請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93367完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃育熙 | zh_TW |
| dc.contributor.advisor | Yu-Hsi Huang | en |
| dc.contributor.author | 陳柏宇 | zh_TW |
| dc.contributor.author | Bo-Yu Chen | en |
| dc.date.accessioned | 2024-07-30T16:09:43Z | - |
| dc.date.available | 2024-07-31 | - |
| dc.date.copyright | 2024-07-30 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-18 | - |
| dc.identifier.citation | [1] DONEA, Jean; GIULIANI, S.; HALLEUX, Jean-Pierre. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Computer methods in applied mechanics and engineering, 1982, 33.1-3: 689-723.
[2] KWAK, M. K.; KIM, K. C. Axisymmetric vibration of circular plates in contact with fluid. Journal of Sound and Vibration, 1991, 146.3: 381-389. [3] AMABILI, M.; PASQUALINI, A.; DALPIAZ, Giorgio. Natural frequencies and modes of free-edge circular plates vibrating in vacuum or in contact with liquid. Journal of sound and vibration, 1995, 188.5: 685-699. [4] AMABILI, M.; KWAK, M. K. Free vibrations of circular plates coupled with liquids: revising the Lamb problem. Journal of fluids and structures, 1996, 10.7: 743-761. [5] KWAK, M. K. Hydroelastic vibration of circular plates. Journal of Sound and Vibration, 1997, 201.3: 293-303. [6] SOULI, Mohamed; OUAHSINE, A.; LEWIN, L. ALE formulation for fluid–structure interaction problems. Computer methods in applied mechanics and engineering, 2000, 190.5-7: 659-675. [7] LU, C. H.; HE, Y. S.; WU, G. X. Coupled analysis of nonlinear interaction between fluid and structure during impact. Journal of fluids and structures, 2000, 14.1: 127-146. [8] LIAO, Chuan-Chieh, et al. Simulating flows with moving rigid boundary using immersed-boundary method. Computers & Fluids, 2010, 39.1: 152-167. [9] 廖展誼,馬劍清,「矩形平板於流固耦合問題的振動特性與暫態波傳之理論分析、數值計算與實驗量測」,國立台灣大學機械工程研究所博士論文,2018。 [10] CHEN, Shiyi; DOOLEN, Gary D. Lattice Boltzmann method for fluid flows. Annual review of fluid mechanics, 1998, 30.1: 329-364. [11] 林昆豪,林昭安,「晶格波茲曼法結合沉浸邊界法以模擬三維複雜流場」,國立清華大學動力機械工程研究所碩士論文,2005. [12] YOUNG, Dana. Vibration of rectangular plates by the Ritz method. 1950. [13] WARBURTON, G. B. The vibration of rectangular plates. Proceedings of the Institution of Mechanical Engineers, 1954, 168.1: 371-384. [14] A. W. Leissa, “Vibration of plates, NASA SP-160.” US Washington. W. Leissa. J, Sound and Vibration, 1978, vol. 56, pp. 313. [15] GORMAN, D. J. Free vibration analysis of cantilever plates by the method of superposition. Journal of Sound and Vibration, 1976, 49.4: 453-467. [16] WARBURTON, G. B.; EDNEY, S. L. Vibrations of rectangular plates with elastically restrained edges. Journal of Sound and Vibration, 1984, 95.4: 537-552. [17] KIM, C. S.; YOUNG, P. G.; DICKINSON, S. M. On the flexural vibration of rectangular plates approached by using simple polynomials in the Rayleigh-Ritz method. Journal of Sound and Vibration, 1990, 143.3: 379-394. [18] ZHANG, Xuefeng; LI, Wen L. Vibrations of rectangular plates with arbitrary non-uniform elastic edge restraints. Journal of Sound and Vibration, 2009, 326.1-2: 221-234. [19] Cady, W. G. Piezoelectricity : an introduction to the theory and applications of electromechanical phenomena in crystals (1st ed.). McGraw-Hill Book Company, 1946 [20] Tiersten, H. F. Linear Piezoelectric Plate Vibrations. New York: Plenum, 1969. [21] IEEE standard on piezoelectricity. IEEE Ultrasonics Ferroelectrics and Frequency Control Society, ANSI/IEEE Std 176, 1987. [22] 吳亦莊,馬劍清,「理論解析與實驗量測壓電平板的面外振動及特性探討」,國立台灣大學機械工程研究所碩士論文,2009。 [23] 林蕙君,舒貽忠,「串聯陣列式壓電振動子能量擷取系統之分析研究」,國立台灣大學應用力學研究所碩士論文,2012。 [24] 曾國舜,馬劍清,「壓電纖維複材與壓電陶瓷雙晶片的動態特性及應用於能量擷取系統之探討」,國立台灣大學工學院機械工程學系碩士論文,2012。 [25] 周宛婷,黃育熙,「電極設計方法應用於壓電陶瓷平板與雙晶片提升振動能量擷取系統效能研究」,國立台灣科技大學機械工程學系碩士論文,2013。 [26] WANG, S. Y. A finite element model for the static and dynamic analysis of a piezoelectric bimorph. International Journal of Solids and Structures, 2004, 41.15: 4075-4096. [27] MA, Chien-Ching, et al. Experimental measurement and numerical analysis on resonant characteristics of cantilever plates for piezoceramic bimorphs. ieee transactions on ultrasonics, ferroelectrics, and frequency control, 2007, 54.2: 227-239. [28] 黃育熙,馬劍清,「壓電陶瓷平板、薄殼、與雙晶片三維耦合動態特性之實驗量測、數值計算、與理論解析」,國立台灣大學機械工程研究所博士論文,2009。 [29] 鄭雅倫,趙振綱,黃育熙,「串聯型三層壓電雙晶片於電極設計搭配模態振形之能量截取效率提升」,國立台灣科技大學機械工程學系碩士論文,2016。 [30] BEAUDAN, Patrick Bruno. Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number. Stanford University, 1995. [31] BHATNAGAR, Prabhu Lal; GROSS, Eugene P.; KROOK, Max. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical review, 1954, 94.3: 511. [32] KANG, Shin K.; HASSAN, Yassin A. The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows. Journal of Computational Physics, 2013, 232.1: 100-117. [33] https://ftp.lstc.com/anonymous/outgoing/jday/manuals/LS-DYNA_manual_Vol_III_R7.0.pdf. [34] PESKIN, Charles S. The immersed boundary method. Acta numerica, 2002, 11: 479-517. [35] ZOU, Qisu; HE, Xiaoyi. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of fluids, 1997, 9.6: 1591-1598. [36] NORBERG, Christoffer. Fluctuating lift on a circular cylinder: review and new measurements. Journal of Fluids and Structures, 2003, 17.1: 57-96. [37] Mendez, M.; Nardo, M.; Benocci, C. Running FineOpen43 Simulations at VKI: A tutorial and a collection of scripts. 2017. [38] LIENHARD, John H., et al. Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders. Pullman, WA: Technical Extension Service, Washington State University, 1966. [39] RAJANI, B. N.; KANDASAMY, A.; MAJUMDAR, Sekhar. LES of flow past circular cylinder at Re= 3900. Journal of Applied Fluid Mechanics, 2016, 9.3: 1421-1435. [40] Breuer, Michael. Large eddy simulation of the subcritical flow past a circular cylinder: numerical and modeling aspects. International journal for numerical methods in fluids, 1998, 28.9: 1281-1302. [41] White, Frank M.; MAJDALANI, Joseph. Viscous fluid flow. New York: McGraw-Hill, 2006. [42] 洪國勛,黃育熙,「流體致振壓電能量擷取系統之數值開發與風洞實驗」,國立台灣大學機械工程研究所碩士論文,2022。 [43] JENSEN, Kim D. Flow measurements. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2004, 26: 400-419. [44] SHIMPI, R. P.; PATEL, H. G. A two variable refined plate theory for orthotropic plate analysis. International Journal of Solids and Structures, 2006, 43.22-23: 6783-6799. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93367 | - |
| dc.description.abstract | 本論文利用晶格波茲曼法結合沉浸式邊界法以及平板疊加法,應用於壓電能量擷取系統單邊固定壓電陶瓷雙晶片之數值分析,分析由金屬圓柱於風洞中產生之卡門渦街激振壓電陶瓷雙晶片之振動特性,並以實驗量測進行驗證。
平板疊加法計算先以平板理論將壓電陶瓷雙晶片的三層結構等效成單層平板,再利用疊加法將單邊固定的矩形平板拆成四個結構進行疊加,其特性可滿足其中四個邊界條件,剩下的四個邊界條件透過正交函數展開得到壓電平板在單邊固定邊界下之共振頻率與模態振形,並將結果與實驗及有限元素法模擬結果進行驗證。 以晶格波茲曼法結合沉浸式邊界法建立單向流固耦合之二維圓柱繞流數值分析模型,針對圓柱所受之阻力、升力、卡門渦街之頻率進行模型之收斂性分析,並與文獻、商用模擬軟體之收斂後的模型進行驗證,並分析不同流速下的結果,以三維圓柱繞流數值模型進行收斂性分析,找出足夠準確且計算時間合理的模型設定,分析不同流速下的結果並與文獻做比較,在模型中加入壓電平板的幾何邊界,並加以平板疊加法之動態響應分析,建構雙向流固耦合模型以計算可變形壓電平板在流場中與流場的交互作用,求解壓電能量擷取系統之位移與輸出電壓,並從結果可看出當流場中的卡門渦街頻率接近壓電平板之第一振動模態頻率時,壓電能量擷取系統有最大的變形與最高的輸出電壓。 使用晶格波茲曼法進行數值計算透過搭配圖形處理器,相比使用中央處理器進行多核心運算,計算速度提高14倍,考慮到使用晶格波茲曼法結合沉浸式邊界法在高網格數模型會有計算速度大幅下降的現象,提出映射層演算法演算法並加入後,在二維高網格數模型中速度提升為原先6倍以上,且計算時間不受固體邊界增加而大幅降低,使模型更適用於複雜幾何結構之流固耦合分析。在雙向流固耦合模型中透過修正固體位移計算之更新週期,在不影響結果的精度下將速度提升為原先2.5倍,並搭配平板受力簡化模型進一步提高單邊固定壓電平板之第一振動模態響應計算速度。 實驗部分先以雷射都卜勒振動儀量測壓電平板第一振動模態,其頻率與疊加法理論、有限元素法模擬等結果均相符。壓電能量擷取系統之風洞實驗,先以皮托管校正熱線測速儀後,在無障礙物之風洞進行之均勻度及紊流強度量測,在確保風洞流場品質下加入障礙物金屬圓柱及壓電片,建構完整的壓電能量擷取系統,並分別以雷射都卜勒振動儀及示波器,量測在不同流速下壓電平板之位移與電壓,並與雙向流固耦合數值方法結果做比較,兩者有高度的對應性。 | zh_TW |
| dc.description.abstract | This research uses lattice Boltzmann method(LBM) combined with immersed boundary method(IBM) and the superposition method to apply the analytical solution to the energy harvesting system with piezoelectric ceramic bimorphs in the cantilevered boundary condition. Analyze the Karman vortex produced by the metal circular cylinder vibrating piezoelectric ceramic bimorphs, and verified it by experimental measurements.
In the calculation of the superposition method, the three-layer structure of the piezoelectric ceramic bimorph is equivalent to a sigle-layer plate based on the plate theory, and the superposition method is used to split the rectangular plate into four structures to satisfy the plate's boundary conditions. The resonant frequency and mode shape of the piezoelectric plate with one side fixed are obtained by theoretical analysis and verified with the finite element method (FEM) results. The lattice Boltzmann method combined with the immersed boundary method was used to establish a numerical analysis model of one-way fluid-structure interaction simulation for flow pass a cylinder in two and three dimension. The convergence analysis of the model was performed on the drag force, lift force, and the frequency of the Karman vortex, and verify the results with literature and commercial simulation software, and analyze the results under different flow rates. A two-way fluid-structure interaction simulation model is constructed by adding the boundary of the piezoelectric plate and the dynamic response of the superposition method to calculate the interaction between the deformable piezoelectric plate and the flow field, and solve the displacement and voltage of the piezoelectric energy harvester system. From the results, it can be seen that the piezoelectric energy harvester system has the largest deformation and the highest voltage when the Karman vortex frequency is close to the first vibration mode frequency of the piezoelectric plate. Using a graphics processor unit to perform LBM analysis, the calculation speed can be up to 14 times that of multi-core computing using a central processor. Since the calculation speed of using IB-LBM model will decrease significantly in high grid number models, the Flash Translation Layer(FTL) algorithm was proposed and added, and the speed was increased to the original more than 6 times, and the calculation time is not highly affected by solid boundary, making the model more suitable for fluid-structure interaction simulation with complex geometric structures. By correcting the update cycle of the solid displacement calculation in the two-way fluid-structure interaction simulation, the speed is increased to 2.5 times, and the accuracy of the results is not affected. The model is combined with a simplified forced plate model to further improve the calculation speed. In the experiment part, the Laser Dopple Vibrometer(LDV) was used to measure the first vibration mode of the piezoelectric plate, and the result was consistent with the results of superposition method and finite element method simulation. For the wind tunnel experiment of the piezoelectric energy harvesting system, a hot-wire anemometer was calibrated by pitot turb, and used to measure the uniformity and turbulence intensity in the wind tunnel without obstacle to ensure the quality of the flow field in the wind tunnel. A complete piezoelectric energy harvest system was constructed by adding onstacle and piezoelectric in the wind tunnel. An oscilloscope and LDV were used to measure the displacement and voltage of the piezoelectric plate at different flow rates. There is a high degree of correspondence between the results of experiments and the two-way fluid-structure interaction simulation model. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-30T16:09:43Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-30T16:09:43Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II abstract IV 符號表 XXI 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 內容簡介 6 第二章 單向流固耦合數值方法 8 2.1 晶格波茲曼法 8 2.1.1 波茲曼方程式 8 2.1.2 離散的波茲曼方程式與模型 10 2.1.3 紊流模型-大渦流模擬(Large Eddy Simulation, LES) 13 2.2 沉浸式邊界法 14 2.2.1 波茲曼方程式力量項 14 2.2.2 狄拉克函數與固體格點計算 15 2.3 數值模型設定 16 2.3.1 模擬步驟 16 2.3.2 邊界條件設定 18 2.3.3 作用力計算 21 2.4 二維模擬分析與結果 23 2.4.1 圓柱繞流模型設定 23 2.4.2 物理量的無因次化與分析方法 24 2.4.3 時間步長收斂性分析 30 2.4.4 網格收斂性分析並與文獻比較 36 2.4.5 不同流速下的結果 41 2.4.6 Ansys Fluent模型設置與收斂性分析 50 2.4.7 Ansys Fluent模型不同流速下的結果並與IB-LBM模型比較 65 2.5 三維模擬分析與結果 75 2.5.1 圓柱繞流模型設定 75 2.5.2 物理量的無因次化與分析方法 76 2.5.3 收斂性分析 78 2.5.4 不同流速下的結果 85 第三章 雙向流固耦合數值方法 94 3.1 壓電薄板疊加法與機電耦合轉換效應 94 3.2 IB-LBM數值計算結合薄板理論解析 96 3.2.1 沉浸式邊界計算修正 96 3.2.2 更新週期之影響與選擇 96 3.2.3 簡化平板模型 109 3.3 壓電能量擷取系統之模擬結果 112 3.3.1 不同流速下之模擬結果 112 3.3.2 雙向流固耦合與單向流固耦合結果比較 129 第四章 平行運算與程式優化 135 4.1 CUDA平行運算 136 4.1.1 GPU計算優勢 136 4.1.2 流固耦合模型計算流程 136 4.1.3 衡量計算速度與CUDA加速成效 138 4.2 程式加速之效果與影響 140 4.2.1 以FTL演算法進行程式優化 140 第五章 雙向流固耦合之壓電能量擷取系統實驗 146 5.1 實驗儀器原理與架設 146 5.1.1 皮托管 146 5.1.2 熱線測速儀 147 5.2 風洞量測與熱線測速儀校正 150 5.2.1 風洞設計與風機規格 150 5.2.2 熱線測速儀校正 156 5.2.3 風洞之流場均勻度與紊流強度量測 157 5.3 能量擷取系統量測 164 5.3.1 雷射都卜勒測振儀 164 5.3.2 治具設計與量測實驗設置 166 5.3.3 實驗量測結果與討論 168 第六章 結論與未來展望 197 6.1 結論 197 6.2 未來展望 199 參考文獻 200 附錄-壓電薄板理論與機電耦合效應 205 A 壓電陶瓷雙晶片 205 A.1 本構方程式 205 A.2 薄板力學假設 212 A.3壓電材料之電學假設 214 A.4統御方程式 217 B. 矩形懸臂版之疊加法與實驗量測 221 B.1 懸臂版(CFFF)之疊加法理論推導 223 C. 平板振動量測 232 C.1 量測結果及結果比較 232 D. 壓電平板之機電耦合效應 233 D.1 壓電平板受力下位移的暫態響應 233 D.2 壓電平板開路下的暫態電壓響應 234 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 晶格波茲曼法 | zh_TW |
| dc.subject | 沉浸式邊界法 | zh_TW |
| dc.subject | 單向流固耦合 | zh_TW |
| dc.subject | 雙向流固耦合 | zh_TW |
| dc.subject | 壓電平板 | zh_TW |
| dc.subject | 能量擷取系統 | zh_TW |
| dc.subject | 渦流致振 | zh_TW |
| dc.subject | 疊加法 | zh_TW |
| dc.subject | 映射層演算法 | zh_TW |
| dc.subject | 受力簡化模型 | zh_TW |
| dc.subject | 風洞量測 | zh_TW |
| dc.subject | one-way fluid-structure interaction | en |
| dc.subject | immersed boundary method | en |
| dc.subject | wind tunnel measurement | en |
| dc.subject | simplified forced plate model | en |
| dc.subject | Flash Translation Layer algorithm | en |
| dc.subject | superposition | en |
| dc.subject | vortex-induced vibration | en |
| dc.subject | energy harvest system | en |
| dc.subject | piezoelectric plate | en |
| dc.subject | two-way fluid-structure interaction | en |
| dc.subject | lattice Boltzmann method | en |
| dc.title | 結合沉浸式邊界法與晶格波茲曼法進行雙向流固耦合分析於壓電能量擷取系統 | zh_TW |
| dc.title | Combining the immersed boundary method and the lattice Boltzmann method with wind tunnel experiments to analyze the piezoelectric energy harvesting system | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 廖川傑;廖展誼 | zh_TW |
| dc.contributor.oralexamcommittee | Chuan-Chieh Liao;Chan-Yi Liao | en |
| dc.subject.keyword | 晶格波茲曼法,沉浸式邊界法,單向流固耦合,雙向流固耦合,壓電平板,能量擷取系統,渦流致振,疊加法,映射層演算法,受力簡化模型,風洞量測, | zh_TW |
| dc.subject.keyword | lattice Boltzmann method,immersed boundary method,one-way fluid-structure interaction,two-way fluid-structure interaction,piezoelectric plate,energy harvest system,vortex-induced vibration,superposition,Flash Translation Layer algorithm,simplified forced plate model,wind tunnel measurement, | en |
| dc.relation.page | 236 | - |
| dc.identifier.doi | 10.6342/NTU202401881 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 9.73 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
