Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93354
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王建凱zh_TW
dc.contributor.advisorChien-Kai Wangen
dc.contributor.author楊昕珮zh_TW
dc.contributor.authorShin-Pei Yangen
dc.date.accessioned2024-07-29T16:24:54Z-
dc.date.available2024-07-30-
dc.date.copyright2024-07-29-
dc.date.issued2024-
dc.date.submitted2024-07-26-
dc.identifier.citation[1] Elices, M. G. G. V., Guinea, G. V., Gomez, J., & Planas, J. (2002). The cohesive zone model: advantages, limitations and challenges. Engineering Fracture Mechanics, 69(2), 137-163.
[2] Dogan, F., Hadavinia, H., Donchev, T., & Bhonge, P. S. (2012). Delamination of impacted composite structures by cohesive zone interface elements and tiebreak contact. Central European Journal of Engineering, 2, 612-626.
[3] Camacho, G. T., & Ortiz, M. (1996). Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures, 33(20-22), 2899-2938.
[4] Ortiz, M., & Pandolfi, A. (1999). Finite‐deformation irreversible cohesive elements for three‐dimensional crack‐propagation analysis. International Journal for Numerical Methods in Engineering, 44(9), 1267-1282.
[5] Xu, C., Siegmund, T., & Ramani, K. (2003). Rate-dependent crack growth in adhesives: I. Modeling approach. International Journal of Adhesion and Adhesives, 23(1), 9-13.
[6] Needleman, A. (1990). An analysis of decohesion along an imperfect interface. International Journal of Fracture, 42, 21-40.
[7] Wang, J., Kang, Y. L., Qin, Q. H., Fu, D. H., & Li, X. Q. (2008). Identification of time-dependent interfacial mechanical properties of adhesive by hybrid/inverse method. Computational Materials Science, 43(4), 1160-1164.
[8] Sun, S., & Chen, H. (2011). The interfacial fracture behavior of foam core composite sandwich structures by a viscoelastic cohesive model. Science China Physics, Mechanics and Astronomy, 54, 1481-1487.
[9] Xu, X. P., & Needleman, A. (1994). Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids, 42(9), 1397-1434.
[10] Cui, H. R., Li, H. Y., & Shen, Z. B. (2019). Cohesive zone model for mode-I fracture with viscoelastic-sensitivity. Engineering Fracture Mechanics, 221, 106578.
[11] Nazemzadeh, N., Soufivand, A. A., & Abolfathi, N. (2022). Computing the bond strength of 3D printed polylactic acid scaffolds in mode I and II using experimental tests, finite element method and cohesive zone modeling. The International Journal of Advanced Manufacturing Technology, 118(7), 2651-2667.
[12] Gorman, J. M., & Thouless, M. D. (2019). The use of digital-image correlation to investigate the cohesive zone in a double-cantilever beam, with comparisons to numerical and analytical models. Journal of the Mechanics and Physics of Solids, 123, 315-331.
[13] Rajan, S., Sutton, M. A., Fuerte, R., & Kidane, A. (2018). Traction-separation relationship for polymer-modified bitumen under Mode I loading: Double cantilever beam experiment with stereo digital image correlation. Engineering Fracture Mechanics, 187, 404-421.
[14] Blaysat, B., Hoefnagels, J. P., Lubineau, G., Alfano, M., & Geers, M. G. (2015). Interface debonding characterization by image correlation integrated with double cantilever beam kinematics. International Journal of Solids and Structures, 55, 79-91.
[15] Shen, B., & Paulino, G. H. (2011). Direct extraction of cohesive fracture properties from digital image correlation: a hybrid inverse technique. Experimental Mechanics, 51, 143-163.
[16] Park, S. Y., & Jeong, H. Y. (2022). Determination of cohesive zone model parameters for tape delamination based on tests and finite element simulations. Journal of Mechanical Science and Technology, 36(11), 5657-5666.
[17] Xu, C., Siegmund, T., & Ramani, K. (2003). Rate-dependent crack growth in adhesives II. Experiments and analysis. International Journal of Adhesion and Adhesives, 23(1), 15-22.
[18] Zavattieri, P. D., Hector Jr, L. G., & Bower, A. F. (2007). Determination of the effective mode-I toughness of a sinusoidal interface between two elastic solids. International Journal of Fracture, 145(3), 167-180.
[19] Ciamarra, M. P., Coniglio, A., & Nicodemi, M. (2005). Shear instabilities in granular mixtures. Physical Review Letters, 94(18), 188001.
[20] Janarthanan, V., Garrett, P. D., Stein, R. S., & Srinivasarao, M. (1997). Adhesion enhancement in immiscible polymer bilayer using oriented macroscopic roughness. Polymer, 38(1), 105-111.
[21] Asaro, R. J., & Tiller, W. A. (1972). Interface morphology development during stress corrosion cracking: Part I. Via surface diffusion. Metallurgical and Materials Transactions B, 3, 1789-1796.
[22] Mullins, W. W., & Sekerka, R. F. (1964). Stability of a planar interface during solidification of a dilute binary alloy. Journal of Applied Physics, 35(2), 444-451.
[23] Barthelat, F., Tang, H., Zavattieri, P. D., Li, C. M., & Espinosa, H. D. (2007). On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. Journal of the Mechanics and Physics of Solids, 55(2), 306-337.
[24] Yang, L., & Qu, J. (1993). Fracture mechanics parameters for cracks on a slightly undulating interface. International Journal of Fracture, 64, 79-91.
[25] Zavattieri, P. D., Hector Jr, L. G., & Bower, A. F. (2008). Cohesive zone simulations of crack growth along a rough interface between two elastic–plastic solids. Engineering Fracture Mechanics, 75(15), 4309-4332.
[26] Sehr, S., Amidi, S., & Begley, M. R. (2019). Interface delamination vs. bulk cracking along wavy interfaces. Engineering Fracture Mechanics, 206, 64-74.
[27] Gao, Y. F., & Bower, A. F. (2004). A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces. Modelling and Simulation in Materials Science and Engineering, 12(3), 453-463.
[28] Bower, A. F. (2009). Applied Mechanics of Solids. CRC press.
[29] Beléndez, T., Neipp, C., & Beléndez, A. (2002). Large and small deflections of a cantilever beam. European Journal of Physics, 23(3), 371-379.
[30] Belendez, T., Neipp, C., & Beléndez, A. (2003). Numerical and experimental analysis of a cantilever beam: a laboratory project to introduce geometric nonlinearity in mechanics of materials. International Journal of Engineering Education, 19(6), 885-892.
[31] Anderson, T. L., & Anderson, T. L. (2005). Fracture Mechanics: Fundamentals and Applications. CRC press.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93354-
dc.description.abstract本研究首先使用材料界面之指數型內聚力模型,透過Abaqus使用者定義元素功能,自行定義內聚力元素之牽引力-分離律,建構內聚力元素於三維空間中之機械力學表現。在建構內聚力元素時,需建立其幾何定義、積分點資訊、形狀函數、法向與切向單位向量、法向與切向分離位移、節點力及切線剛度矩陣。再透過上下塊材搭配單一內聚力元素之模擬,並與數學解析做比較,得以驗證內聚力元素之正確性。
對於高分子或是合金材料,其界面強度具有分離速率相依的特性,故本論文嘗試以兩種方式將內聚力模型與黏彈性材料模型結合,分別為將內聚力模型與Maxwell模型並聯,與內聚力模型與Kelvin模型串聯,得到界面分離速率相依之黏彈性內聚力模型。本論文詳細說明黏彈性內聚力模型理論之推導過程,並分別建構內聚力元素,最後亦將內聚力元素之模擬結果與方程式之計算結果進行比對與驗證。
在實驗量測方面,一常用方法為透過雙懸臂樑變形量測做出界面法向開裂之內聚力模型參數評估,本論文實作材料界面指數型內聚力模型參數評估程序,且驗證數學模型與參數的準確性。再以兩種黏彈性內聚力模型描述雙懸臂樑之材料界面性質,得出在改變雙懸臂樑分離速率下,會得到不同的界面強度表現。
考量在工程與生物材料之界面多為不平整表面,因此本論文建構二維之正弦波輪廓界面,探討界面幾何與界面強度之特性。經由調整波形幾何特徵,並以模擬結果與數學模型相互驗證,得以總結改變界面內聚力模型參數,材料界面強度隨之受到影響,並且總體接觸面積在材料界面強度上扮演至關重要的角色。最後,使用黏彈性內聚力模型定義正弦波界面,將產生速率相依的表現。
zh_TW
dc.description.abstractThis study first employs an exponential cohesive zone model of material interface and utilizes the user-defined element in Abaqus to define the traction-separation law of cohesive elements, thereby constructing the mechanical behavior of cohesive elements in three-dimensional space. During the construction of cohesive element, geometric definitions, integration point information, shape functions, normal and tangential unit vectors, normal and tangential separation displacement, nodal forces, and tangent stiffness matrices need to be established. The simulation of cohesive elements is then performed in conjunction with upper and lower bulk materials, and compared with the analytical solution to verify the cohesive elements.
For polymer or alloy materials, the strength of interface exhibits rate-dependent characteristics. Hence, this thesis attempts to combine the rate-independent cohesive zone model with viscoelastic material models in two ways: combining a rate-independent cohesive zone model with a Maxwell element in parallel, and combining a rate-independent cohesive zone model with a Kelvin element in series, resulting in rate-dependent viscoelastic cohesive zone models. This thesis elaborates on the derivation of the viscoelastic cohesive zone model theory, constructs cohesive elements, and finally verifies the simulation results of cohesive elements against the results calculated from equations.
Regarding experimental measurements, a commonly used method involves using the double cantilever beam test to evaluate the parameters of cohesive zone models for normal opening of interface. This thesis implements the parameter evaluation procedure for the exponential cohesive zone model of material interfaces and verifies the accuracy of the mathematical model and parameters. Furthermore, the material interface properties of the double cantilever beam are described using two viscoelastic cohesive zone models, and it can be concluded that under different opening velocities, different interface strength performances are obtained.
Considering that interfaces in engineering and biological materials are often uneven surfaces, this thesis constructs a two-dimensional model of sinusoidal profile interface to investigate the characteristics of geometry and interface strength. By adjusting the geometric characteristics of the waveform and verifying the simulation results with mathematical models, it is concluded that changing the parameters of the cohesive zone model of the interface affects the strength of interface. Moreover, the total contact area plays a crucial role in the strength of overall interface. Finally, using viscoelastic cohesive zone models to define the sinusoidal interface will result in rate-dependent behavior.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-29T16:24:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-29T16:24:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 v
圖次 ix
表次 xiv
第一章 緒論 1
1.1 研究目的 1
1.2 文獻回顧 2
1.3 研究內容介紹 4
第二章 二維與三維內聚力模型 6
2.1 指數型內聚力模型介紹 6
2.2 Abaqus使用者定義元素介紹 9
2.3 內聚力元素於有限元素法中之定義方式 10
2.3.1 幾何定義 10
2.3.2 積分點資訊 12
2.3.3 形狀函數 13
2.3.4 法向單位向量與切向單位向量 15
2.3.5 法向與切向分離位移 18
2.3.6 節點力 20
2.3.7 切線剛度矩陣 22
2.3.7.1 二維切線剛度矩陣 22
2.3.7.2 三維切線剛度矩陣 25
2.4 內聚力元素驗證 28
2.4.1 模型建立 28
2.4.2 模擬結果與驗證 30
第三章 黏彈性內聚力模型:內聚力模型與Maxwell模型並聯 33
3.1 彈簧與Maxwell模型並聯之黏彈性材料模型 33
3.2 內聚力模型與Maxwell模型並聯之黏彈性內聚力模型 35
3.3 內聚力元素建立 36
3.4 內聚力元素驗證 39
3.4.1 模型建立 39
3.4.2 模擬結果 39
3.4.3 驗證 41
第四章 黏彈性內聚力模型:內聚力模型與Kelvin模型串聯 45
4.1 彈簧與Kelvin模型串聯之黏彈性材料模型 45
4.2 內聚力模型與Kelvin模型串聯之黏彈性內聚力模型 46
4.3 內聚力元素建立 47
4.4 內聚力元素驗證 50
4.4.1 模型建立 50
4.4.2 模擬結果 50
4.4.3 驗證 52
第五章 應用內聚力模型於雙懸臂樑實驗 56
5.1 雙懸臂樑實驗數學模型 56
5.2 雙懸臂樑實驗數學模型驗證 59
5.2.1 懸臂樑於自由端受集中力 59
5.2.2 懸臂樑受均勻分佈力與自由端受集中力 62
5.2.3 懸臂樑受內聚力與自由端受集中力 64
5.3 建立指數型內聚力模型參數取得方法 67
5.4 指數型內聚力模型參數驗證 68
5.4.1 模型建立 68
5.4.2 模擬結果與驗證 69
5.4.3 收斂性分析 71
5.4.3.1 網格設定 71
5.4.3.2 收斂性分析結果 72
5.5 應用黏彈性內聚力模型於雙懸臂樑範例 81
5.5.1 夾芯雙懸臂樑範例驗證 81
5.5.1.1 模型建立 81
5.5.1.2 模擬結果與驗證 83
5.5.2 雙懸臂樑範例 85
5.5.2.1 模型建立 85
5.5.2.2 模擬結果 86
第六章 應用內聚力模型於正弦波界面 89
6.1 模型建立 89
6.2 數學模型 90
6.3 改變正弦波幾何之模擬結果與驗證 92
6.3.1 改變振幅、固定波長 92
6.3.2 改變波長、固定振幅 93
6.3.3 相同路徑長 94
6.4 改變內聚力模型參數 97
6.4.1 調整Tmax 99
6.4.1.1 不同振幅 101
6.4.1.2 不同波長 104
6.4.2 調整δn 107
6.4.2.1 不同振幅 108
6.4.2.2 不同波長 111
6.4.3 調整δt 113
6.4.3.1 不同振幅 115
6.4.3.2 不同波長 117
6.4.4 小結 120
6.5 應用黏彈性內聚力模型於正弦波界面 121
6.5.1 使用內聚力模型與Maxwell模型並聯之黏彈性內聚力模型 122
6.5.2 使用內聚力模型與Kelvin模型串聯之黏彈性內聚力模型 123
第七章 結論與未來展望 124
7.1 結論 124
7.2 未來展望 125
參考文獻 126
-
dc.language.isozh_TW-
dc.subject有限元素法zh_TW
dc.subject使用者定義元素zh_TW
dc.subject內聚力模型zh_TW
dc.subject黏彈性內聚力模型zh_TW
dc.subject內聚力模型參數評估zh_TW
dc.subject正弦波界面zh_TW
dc.subjectUser-Defined Elementsen
dc.subjectSinusoidal Interfaceen
dc.subjectEvaluation of Cohesive Zone Model Parametersen
dc.subjectViscoelastic Cohesive Zone Modelen
dc.subjectFinite Element Methoden
dc.subjectCohesive Zone Modelen
dc.title融合材料內聚力之有限元素分析於變形速率相依與週期輪廓界面之機械強度解析zh_TW
dc.titleFinite Element Analysis of Mechanical Strength on Deformation Rate-Dependent and Periodic Profile Interfaces with Cohesive Zone Modelsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃育熙;莊嘉揚;廖國基;吳筱梅zh_TW
dc.contributor.oralexamcommitteeYu-Hsi Huang;Jia-Yang Juang;Kuo-Chi Liao;Hsiao-Mei Wuen
dc.subject.keyword有限元素法,使用者定義元素,內聚力模型,黏彈性內聚力模型,內聚力模型參數評估,正弦波界面,zh_TW
dc.subject.keywordFinite Element Method,User-Defined Elements,Cohesive Zone Model,Viscoelastic Cohesive Zone Model,Evaluation of Cohesive Zone Model Parameters,Sinusoidal Interface,en
dc.relation.page129-
dc.identifier.doi10.6342/NTU202401938-
dc.rights.note未授權-
dc.date.accepted2024-07-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
4.79 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved