Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93368
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴飛羆zh_TW
dc.contributor.advisorFeipei Laien
dc.contributor.author許紅媛zh_TW
dc.contributor.authorHung-Yuan Hsuen
dc.date.accessioned2024-07-30T16:10:07Z-
dc.date.available2024-07-31-
dc.date.copyright2024-07-30-
dc.date.issued2023-
dc.date.submitted2024-07-22-
dc.identifier.citation[1] Kaviarasan, V., Mohammed, V. & Veerabathiran, R. Genetic predisposition study of heart failure and its association with cardiomyopathy. Egypt Heart J 74, 5 (2022). https://doi.org/10.1186/s43044-022-00240-6.
[2] Michelle M. Kittleson, Mathew S. Maurer, Amrut V. Ambardekar, Renee P. Bullock-Palmer, Patricia P. Chang, Howard J. Eisen, Ajith P. Nair, Jose Nativi-Nicolau, Frederick L. Ruberg and on behalf of the American Heart Association Heart Failure and Transplantation Committee of the Council on Clinical Cardiology Originally published 1 June 2020 https://doi.org/10.1161/CIR.0000000000000792 Circulation. 2020;142:e7–e22
[3] Sepehrvand N, Youngson E, Fine N, Venner CP, Paterson I, Bakal J, Westerhout C, Mcalister FA, Kaul P, Ezekowitz JA. The Incidence and Prevalence of Cardiac Amyloidosis in a Large Community-Based Cohort in Alberta, Canada. J Card Fail. 2022 Feb;28(2):237-246. doi: 10.1016/j.cardfail.2021.08.016. Epub 2021 Sep 9. PMID: 34509599.
[4] Marees AT, de Kluiver H, Stringer S, Vorspan F, Curis E, Marie-Claire C, Derks EM. A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. Int J Methods Psychiatr Res. 2018 Jun;27(2):e1608. doi: 10.1002/mpr.1608. Epub 2018 Feb 27. PMID: 29484742; PMCID: PMC6001694.
[5] 肥厚型心肌病變致病原因重大發現-法布瑞氏症, December 05, 2008, https://www1.vghtpe.gov.tw/msg/%E6%B3%95%E5%B8%83%E7%91%9E%E6%B0%8F%E7%97%87971205.pdf
[6] Cleveland Clinic medical professional, Left Ventricular Non-Compaction (LVNC), June 03, 2022, https://my.clevelandclinic.org/health/diseases/23248-left-ventricular-non-compaction-lvnc
[7] Bustamante JG, Zaidi SRH. Amyloidosis. [Updated 2023 Feb 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470285/
[8] Penn Medicine, Philadelphia, PA, Penn Medicine, Philadelphia, PA, August 05, 2022, https://www.pennmedicine.org/for-patients-and-visitors/patient-information/conditions-treated-a-to-z/cardiac-amyloidosis
[9] Gao, X.R., Chiariglione, M., Qin, K. et al. Explainable machine learning aggregates polygenic risk scores and electronic health records for Alzheimer’s disease prediction. Sci Rep 13, 450 (2023). https://doi.org/10.1038/s41598-023-27551-1
[10] Wei, CY., Yang, JH., Yeh, EC. et al. Genetic profiles of 103,106 individuals in the Taiwan Biobank provide insights into the health and history of Han Chinese. npj Genom. Med. 6, 10 (2021). https://doi.org/10.1038/s41525-021-00178-9
[11] Article Source: A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies, Howie BN, Donnelly P, Marchini J (2009) A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies. PLOS Genetics 5(6): e1000529. https://doi.org/10.1371/journal.pgen.1000529
[12] 臺灣人體生物資料庫TWBv1.0基因型差補 (genotype imputation) 流程biobank.org.tw/file_download/實驗資訊/臺灣人體生物資料庫TWBv1.0基因型差補(genotype%20imputation)流程.pdf
[13] König E, Rainer J, Hernandes VV, Paglia G, Del Greco M F, Bottigliengo D, Yin X, Chan LS, Teumer A, Pramstaller PP, Locke AE, Fuchsberger C. Whole Exome Sequencing Enhanced Imputation Identifies 85 Metabolite Associations in the Alpine CHRIS Cohort. Metabolites. 2022 Jun 29;12(7):604. doi: 10.3390/metabo12070604. PMID: 35888728; PMCID: PMC9320943.
[14] Kunkle, B.W., Grenier-Boley, B., Sims, R. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 51, 414–430 (2019). https://doi.org/10.1038/s41588-019-0358-2
[15] Ran S, He X, Jiang ZX, Liu Y, Zhang YX, Zhang L, Gu GS, Pei Y, Liu BL, Tian Q, Zhang YH, Wang JY, Deng HW. Whole-exome sequencing and genome-wide association studies identify novel sarcopenia risk genes in Han Chinese. Mol Genet Genomic Med. 2020 Aug;8(8):e1267. doi: 10.1002/mgg3.1267. Epub 2020 Jun 1. PMID: 32478482; PMCID: PMC7434604.
[16] GWAS Tutorial for Beginners designed for the course Fundamental Exercise II provided by The Laboratory of Complex Trait Genomics at the University of Tokyo, https://cloufield.github.io/GWASTutorial/
[17] Delaneau, O., Marchini, J. & The 1000 Genomes Project Consortium. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nat Commun 5, 3934 (2014). https://doi.org/10.1038/ncomms4934
[18] Article Source: A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies, Howie BN, Donnelly P, Marchini J (2009) A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies. PLOS Genetics 5(6): e1000529. https://doi.org/10.1371/journal.pgen.1000529
[19] Uffelmann, E., Huang, Q.Q., Munung, N.S. et al. Genome-wide association studies. Nat Rev Methods Primers 1, 59 (2021). https://doi.org/10.1038/s43586-021-00056-9
[20] 人类基因组的Phasing原理是什么? - 黄树嘉的文章 - 知乎 https://zhuanlan.zhihu.com/p/36289359
[21] 【文献阅读笔记】(2):使用IMPUTES2和minimac软件完成群体特异性的基因型填充 (Imputation) http://t.csdn.cn/DZOko
[22] Scitable by nature EDUCATION - Hardy-Weinberg equilibrium https://www.nature.com/scitable/definition/hardy-weinberg-equilibrium-122/
[23] PLINK2.0 https://www.cog-genomics.org/plink/2.0/
[24] Shing Wan Choi, Paul F O'Reilly, PRSice-2: Polygenic Risk Score software for biobank-scale data, GigaScience, Volume 8, Issue 7, July 2019, giz082, https://doi.org/10.1093/gigascience/giz082
[25] Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet. 2014 Jul 3;95(1):5-23. doi: 10.1016/j.ajhg.2014.06.009. PMID: 24995866; PMCID: PMC4085641.
[26] Ma C, Blackwell T, Boehnke M, Scott LJ; GoT2D investigators. Recommended joint and meta-analysis strategies for case-control association testing of single low-count variants. Genet Epidemiol. 2013 Sep;37(6):539-50. doi: 10.1002/gepi.21742. Epub 2013 Jun 20. PMID: 23788246; PMCID: PMC4049324.
[27] Choi SW, O'Reilly PF. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience. 2019 Jul 1;8(7):giz082. doi: 10.1093/gigascience/giz082. PMID: 31307061; PMCID: PMC6629542.
[28] Tadros, R., Francis, C., Xu, X. et al. Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nat Genet 53, 128–134 (2021). https://doi.org/10.1038/s41588-020-00762-2
[29] Harper, A.R., Goel, A., Grace, C. et al. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet 53, 135–142 (2021). https://doi.org/10.1038/s41588-020-00764-0
[30] Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA; NHLBI GO Exome Sequencing Project—ESP Lung Project Team; Christiani DC, Wurfel MM, Lin X. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet. 2012 Aug 10;91(2):224-37. doi: 10.1016/j.ajhg.2012.06.007. Epub 2012 Aug 2. PMID: 22863193; PMCID: PMC3415556.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93368-
dc.description.abstract本研究旨在運用機器學習技術,結合多基因風險分數,預測心肌病的發生。我們採用臺灣大學醫學院附設醫院(NTUH)和臺灣生物資料庫(TWB)的資料集,首先進行全基因組關聯研究(GWAS),以確定單核苷酸多態性(SNPs)、二元特徵和年齡之間的相關性。隨後在多基因風險分數(PRS)分析中,我們從發現性GWAS中獲取具體權重(連續特徵的β值和二元特徵的對數比率)。計算目標樣本中所有個體的PRS後,這些分數可以應用於邏輯回歸分析中,預測與感興趣特徵有遺傳重疊的特徵。我們使用先進的機器學習模型和交叉驗證技術,評估NTUH和TWB數據集中預測心肌病發展的準確性。在評估中,我們考慮了多種心肌病特徵和預測因素,包括PRS、作為潛在危險因素的臨床參數和ICD-10以及ICD-10-CM。zh_TW
dc.description.abstractThe main goal of this study is to utilize machine learning techniques to combine polygenic risk scores and predict the occurrence of cardiomyopathy disease. To achieve this, we employ datasets from the National Taiwan University Hospital and Taiwan Biobank and conduct initial genome-wide association studies to identify correlations between single nucleotide polymorphisms and phenotype [4].
Afterwards, for the analysis of polygenic risk scores, specific weights are derived from discovery genome-wide association studies. These weights are then used to calculate the polygenic risk scores for all individuals in the target sample. These scores can be utilized in a firth regression analysis to predict phenotype that are expected to have genetic overlap with the specific trait of interest, i.e., cardiomyopathy [4].
To evaluate the accuracy of predicting cardiomyopathy development, we use cutting-edge machine learning models and cross-validation techniques on both the National Taiwan University Hospital and Taiwan Biobank datasets. In our evaluation, we take into account various cardiomyopathy features and predictors, including polygenic risk scores, clinical parameters as potential risk factors, as well as ICD-10 and ICD-10-CM codes [9].
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-30T16:10:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-30T16:10:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 #
誌謝 i
Acknowledgments ii
中文摘要 iv
ABSTRACT v
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Background 1
1.1.1 Cardiomyopathy 1
1.1.2 Genome-wide Polygenic Risk Scores 4
1.1.3 Objective 6
Chapter 2 Method 7
2.1 Dataset 7
2.1.1 NTUH dataset (case dataset) 7
2.1.2 Genotyping of NTUH dataset 7
2.2 Imputation 8
2.2.1 Establish a reference haplotype panel exclusively for the Taiwanese population 10
2.2.2 Impute the 231 individuals with WES on Taiwanese-specific haplotype panel 11
2.2.3 Validating imputation process 11
2.3 Genotype Quality Control 13
2.4 Rare-Variant Association Test 14
Chapter 3 Result 17
Chapter 4 Conclusion and Future Work 19
REFERENCE 34
-
dc.language.isoen-
dc.subject心肌病zh_TW
dc.subject臺灣生物資料庫zh_TW
dc.subject單核苷酸多態性zh_TW
dc.subject多基因風險分數zh_TW
dc.subject全基因組關聯研究zh_TW
dc.subject機器學習zh_TW
dc.subjectpolygenic risk scoresen
dc.subjectcardiomyopathyen
dc.subjectTaiwan Biobanken
dc.subjectsingle nucleotide polymorphismsen
dc.subjectmachine learningen
dc.subjectgenome-wide association studiesen
dc.title透過機器學習結合多重基因風險指數預測心肌病變zh_TW
dc.titleMachine Learning Aggregates Polygenic Risk Scores for Cardiomyopathy Disease Predictionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor莊志明zh_TW
dc.contributor.coadvisorJyh-Ming Jimmy Juangen
dc.contributor.oralexamcommittee李妮鍾;張哲瑋;曾新育zh_TW
dc.contributor.oralexamcommitteeNi-Chung Lee;Che Wei Chang;Hsin-Yu Tsengen
dc.subject.keyword心肌病,臺灣生物資料庫,單核苷酸多態性,多基因風險分數,全基因組關聯研究,機器學習,zh_TW
dc.subject.keywordcardiomyopathy,Taiwan Biobank,single nucleotide polymorphisms,genome-wide association studies,polygenic risk scores,machine learning,en
dc.relation.page38-
dc.identifier.doi10.6342/NTU202401923-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-23-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf1.19 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved