請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93368完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴飛羆 | zh_TW |
| dc.contributor.advisor | Feipei Lai | en |
| dc.contributor.author | 許紅媛 | zh_TW |
| dc.contributor.author | Hung-Yuan Hsu | en |
| dc.date.accessioned | 2024-07-30T16:10:07Z | - |
| dc.date.available | 2024-07-31 | - |
| dc.date.copyright | 2024-07-30 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2024-07-22 | - |
| dc.identifier.citation | [1] Kaviarasan, V., Mohammed, V. & Veerabathiran, R. Genetic predisposition study of heart failure and its association with cardiomyopathy. Egypt Heart J 74, 5 (2022). https://doi.org/10.1186/s43044-022-00240-6.
[2] Michelle M. Kittleson, Mathew S. Maurer, Amrut V. Ambardekar, Renee P. Bullock-Palmer, Patricia P. Chang, Howard J. Eisen, Ajith P. Nair, Jose Nativi-Nicolau, Frederick L. Ruberg and on behalf of the American Heart Association Heart Failure and Transplantation Committee of the Council on Clinical Cardiology Originally published 1 June 2020 https://doi.org/10.1161/CIR.0000000000000792 Circulation. 2020;142:e7–e22 [3] Sepehrvand N, Youngson E, Fine N, Venner CP, Paterson I, Bakal J, Westerhout C, Mcalister FA, Kaul P, Ezekowitz JA. The Incidence and Prevalence of Cardiac Amyloidosis in a Large Community-Based Cohort in Alberta, Canada. J Card Fail. 2022 Feb;28(2):237-246. doi: 10.1016/j.cardfail.2021.08.016. Epub 2021 Sep 9. PMID: 34509599. [4] Marees AT, de Kluiver H, Stringer S, Vorspan F, Curis E, Marie-Claire C, Derks EM. A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. Int J Methods Psychiatr Res. 2018 Jun;27(2):e1608. doi: 10.1002/mpr.1608. Epub 2018 Feb 27. PMID: 29484742; PMCID: PMC6001694. [5] 肥厚型心肌病變致病原因重大發現-法布瑞氏症, December 05, 2008, https://www1.vghtpe.gov.tw/msg/%E6%B3%95%E5%B8%83%E7%91%9E%E6%B0%8F%E7%97%87971205.pdf [6] Cleveland Clinic medical professional, Left Ventricular Non-Compaction (LVNC), June 03, 2022, https://my.clevelandclinic.org/health/diseases/23248-left-ventricular-non-compaction-lvnc [7] Bustamante JG, Zaidi SRH. Amyloidosis. [Updated 2023 Feb 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470285/ [8] Penn Medicine, Philadelphia, PA, Penn Medicine, Philadelphia, PA, August 05, 2022, https://www.pennmedicine.org/for-patients-and-visitors/patient-information/conditions-treated-a-to-z/cardiac-amyloidosis [9] Gao, X.R., Chiariglione, M., Qin, K. et al. Explainable machine learning aggregates polygenic risk scores and electronic health records for Alzheimer’s disease prediction. Sci Rep 13, 450 (2023). https://doi.org/10.1038/s41598-023-27551-1 [10] Wei, CY., Yang, JH., Yeh, EC. et al. Genetic profiles of 103,106 individuals in the Taiwan Biobank provide insights into the health and history of Han Chinese. npj Genom. Med. 6, 10 (2021). https://doi.org/10.1038/s41525-021-00178-9 [11] Article Source: A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies, Howie BN, Donnelly P, Marchini J (2009) A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies. PLOS Genetics 5(6): e1000529. https://doi.org/10.1371/journal.pgen.1000529 [12] 臺灣人體生物資料庫TWBv1.0基因型差補 (genotype imputation) 流程biobank.org.tw/file_download/實驗資訊/臺灣人體生物資料庫TWBv1.0基因型差補(genotype%20imputation)流程.pdf [13] König E, Rainer J, Hernandes VV, Paglia G, Del Greco M F, Bottigliengo D, Yin X, Chan LS, Teumer A, Pramstaller PP, Locke AE, Fuchsberger C. Whole Exome Sequencing Enhanced Imputation Identifies 85 Metabolite Associations in the Alpine CHRIS Cohort. Metabolites. 2022 Jun 29;12(7):604. doi: 10.3390/metabo12070604. PMID: 35888728; PMCID: PMC9320943. [14] Kunkle, B.W., Grenier-Boley, B., Sims, R. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 51, 414–430 (2019). https://doi.org/10.1038/s41588-019-0358-2 [15] Ran S, He X, Jiang ZX, Liu Y, Zhang YX, Zhang L, Gu GS, Pei Y, Liu BL, Tian Q, Zhang YH, Wang JY, Deng HW. Whole-exome sequencing and genome-wide association studies identify novel sarcopenia risk genes in Han Chinese. Mol Genet Genomic Med. 2020 Aug;8(8):e1267. doi: 10.1002/mgg3.1267. Epub 2020 Jun 1. PMID: 32478482; PMCID: PMC7434604. [16] GWAS Tutorial for Beginners designed for the course Fundamental Exercise II provided by The Laboratory of Complex Trait Genomics at the University of Tokyo, https://cloufield.github.io/GWASTutorial/ [17] Delaneau, O., Marchini, J. & The 1000 Genomes Project Consortium. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nat Commun 5, 3934 (2014). https://doi.org/10.1038/ncomms4934 [18] Article Source: A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies, Howie BN, Donnelly P, Marchini J (2009) A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies. PLOS Genetics 5(6): e1000529. https://doi.org/10.1371/journal.pgen.1000529 [19] Uffelmann, E., Huang, Q.Q., Munung, N.S. et al. Genome-wide association studies. Nat Rev Methods Primers 1, 59 (2021). https://doi.org/10.1038/s43586-021-00056-9 [20] 人类基因组的Phasing原理是什么? - 黄树嘉的文章 - 知乎 https://zhuanlan.zhihu.com/p/36289359 [21] 【文献阅读笔记】(2):使用IMPUTES2和minimac软件完成群体特异性的基因型填充 (Imputation) http://t.csdn.cn/DZOko [22] Scitable by nature EDUCATION - Hardy-Weinberg equilibrium https://www.nature.com/scitable/definition/hardy-weinberg-equilibrium-122/ [23] PLINK2.0 https://www.cog-genomics.org/plink/2.0/ [24] Shing Wan Choi, Paul F O'Reilly, PRSice-2: Polygenic Risk Score software for biobank-scale data, GigaScience, Volume 8, Issue 7, July 2019, giz082, https://doi.org/10.1093/gigascience/giz082 [25] Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet. 2014 Jul 3;95(1):5-23. doi: 10.1016/j.ajhg.2014.06.009. PMID: 24995866; PMCID: PMC4085641. [26] Ma C, Blackwell T, Boehnke M, Scott LJ; GoT2D investigators. Recommended joint and meta-analysis strategies for case-control association testing of single low-count variants. Genet Epidemiol. 2013 Sep;37(6):539-50. doi: 10.1002/gepi.21742. Epub 2013 Jun 20. PMID: 23788246; PMCID: PMC4049324. [27] Choi SW, O'Reilly PF. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience. 2019 Jul 1;8(7):giz082. doi: 10.1093/gigascience/giz082. PMID: 31307061; PMCID: PMC6629542. [28] Tadros, R., Francis, C., Xu, X. et al. Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nat Genet 53, 128–134 (2021). https://doi.org/10.1038/s41588-020-00762-2 [29] Harper, A.R., Goel, A., Grace, C. et al. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet 53, 135–142 (2021). https://doi.org/10.1038/s41588-020-00764-0 [30] Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA; NHLBI GO Exome Sequencing Project—ESP Lung Project Team; Christiani DC, Wurfel MM, Lin X. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet. 2012 Aug 10;91(2):224-37. doi: 10.1016/j.ajhg.2012.06.007. Epub 2012 Aug 2. PMID: 22863193; PMCID: PMC3415556. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93368 | - |
| dc.description.abstract | 本研究旨在運用機器學習技術,結合多基因風險分數,預測心肌病的發生。我們採用臺灣大學醫學院附設醫院(NTUH)和臺灣生物資料庫(TWB)的資料集,首先進行全基因組關聯研究(GWAS),以確定單核苷酸多態性(SNPs)、二元特徵和年齡之間的相關性。隨後在多基因風險分數(PRS)分析中,我們從發現性GWAS中獲取具體權重(連續特徵的β值和二元特徵的對數比率)。計算目標樣本中所有個體的PRS後,這些分數可以應用於邏輯回歸分析中,預測與感興趣特徵有遺傳重疊的特徵。我們使用先進的機器學習模型和交叉驗證技術,評估NTUH和TWB數據集中預測心肌病發展的準確性。在評估中,我們考慮了多種心肌病特徵和預測因素,包括PRS、作為潛在危險因素的臨床參數和ICD-10以及ICD-10-CM。 | zh_TW |
| dc.description.abstract | The main goal of this study is to utilize machine learning techniques to combine polygenic risk scores and predict the occurrence of cardiomyopathy disease. To achieve this, we employ datasets from the National Taiwan University Hospital and Taiwan Biobank and conduct initial genome-wide association studies to identify correlations between single nucleotide polymorphisms and phenotype [4].
Afterwards, for the analysis of polygenic risk scores, specific weights are derived from discovery genome-wide association studies. These weights are then used to calculate the polygenic risk scores for all individuals in the target sample. These scores can be utilized in a firth regression analysis to predict phenotype that are expected to have genetic overlap with the specific trait of interest, i.e., cardiomyopathy [4]. To evaluate the accuracy of predicting cardiomyopathy development, we use cutting-edge machine learning models and cross-validation techniques on both the National Taiwan University Hospital and Taiwan Biobank datasets. In our evaluation, we take into account various cardiomyopathy features and predictors, including polygenic risk scores, clinical parameters as potential risk factors, as well as ICD-10 and ICD-10-CM codes [9]. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-30T16:10:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-30T16:10:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 #
誌謝 i Acknowledgments ii 中文摘要 iv ABSTRACT v CONTENTS vi LIST OF FIGURES viii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Cardiomyopathy 1 1.1.2 Genome-wide Polygenic Risk Scores 4 1.1.3 Objective 6 Chapter 2 Method 7 2.1 Dataset 7 2.1.1 NTUH dataset (case dataset) 7 2.1.2 Genotyping of NTUH dataset 7 2.2 Imputation 8 2.2.1 Establish a reference haplotype panel exclusively for the Taiwanese population 10 2.2.2 Impute the 231 individuals with WES on Taiwanese-specific haplotype panel 11 2.2.3 Validating imputation process 11 2.3 Genotype Quality Control 13 2.4 Rare-Variant Association Test 14 Chapter 3 Result 17 Chapter 4 Conclusion and Future Work 19 REFERENCE 34 | - |
| dc.language.iso | en | - |
| dc.subject | 心肌病 | zh_TW |
| dc.subject | 臺灣生物資料庫 | zh_TW |
| dc.subject | 單核苷酸多態性 | zh_TW |
| dc.subject | 多基因風險分數 | zh_TW |
| dc.subject | 全基因組關聯研究 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | polygenic risk scores | en |
| dc.subject | cardiomyopathy | en |
| dc.subject | Taiwan Biobank | en |
| dc.subject | single nucleotide polymorphisms | en |
| dc.subject | machine learning | en |
| dc.subject | genome-wide association studies | en |
| dc.title | 透過機器學習結合多重基因風險指數預測心肌病變 | zh_TW |
| dc.title | Machine Learning Aggregates Polygenic Risk Scores for Cardiomyopathy Disease Prediction | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 莊志明 | zh_TW |
| dc.contributor.coadvisor | Jyh-Ming Jimmy Juang | en |
| dc.contributor.oralexamcommittee | 李妮鍾;張哲瑋;曾新育 | zh_TW |
| dc.contributor.oralexamcommittee | Ni-Chung Lee;Che Wei Chang;Hsin-Yu Tseng | en |
| dc.subject.keyword | 心肌病,臺灣生物資料庫,單核苷酸多態性,多基因風險分數,全基因組關聯研究,機器學習, | zh_TW |
| dc.subject.keyword | cardiomyopathy,Taiwan Biobank,single nucleotide polymorphisms,genome-wide association studies,polygenic risk scores,machine learning, | en |
| dc.relation.page | 38 | - |
| dc.identifier.doi | 10.6342/NTU202401923 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-23 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 1.19 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
