Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93359
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻zh_TW
dc.contributor.advisorTai-Horng Youngen
dc.contributor.author吳映萱zh_TW
dc.contributor.authorYing-Syuan Wuen
dc.date.accessioned2024-07-29T16:26:25Z-
dc.date.available2024-07-30-
dc.date.copyright2024-07-29-
dc.date.issued2024-
dc.date.submitted2024-07-23-
dc.identifier.citation[1] Brand-Saberi BEM, Schäfer T. Trachea. Thoracic Surgery Clinics. 2014;24(1):1-5. doi:https://doi.org/10.1016/j.thorsurg.2013.09.004
[2] Furlow PW, Mathisen DJ. Surgical anatomy of the trachea. Annals of Cardiothoracic Surgery. 2018;7(2):255-260. doi:10.21037/acs.2018.03.01
[3] Epstein SK. Anatomy and physiology of tracheostomy. PubMed. 2005;50(4):476-482. https://pubmed.ncbi.nlm.nih.gov/15807905.
[4] Mieczkowski B, Seavey BF. Anatomy, head and neck, Trachea. StatPearls. February 2019. https://europepmc.org/abstract/MED/28846296.
[5] Khalid U, Uchikov P, Hristov B, et al. Surgical Innovations in Tracheal Reconstruction: A review on Synthetic Material fabrication. Medicina. 2023;60(1):40. doi:10.3390/medicina60010040
[6] Morgan RV. Diseases of the Trachea. In: Handbook of Small Animal Practice. 5th ed. Saunders; 2008:160-161.
[7] Haykal S, Salna M, Waddell TK, Hofer SO. Advances in tracheal reconstruction. Plastic and Reconstructive Surgery Global Open. 2014;2(7):e178. doi:10.1097/gox.0000000000000097
[8] Frejo L, Grande DA. 3D-bioprinted tracheal reconstruction: an overview. Bioelectronic Medicine. 2019;5(1). doi:10.1186/s42234-019-0031-1
[9] Fabre D, Kolb F, Fadel E, et al. Successful Tracheal Replacement in Humans Using Autologous Tissues: An 8-Year Experience. The Annals of Thoracic Surgery. 2013;96(4):1146-1155. doi:https://doi.org/10.1016/j.athoracsur.2013.05.073
[10] Martinod E, Seguin A, Karel Pfeuty, et al. Long-term evaluation of the replacement of the trachea with an autologous aortic graft. The Annals of Thoracic Surgery. 2003;75(5):1572-1578. doi:https://doi.org/10.1016/s0003-4975(03)00120-6
[11] Martinod E, Zegdi R, Zakine G, et al. A novel approach to tracheal replacement: The use of an aortic graft. Journal of Thoracic and Cardiovascular Surgery. 2001;122(1):197-198. doi:10.1067/mtc.2001.114346
[12] Fabre D, Kolb F, Fadel E, et al. Successful Tracheal Replacement in Humans Using Autologous Tissues: An 8-Year Experience. The Annals of Thoracic Surgery. 2013;96(4):1146-1155. doi:https://doi.org/10.1016/j.athoracsur.2013.05.073
[13] Martinod E, Chouahnia K, Radu DM, et al. Feasibility of Bioengineered Tracheal and Bronchial Reconstruction Using Stented Aortic Matrices. JAMA. 2018;319(21):2212-2222. doi:10.1001/jama.2018.4653
[14] Stemper BD, Yoganandan N, Stineman MR, Gennarelli TA, Baisden JL, Pintar FA. Mechanics of Fresh, Refrigerated, and Frozen Arterial Tissue. Journal of Surgical Research. 2007;139(2):236-242. doi:https://doi.org/10.1016/j.jss.2006.09.001
[15] Camasão DB, Mantovani D. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Materials Today Bio. 2021;10:100106. doi:https://doi.org/10.1016/j.mtbio.2021.100106
[16] Fiala R, Kochová P, Tereza Kubíková, et al. Mechanical and structural properties of human aortic and pulmonary allografts do not deteriorate in the first 10 years of cryopreservation and storage in nitrogen. Cell and tissue banking. 2019;20(2):221-241. doi:https://doi.org/10.1007/s10561-019-09762-x
[17] Gilbert T, Sellaro T, Badylak S. Decellularization of tissues and organs. Biomaterials. March 2006. doi:10.1016/j.biomaterials.2006.02.014
[18] Kobayashi M, Ohara M, Hashimoto Y, et al. In vitroevaluation of surface biological properties of decellularized aorta for cardiovascular use. Journal of Materials Chemistry B. 2020;8(48):10977-10989. doi:10.1039/d0tb01830a
[19] Fitzpatrick JC, Clark PM, Capaldi FM. Effect of Decellularization Protocol on the Mechanical Behavior of Porcine Descending Aorta. International Journal of Biomaterials. 2010;2010:1-11. doi:https://doi.org/10.1155/2010/620503
[20] Schaner PJ, Martin ND, Tulenko TN, et al. Decellularized vein as a potential scaffold for vascular tissue engineering. Journal of Vascular Surgery. 2004;40(1):146-153. doi:https://doi.org/10.1016/j.jvs.2004.03.033
[21] Kazemi T, Mohammadpour AA, Matin MM, Mahdavi-Shahri N, Dehghani H, Kazemi Riabi SH. Decellularized bovine aorta as a promising 3D elastin scaffold for vascular tissue engineering applications. Regenerative Medicine. 2021;16(12):1037-1050. doi:https://doi.org/10.2217/rme-2021-0062
[22] Lu Q, Ganesan K, Simionescu DT, Vyavahare NR. Novel porous aortic elastin and collagen scaffolds for tissue engineering. Biomaterials. 2004;25(22):5227-5237. doi:https://doi.org/10.1016/j.biomaterials.2003.12.019
[23] Wu B, Zheng C, Ding K, et al. Cross-Linking porcine pericardium by 3,4-Dihydroxybenzaldehyde: a novel method to improve the biocompatibility of bioprosthetic valve. Biomacromolecules. 2020;22(2):823-836. doi:10.1021/acs.biomac.0c01554
[24] Guo G, Jin L, Jin W, Chen L, Lei Y, Wang Y. Radical polymerization-crosslinking method for improving extracellular matrix stability in bioprosthetic heart valves with reduced potential for calcification and inflammatory response. Acta Biomaterialia. 2018;82:44-55. doi:10.1016/j.actbio.2018.10.017
[25] Williams DF, Bezuidenhout D, De Villiers J, Human P, Zilla P. Long-Term stability and biocompatibility of pericardial bioprosthetic heart valves. Frontiers in Cardiovascular Medicine. 2021;8. doi:10.3389/fcvm.2021.728577
[26] Griesemer A, Yamada K, Sykes M. Xenotransplantation: immunological hurdles and progress toward tolerance. Immunological Reviews. 2014;258(1):241-258. doi:10.1111/imr.12152
[27] Manji RA, Lee W, Cooper DKC. Xenograft bioprosthetic heart valves: Past, present and future. International Journal of Surgery. 2015;23:280-284. doi:10.1016/j.ijsu.2015.07.009
[28] Aguiari P, Iop L, Favaretto F, et al. In vitro comparative assessment of decellularized bovine pericardial patches and commercial bioprosthetic heart valves. Biomedical Materials. 2017;12(1):015021. doi:10.1088/1748-605x/aa5644
[29] ZEIGER E, GOLLAPUDI B, SPENCER P. Genetic toxicity and carcinogenicity studies of glutaraldehyde: a review. Mutation Research/Reviews in Mutation Research. 2005;589(2):136-151. doi:https://doi.org/10.1016/j.mrrev.2005.01.001
[30] Umashankar PR, Mohanan PV, Kumari TV. Glutaraldehyde treatment elicits toxic response compared to decellularization in bovine pericardium. Toxicology International/Indian Journal of Toxicology. 2012;19(1):51. doi:10.4103/0971-6580.94513
[31] Groth C. The potential advantages of transplanting organs from pig to man: A transplant Surgeon’s view. Indian Journal of Urology. 2007;23(3):305. doi:https://doi.org/10.4103/0970-1591.33729
[32] Zhou Q, Li T, Wang K, et al. Current status of xenotransplantation research and the strategies for preventing xenograft rejection. Frontiers in Immunology. 2022;13. doi:10.3389/fimmu.2022.928173
[33] de Beaufort HWL, Ferrara A, Conti M, et al. Comparative Analysis of Porcine and Human Thoracic Aortic Stiffness. European Journal of Vascular and Endovascular Surgery. 2018;55(4):560-566. doi:https://doi.org/10.1016/j.ejvs.2017.12.014
[34] Schaner PJ, Martin ND, Tulenko TN, et al. Decellularized vein as a potential scaffold for vascular tissue engineering. Journal of Vascular Surgery. 2004;40(1):146-153. doi:10.1016/j.jvs.2004.03.033
[35] Dahl SLM, Koh J, Prabhakar V, Niklason LE. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplantation. 2003;12(6):659-666. doi:10.3727/000000003108747136
[36] Zhang R, Wang Y, Chen L, et al. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH. Acta Biomaterialia. 2018;72:196-205. doi:10.1016/j.actbio.2018.03.055
[37] Lim HG, Kim GB, Jeong S, Kim YJ. Development of a next-generation tissue valve using a glutaraldehyde-fixed porcine aortic valve treated with decellularization, α-galactosidase, space filler, organic solvent and detoxification. European Journal of Cardio-Thoracic Surgery. 2014;48(1):104-113. doi:https://doi.org/10.1093/ejcts/ezu385
[38] Byrne GW, McGregor CGA. First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprosthesis (by Naso et al.). Xenotransplantation. 2013;21(1):11-12. doi:https://doi.org/10.1111/xen.12072
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93359-
dc.description.abstract目前已有成功臨床案例顯示,氣管重建手術可透過冷凍保存的同種異體主動脈進行置換。本研究旨在評估延長冷凍保存時間對主動脈移植物的影響,同時探討豬主動脈作為替代品之適用性,期能尋求更多可供氣管重建的替代移植物。結果顯示,人類主動脈在攝氏負80度的條件下可冷凍保存長達十二個月,並且其生物力學特性並無明顯下降,能夠支持其在氣管重建中的應用且無機械失效風險。細胞實驗證實,新鮮和冷凍保存的人類主動脈均能支持人類脂肪幹細胞的生長,但在二維模型中無法誘導其分化為軟骨。關於豬主動脈替代品,使用Triton X-100/EDTA和SDS的去細胞方法效果不佳,而氰溴化物(CNBr)去細胞方法雖能有效去除細胞,卻破壞了組織的生物力學強度。然而,實驗結果指向透過0.625%的戊二醛處理後的豬主動脈,其減弱的生物力學強度仍在可接受範圍內,並成功掩蓋了α-半乳糖苷寡糖(alphaGal)表位,凸顯經戊二醛處理的豬主動脈作為臨床替代品的可能。這項研究確立了使用冷凍保存的人類主動脈和經特殊處理的豬主動脈在氣管重建中的可行性,為再生醫學的進步指引出一條可行途徑。zh_TW
dc.description.abstractCryopreserved allogenic aorta has proven effective in tracheal reconstruction, demonstrating clinical success. This study aims to enhance the availability of aortic grafts for tracheal reconstruction by evaluating the biomechanical properties and biological viability of prolonged cryopreservation, as well as exploring porcine aortas as alternatives. Human aortas were cryopreserved at -80℃ for up to twelve months, revealing no significant biomechanical degradation, thereby supporting their use in tracheal reconstruction without risk of mechanical failure. In vitro studies indicated that both fresh and cryopreserved human aortas support the growth of human adipose-derived stem cells but do not induce chondrogenic differentiation in a 2D model. Regarding porcine aortic alternatives, decellularization methods using Triton X-100/EDTA and SDS were inadequate, while cyanogen bromide (CNBr) decellularization compromised biomechanical integrity despite effective cell removal. However, glutaraldehyde treatment at 0.625% resulted in acceptable biomechanical properties and successful masking of alpha-galactose-1,3-galactose (alphaGal) epitopes, highlighting the potential of glutaraldehyde-treated porcine aortas as clinical alternatives. This research underscores the feasibility of utilizing cryopreserved human aortas and treated porcine aortas in tracheal reconstruction, offering insights for advancements in regenerative medicine.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-29T16:26:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-29T16:26:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents v
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
1.1 Tracheal reconstruction 1
1.2 A novel tracheal reconstruction method: using cryopreserved aortic allograft 2
1.3 Biological evaluation of prolonged cryopreserved aortic grafts 5
1.4 Decellularization of porcine aortas 7
1.5 Learnings from glutaraldehyde treated pericardial bioprosthetic heart valves 8
1.6 Motivation and aims 10
1.7 Research framework 11
Chapter 2 Materials and methods 12
2.1 Chemicals and materials 12
2.2 Experimental instruments 14
2.3 Analysis software 14
2.4 Methods 15
2.4.1 Human tissue specimen preparation 15
2.4.2 Porcine tissue specimen preparation 15
2.4.3 Tensile stress-strain testing 15
2.4.4 Biomechanical properties evaluation 16
2.4.5 In vitro studies 16
2.4.6 Cell viability assay 17
2.4.7 Histological evaluation 18
2.4.8 Triton X-100/EDTA decellularization procedure 18
2.4.9 SDS decellularization procedure 18
2.4.10 CNBr decellularization procedure 19
2.4.11 Glutaraldehyde fixation 19
2.4.12 Cytotoxicity testing 19
2.4.13 AlphaGal activity evaluation 20
2.4.14 Statistical analysis 21
Chapter 3 Results 22
3.1 Biomechanical properties of human aorta samples 22
3.2 Human aorta patches seeded with stem cells 27
3.3 Comparison between human and porcine aorta samples 34
3.4 Characterization of decellularized porcine aortas 38
3.5 Characterization of glutaraldehyde-treated porcine aortas 41
Chapter 4 Discussion 47
4.1 Biomechanical effects of prolonged cryopreservation on aortas 47
4.2 In vitro study of human aortic grafts 48
4.3 Decellularization of porcine aortas 50
4.4 Glutaraldehyde fixation of porcine aortas 52
4.5 Study limitations 54
Chapter 5 Conclusion 56
References 57
-
dc.language.isoen-
dc.subject氣管重建zh_TW
dc.subject戊二醛處理zh_TW
dc.subject去細胞化zh_TW
dc.subject主動脈移植物zh_TW
dc.subject冷凍保存zh_TW
dc.subjectcryopreservationen
dc.subjectdecellularizationen
dc.subjectTracheal reconstructionen
dc.subjectglutaraldehyde treatmenten
dc.subjectaortic graftsen
dc.title探討延長冷凍保存對氣管重建中主動脈移植物的影響並評估豬主動脈替代品之適用性zh_TW
dc.titleExamining the Effects of Prolonged Cryopreservation on Aortic Grafts in Tracheal Reconstruction and Evaluating the Suitability of Porcine Aortic Alternativesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳晉興;徐紹勛zh_TW
dc.contributor.oralexamcommitteeJin-Shing Chen;Hsao-Hsun Hsuen
dc.subject.keyword氣管重建,冷凍保存,主動脈移植物,去細胞化,戊二醛處理,zh_TW
dc.subject.keywordTracheal reconstruction,cryopreservation,aortic grafts,decellularization,glutaraldehyde treatment,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU202402043-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-24-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
dc.date.embargo-lift2029-07-23-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.81 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved