylindrocladium (Calonectria) crotalariae in Korea. Korean J. Mycol. 8:53–57.
Taylor, A. G., and Harman, G. E. 1990. Concepts and technologies of selected seed treatments. Annu. Rev. Phytopathol. 28:321–339.
Telles Nascimento, K. J., Debona, D., Silveira, P. R., Silva, L. C., DaMatta, F. M., and Rodrigues, F. Á. 2016. Silicon-induced changes in the antioxidant system reduce soybean resistance to frogeye leaf spot. J. Phytopathol. 164:768–778.
Timofeeva, A. M., Galyamova, M. R., and Sedykh, S. E. 2022. Bacterial siderophores: Classification, biosynthesis, perspectives of use in agriculture. Plants. 11:3065.
Trivedi, P., Mattupalli, C., Eversole, K., and Leach, J. E. 2021. Enabling sustainable agriculture through understanding and enhancement of microbiomes. New Phytol. 230:2129–2147.
Truyens, S., Weyens, N., Cuypers, A., and Vangronsveld, J. 2015. Bacterial seed endophytes: Genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7:40–50.
Tsurumi, T., Morita, S., Maseda, A., Takakai, F., Kaneta, Y., and Tomotaka, A. 2020. Isolation and application of Bacillus isolates to suppress soil-borne diseases of soybean. Soil Microorg. 74:13–19.
USDA. 2024. Soybean Explorer. Available at: https://ipad.fas.usda.gov/cropexplorer/ cropview/commodityView.aspx?cropid=2222000 [Accessed December 12, 2023].
USDA. 2024. USDA Fungal databases. Available at: https://fungi.ars.usda.gov/ [Accessed March 22, 2024].
van Esse, H. P., Reuber, T. L., and van der Does, D. 2020. Genetic modification to improve disease resistance in crops. New Phytol. 225:70–86.
Vanittanakom, N., Loeffler, W., Koch, U., and Jung, G. 1986. Fengycin--a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. (Tokyo). 39:888–901.
Vannier, N., Agler, M., and Hacquard, S. 2019. Microbiota-mediated disease resistance in plants. PLOS Pathog. 15:e1007740.
Veloukas, T., and Karaoglanidis, G. S. 2012. Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity. Pest Manag. Sci. 68:858–864.
Verma, S. k., and White, J. f. 2018. Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.). J. Appl. Microbiol. 124:764–778.
Verma, S. K., Kharwar, R. N., and White, J. F. 2019. The role of seed-vectored endophytes in seedling development and establishment. Symbiosis. 78:107–113.
Verma, S. K., Kingsley, K., Irizarry, I., Bergen, M., Kharwar, R. N., and White, J. F. 2017. Seed-vectored endophytic bacteria modulate development of rice seedlings. J. Appl. Microbiol. 122:1680–1691.
Wagner, J., Coupland, P., Browne, H. P., Lawley, T. D., Francis, S. C., and Parkhill, J. 2016. Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification. BMC Microbiol. 16:274.
Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., et al. 2014. Pilon: An Integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLOS ONE. 9:e112963.
Wang, K. 2018. Food safety and contract edamame: the geopolitics of the vegetable trade in east Asia. Geogr. Rev. 108:274–295.
Wang, X.-R. 2023. Development of molecular detection protocols for soybean plant and soil infected by Calonectria ilicicola. Master Thesis. National Pingtung University of Science and Technology. (In Chinese).
War, A. F., Bashir, I., Reshi, Z. A., Kardol, P., and Rashid, I. 2023. Insights into the seed microbiome and its ecological significance in plant life. Microbiol. Res. 269:127318.
Wassermann, B., Abdelfattah, A., Wicaksono, W. A., Kusstatscher, P., Müller, H., Cernava, T., et al. 2022. The Brassica napus seed microbiota is cultivar-specific and transmitted via paternal breeding lines. Microb. Biotechnol. 15:2379–2390.
Welker, W. L. 2022. Studies on red crown rot of soybean: incidence in Illinois, fungicide seed treatments, and host resistance. Master thesis. University of Illinois Urbana-Champaign.
Weng, J., Wang, Y., Li, J., Shen, Q., and Zhang, R. 2013. Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption. Appl. Microbiol. Biotechnol. 97:8823–8830.
Win, K. T., Kobayashi, M., Tanaka, F., Takeuchi, K., Oo, A. Z., and Jiang, C.-J. 2022. Identification of Pseudomonas strains for the biological control of soybean red crown root rot. Sci. Rep. 12:14510.
Win, K. T., Maeda, S., Kobayashi, M., and Jiang, C.-J. 2021. Silicon enhances resistance to red crown rot caused by Calonectria ilicicola in soybean. Agronomy 11:899.
Wingfield, M. J., De Beer, Z. W., Slippers, B., Wingfield, B. D., Groenewald, J. Z., Lombard, L., et al. 2012. One fungus, one name promotes progressive plant pathology. Mol. Plant Patholl. 13:604–613
Wu, K., Fang, Z., Guo, R., Pan, B., Shi, W., Yuan, S., et al. 2015. Pectin enhances bio-control efficacy by inducing colonization and secretion of secondary metabolites by Bacillus amyloliquefaciens SQY 162 in the rhizosphere of tobacco. PLOS ONE. 10:e0127418.
Wu, P.-H., Tseng, M.-N., Lin, Y.-H., Kuo, C.-H., and Chang, H.-X. 2023. Identification of cyprodinil+ fludioxonil to manage soybean red crown rot using the microplate-based high-throughput screening and pot assay. Plant Dis. 107:1481–1490.
Xavier, S. A., Elis de Mello, F., Prudente da Silva, H., Canteri, M. G., Koga, L. J., de Oliveira Negrão Lopes, I., et al. 2021. Microtiter method to monitor Corynespora cassiicola and sensitivity of the pathogen to carbendazim, prothioconazole and pyraclostrobin. Crop Prot. 144:105554.
Xu, M., Lee, E. M., Wen, Z., Cheng, Y., Huang, W.-K., Qian, X., et al. 2016. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med. 22:1101–1107.
Yagihashi, S., and Iwama, S. 2021. Reduction effect of soybean black root rot by foliar application of liquid phosphite fertilizer. Annu. Rep. Soc. Plant Prot. North Jpn. :35–40.
Yamamoto, R., Nakagawa, A., Shimada, S., Komatsu, S., and Kanematsu, S. 2017. Histopathology of red crown rot of soybean. J. Gen. Plant Pathol. 83:23–32.
Yamamoto, S., and Harayama, S. 1995. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microbiol. 61:1104–1109.
Ye, W., Zeng, D., Xu, M., Yang, J., Ma, J., Wang, Y., et al. 2020. A LAMP-assay-based specific microbiota analysis reveals community dynamics and potential interactions of 13 major soybean root pathogens. J. Integr. Agric. 19:2056–2063.
Zahn, G., and Amend, A. S. 2017. Foliar microbiome transplants confer disease resistance in a critically-endangered plant. PeerJ. 5:e4020.
Zeng, Q., Xie, J., Li, Y., Gao, T., Zhang, X., and Wang, Q. 2021. Comprehensive genomic analysis of the endophytic Bacillus altitudinis strain GLB197, a potential biocontrol agent of grape downy mildew. Front. Genet. 12:729603.
Zhang, D., Xu, H., Gao, J., Portieles, R., Du, L., Gao, X., et al. 2021. Endophytic Bacillus altitudinis strain uses different novelty molecular pathways to enhance plant growth. Front. Microbiol. 12:692313.
Zhang, J., Liu, W., Bu, J., Lin, Y., and Bai, Y. 2023a. Host genetics regulate the plant microbiome. Curr. Opin. Microbiol. 72:102268.
Zhang, J.-H., Chung, T. D. Y., and Oldenburg, K. R. 1999. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4:67–73.
Zhang, X., Ma, Y.-N., Wang, X., Liao, K., He, S., Zhao, X., et al. 2022. Dynamics of rice microbiomes reveal core vertically transmitted seed endophytes. Microbiome. 10:216.
Zhang, Y.-J., Cao, X.-Y., Chen, Y.-J., Cong, H., Wang, Y.-M., Jiang, J.-H., et al. 2023b. Potential utility of endophytic Bacillus altitudinis strain P32-3 as a biocontrol agent for the postharvest prevention of sweet potato black rot. Biol. Control. 186:105350.
Zhou, Q., Jiang, B., Cheng, Y., Ma, Q., Xia, Q., Jiang, Z., et al. 2022. Fine mapping of an adult-plant resistance gene to powdery mildew in soybean cultivar Zhonghuang 24. Crop J. 10:1103-1110
Zhou, Y., Fan, F., Chaisiri, C., Zhu, Y.-T., Zhao, Y., Luo, M.-K., et al. 2021. Sensitivity of Venturia carpophila from China to five fungicides and characterization of carbendazim resistant isolates. Plant Dis. 105: 3990-3997.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93383-
dc.description.abstract大豆是台灣重要出口及經濟作物之一,栽培面積超過13,000公頃,年貿易額超過21億新台幣。自2017年起,台灣新發現由Calonectria ilicicola所引起之土傳性紅冠腐病危害逐漸嚴重,然而國內尚未有推薦之防治方法。為瞭解C. ilicicola於大豆種子發芽至幼苗階段的感染影響,本研究將0至18天共7個不同時期之幼苗移植到已接種病原菌之土壤中觀察病徵發展,結果發現播種一週以內的大豆感病性顯著高於播種18天之大豆,顯示幼苗期保護或可減少紅冠腐病之危害。因此,本研究量化11種殺菌劑對C. ilicicola對菌絲生長的抑制效果,發現得克利、撲克拉、氟派瑞、鋅錳乃浦、賽普護汰寧對菌絲抑制率可達80%以上;另建立高通量之藥劑篩選方法,利用生長曲線及Z' 統計值為標準,納入光學平面掃描模式、吸收波長、孢子濃度及測量時間等條件優化高通量操作之準確度,測得田間80個C. ilicicola分離株對得克利、氟派瑞及賽普護汰寧之EC50平均值分別為2.34、2.46及0.14 ppm,且沒有於族群內發現抗藥性菌株的存在。針對這三種測試藥劑進行種子披衣實驗,發現以賽普護汰寧對幼苗保護效果最佳,顯著減少幼苗倒伏及根腐嚴重度,故推薦以種子披衣賽普護汰寧作為紅冠腐病之即時防治方法。另針對18個大豆及毛豆品種進行紅冠腐病之種子腐敗及根部腐朽抗性篩選,結果顯示不同品種間在根腐抗性上並未發現具有高度抗性之品種,然而對種腐抗性具有差異,其中以「Ralsoy」及「台南11號」抗性最高。鑑於近期研究顯示微生物群相可提供植物抗病性,而大豆種子內的微生物是否提供種腐抗性尚不清楚,故本研究利用抗生素處理四個抗病及四個感病的大豆品種,發現處理之後抗種腐之大豆品種感病度皆顯著增加,證實種子抗性與種子內細菌有關。應用PacBio 16S rRNA基因全長定序及微生物群相分析,發現兩個Bacillus altitudinis ASVs和其他12個分屬六個細菌物種的ASVs在抗性品種中相對數量較高。後續分離得到兩株B. altitudinis TN3S3及 TN5S8,並在接種實驗中顯示B. altitudinis可以恢復種腐抗性,但僅限於五個大豆品種中。計算B. altitudinis分離株TN5S8於此五個大豆品種中發現,其細菌定殖量高於另外三個無法藉由施加B. altitudinis分離株而提升抗病性的大豆品種,顯示B. altitudinis與大豆品種的相容性在種腐抗性上扮演關鍵的角色。此外,qPCR結果顯示B. altitudinis在接種後21天仍可存在於相容品種之大豆地上部,但在接種後9天即無法於根部測得,故可解釋B. altitudinis所提供之種腐抗性之所以無法延續到同一個大豆品種的根腐抗性,並突顯未來應用種子相關細菌進行種子保護時,需考慮細菌與植物品種及組織之相容性。綜觀而論,本研究在大豆紅冠腐病之殺菌劑篩選、抗病性篩選之成果,為後續病害整合防治建立全面的學理基礎,並首次發現微生物群相介導之大豆種腐抗病性。zh_TW
dc.description.abstractSoybean represents one of the pivotal export and economic crops in Taiwan, with a cultivation area exceeding 13,000 hectares and annual revenue of NTD 2.1 billion. Since 2017, soybean production in Taiwan has encountered an increasing threat from red crown rot (RCR), a soil-borne fungal disease caused by Calonectria ilicicola. Yet, no recommended control strategies have been established in Taiwan. To understand the susceptibility of soybean seedlings at different growth stages to RCR, C. ilicicola was inoculated on 7 distinct stages of soybeans, and disease severity and fresh weight reduction rates were evaluated 21 days post-inoculation. The results showed that seedlings less than a week old exhibited significantly higher susceptibility compared to 18-day-old seedlings, indicating that early-stage infection can increase the damage caused by RCR. Therefore, fungicide seed treatments emerge as a viable management approach. Subsequently, this study evaluated 11 fungicides for their inhibitory effects on the mycelial growth of C. ilicicola, identifying that cyprodinil+fludioxonil, fluopyram, mancozeb, prochloraz, tebuconazole exhibited over 80% of inhibition. To further comprehend fungicide resistance of field isolates, a high-throughput screening method was developed, optimized for optical surface-scanning modes, wavelength, spore concentration, and measurement timing based on growth curves and Z' factors. Utilizing this method, the mean EC50 of cyprodinil+fludioxonil, fluopyram, and tebuconazole for 80 C. ilicicola isolates were determined to be 0.14, 2.34, and 2.46 ppm, respectively, with no resistant isolates detected. Greenhouse experiments revealed that cyprodinil+fludioxonil offered the best protection when applied as seed treatment, significantly reducing post-emergence damping-off and root rot severity. Accordingly, cyprodinil+fludioxonil exhibits potential for controlling RCR through seed treatment. On another front, resistant varieties represent the most economical and environmentally friendly control method. Screening 18 soybean varieties in Taiwan revealed that no variety has high root rot resistance, but some varieties such as 'Ralsoy' and 'Tainan No.11' displaying moderate seed rot resistance to RCR. Considering recent research underscores the significance of microbiome and plant-associated microbes in plant disease resistance, antibiotic treatment of 4 susceptible and 4 resistant soybean varieties was evaluated in this study to find that seed rot resistance depends on the seed-associated bacteria. The results of PacBio 16S rRNA full-length sequencing and microbiome analysis revealed two Bacillus altitudinis ASVs and other 12 ASVs being more abundant in the four resistant varieties. Further isolation and inoculation experiments indicated that B. altitudinis isolate TN5S8 could restore seed rot resistance in 5 soybean varieties, for which the bacterial colonization was higher. For 3 other varieties, B. altitudinis TN5S8 not only colonized in a lower titer but also reduced germination rates of the seeds. Additionally, qPCR results showed that B. altitudinis persisted on the apical shoot of compatible variety until 21 days post-inoculation but was undetectable in the roots after 9 days post-inoculation. This result explained the reason that seed rot resistance cannot extend to root rot of the same soybean variety, which offers a new insight into the mechanism of seed rot resistance and highlights the importance of colonization compatibility between bacteria and plant genotypes/tissues. In summary, this study offers novel insights into the fungicides, disease resistance, and microbiome-mediated resistance to manage soybean RCR, providing a comprehensive foundation for future integrated disease management strategies.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-30T16:14:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-30T16:14:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
ABSTRACT V
目次 VIII
圖次 XII
表次 XIV
Chapter 1 Literature Review and Motivation 1
1.1 The importance of soybean in Taiwan 2
1.2 Soybean diseases and pests in Taiwan 2
1.3 Soybean red crown rot (RCR) 3
1.3.1 Distribution of soybean RCR 3
1.3.2 Biology of Calonectria ilicicola 4
1.3.3 Symptoms and etiology of RCR 5
1.3.4 Isolation and preservation of C. ilicicola 7
1.3.5 Molecular identification and diagnosis of C. ilicicola 8
1.3.6 Pathogenicity and virulence studies on C. ilicicola 8
1.3.7 Cultural control of soybean RCR 9
1.3.8 Non-fungicide control 11
1.3.9 Fungicide control 13
1.3.10 Disease resistance 14
1.4 Motivation and overview of this dissertation 15
1.5 References 16
1.6 Figures 22
Chapter 2 Identification of Cyprodinil + Fludioxonil to Manage Soybean Red Crown Rot Using the Microplate-Based High-Throughput Screening and Pot Assay 23
2.1 Introduction 24
2.2 Materials and Methods 28
2.2.1 Isolation and maintenance of Calonectria ilicicola isolates 28
2.2.2 Fungicide selection 28
2.2.3 Optimization for the microplate-based high-throughput screening (MHTS) method 29
2.2.4 Fungicide sensitivity of cyprodinil+fludioxonil, fluopyram, and tebuconazole using the MHTS method 31
2.2.5 Correlation of the EC50 among the MHTS, the poison plate, and the conidial germination inhibition methods 32
2.2.6 Evaluation of fungicide seed treatment using the pot assay 32
2.2.7 Data analysis. 34
2.3 Results 35
2.3.1 Fungicide selection 35
2.3.2 Optimization for the microplate-based high-throughput screening (MHTS) method 35
2.3.3 Correlation of the EC50 among the MHTS, the poison plate, and the conidial germination inhibition results 37
2.3.4 EC50 measurement for cyprodinil+fludioxonil, fluopyram, and tebuconazole using the MHTS method 37
2.3.5 Evaluation of fungicide seed treatment using the pot assay 38
2.4 Discussion 39
2.5 References 43
2.6 Tables 48
2.7 Figures 53
Chapter 3 Effect of Soybean Genotype and Age on Red Crown Rot Susceptibility 59
3.1 Introduction 60
3.2 Material and Methods 62
3.2.1 Evaluating the susceptibility of soybean varieties in Taiwan to seed rot and root rot caused by Calonectria ilicicola 62
3.2.2 The effect of host age on disease severity and plant fresh weight after C. ilicicola infection 64
3.2.3 Statistical analysis 65
3.3 Results 66
3.3.1 Susceptibility of soybean varieties in Taiwan to seed rot and root rot caused by C. ilicicola 66
3.3.2 Age effects on the susceptibility of soybean to red crown rot 66
3.4 Discussion 67
3.5 References 71
3.6 Tables 73
3.7 Figures 76
Chapter 4 Seed Microbiome Analyses Reveal the Colonization Compatibility of Bacillus altitudinis is Pivotal to Provide Seed Rot Resistance of Soybean 81
4.1 Introduction 82
4.2 Material and Methods 86
4.2.1 Preparation of fungal and plant materials 86
4.2.2 Elimination of seed-associated bacteria by antibiotics 86
4.2.3 PacBio 16S rRNA gene full-length sequencing and analyses of the seed microbiome 87
4.2.4 Isolation of seed-associated bacteria and in vitro antagonistic assay against fungal pathogens 89
4.2.5 Colonization of Bacillus altitudinis TN5S8 on different soybean varieties 90
4.2.6 Quantitative PCR (qPCR) detection of Bacillus altitudinis TN5S8 91
4.2.7 Sequencing, assembly, and analyses of B. altitudinis TN5S8 genome 92
4.2.8 Statistical analysis 93
4.2.9 Data availability 93
4.3 Results 94
4.3.1 Phenotyping soybean seeds in response to the inoculation of Calonectria ilicicola 94
4.3.2 PacBio 16S rRNA gene full-length sequencing and analyses of the seed microbiome 94
4.3.3 α-diversity and β-diversity analysis of the seed microbiome 95
4.3.4 Identification of Bacillus altitudinis to inhibit fungal pathogens 96
4.3.5 Colonization of Bacillus altitudinis TN5S8 on soybean is a prerequisite to gain the seed rot resistance in compatible soybean varieties 98
4.4 Discussion 99
4.5 References 105
4.6 Tables 115
4.7 Figures 119
Chapter 5 Overview and Future Prospect 133
5.1 References 136
Appendix 137
-
dc.language.isozh_TW-
dc.title探討殺真菌劑、抗病性與微生物群相於台灣大豆紅冠腐病之防治研究zh_TW
dc.titleStudies on the fungicide efficacy, resistance screening, and microbiome-associated resistance to control soybean red crown rot in Taiwanen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee洪挺軒;郭章信;曾敏南;葉信宏;鍾文鑫zh_TW
dc.contributor.oralexamcommitteeTing-Hsuan Hung;Chang-Hsin Kuo;Min-Nan Tseng;Hsin-Hung Yeh;Wen-Hsin Chungen
dc.subject.keywordCalonectria ilicicola,高通量,種子披衣,抗病篩選,微生物群相,種腐,Bacillus altitudinis,zh_TW
dc.subject.keywordCalonectria ilicicola,High-throughput,Seed coating,Resistance screening,Microbiome,Seed rot,Bacillus altitudinis,en
dc.relation.page140-
dc.identifier.doi10.6342/NTU202402310-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-30-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf8.4 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved