請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93351
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張皓巽 | zh_TW |
dc.contributor.advisor | Hao-Xun Chang | en |
dc.contributor.author | 黃建群 | zh_TW |
dc.contributor.author | Jian-Chiun Huang | en |
dc.date.accessioned | 2024-07-29T16:24:00Z | - |
dc.date.available | 2024-07-30 | - |
dc.date.copyright | 2024-07-29 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-17 | - |
dc.identifier.citation | 吳昭慧、鄭安秀、陳昇寬、陳盈丞及林明瑩。2017。大豆栽培管理技術。行政院農業委員會臺南區農業改良場。農世股份有限公司。19頁。
吳昭慧。2019。肥料處理對秋作大豆產量及品質之影響。臺南區農業改良場研究彙報。74:47-54。 吳昭慧。2022。早春大豆栽培及品質提升要點。台南區農業專訊。121期。5-9頁。 周國隆。2014。大豆品種改良。行政院農業委員會高雄區農業改良場。雜糧作物試驗研究年報。103:29-39。 財政部關務署。2024。111年海關進出口統計。行政院財政部關務署。https://portal.sw.nat.gov.tw/APGA/GA30。查詢日期:2024/3/21。 馬清華、蘇富正、林梅瑛、陳堅華、王添成、蔡幸樺、P. Juroszek、楊瑞玉、陳利輝及 M. Palada。2008。有機大豆栽培技術。亞蔬-世界蔬菜中心。61-82頁。 張耀聰。2019。毛豆土壤管理與施肥推薦參考資訊。作物土壤管理與施肥技術-蔬菜與雜糧篇。90-103頁。湯雪溶主編。行政院農業委員會農業試驗所。台中。 曾顯雄、曾國欽、張清安、蔡東纂及嚴新富。2019。臺灣植物病害名彙。中華民國植物病理學會。146-148頁。 雄一佐伯。2022。環境傾度によるダイズ根粒菌の群集生態に関する研究。土と微生物。76:43-48。 農業部農糧署。2024。111年農業統計年報。行政院農業部農糧署。https://agr.afa.gov.tw/afa/afa_frame.jsp。查詢日期:2024/3/21。 蔡竹固及林再富。2005。大豆栽培與病蟲害管理。國立嘉義大學農業推廣中心。7-16頁。 Agoyi, E. E., Afutu, E., Tumuhairwe, J. B., Odong, T. L., and Tukamuhabwa, P. 2016. Screening soybean genotypes for promiscuous symbiotic association with Bradyrhizobium strains. Afr. Crop Sci. J. 24:49-59. Agrios, G. N. 2005. Plant pathology 5th edition. Academic Press, Burlington, USA, 922 pp. Akamatsu, H., Fujii, N., Saito, T., Sayama, A., Matsuda, H., Kato, M., Kowada, R., Yasuta, Y., Igarashi, Y., Komori, H., Tanji, K., Kuroda, T., Fujita, Y., Hattori, M., Kawakami, O., Hori, T., Mimuro, G., Morikawa, T., Murasaki, N., Aoki, Y., Sekihara, J., Iyama, Y., Nakada, H., Iwata, T., Kichishima, T., Ebitani, T., Numada, F., Manta, H., Nakajima, H., Yamashita, T., Miyahara, K., Toyoshima, G., Yamada, K., Yamamoto R., and Ochi, S. 2020. Factors affecting red crown rot caused by Calonectria ilicicola in soybean cultivation. J. Gen. Plant Pathol. 86:363-375. Akiyama, H., Hoshino, Y. T., Itakura, M., Shimomura, Y., Wang, Y., Yamamoto, A., Tago, K., Nakajima, Y., Minamisawa, K., and Hayatsu, M. 2016. Mitigation of soil N2O emission by inoculation with a mixed culture of indigenous Bradyrhizobium diazoefficiens. Sci. Rep. 6:32869. Allan, R. P.,Arias P. A., Berger, S., Canadell, J. G., et al. 2021. Summary for policymakers. Page 28. In: V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou, Climate change 2021:the physical science basis: working group I contribution to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, 2392 pp. Allito, B. B., Ewusi-Mensah, N., and Logah, V. 2020. Legume-rhizobium strain specificity enhances nutrition and nitrogen fixation in faba bean (Vicia faba L.). Agronomy. 10:826. Bucci, P., Coppotelli, B., Morelli, I., Zaritzky, N., and Caravelli, A. 2021. Heterotrophic nitrification-aerobic denitrification performance in a granular sequencing batch reactor supported by next generation sequencing. Int. Biodeterior. Biodegrad. 160:105210. Bueno, E., Mania, D., Mesa, S., Bedmar, E. J., Frostegård, Å., Bakken, L. R., and Delgado, M. J. 2022. Regulation of the emissions of the greenhouse gas nitrous oxide by the soybean endosymbiont Bradyrhizobium diazoefficiens. Int. J. Mol. Sci. 23:1486. Burris, R. H. 1972. Nitrogen fixation-assay methods and techniques. Methods Enzymol. 24, 415-431. Canadell, J. G., Monteiro, P. M. S., Costa M. H., Cotrim da Cunha L., Cox P. M., Eliseev A. V., Henson S., Ishii M., Jaccard S., Koven C., Lohila A., Patra P. K., Piao S., Rogelj J., Syampungani S., Zaehle S., and Zickfeld K. 2021. Global carbon and other biogeochemical cycles and feedbacks. Page 673-816. In: V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou, Climate change 2021:the physical science basis: working group I contribution to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, 2392 pp. Cao, B., He, F.-Y., Xu, Q.-M., Yin, B., and Cai, G.-X. 2006. Denitrification losses and N2O emissions from nitrogen fertilizer applied to a vegetable field1. Pedosphere. 16:390-397. Cao, Y., Halane, M. K., Gassmann, W., and Stacey, G. 2017. The role of plant innate immunity in the legume-rhizobium symbiosis. Annu. Rev. Plant Biol. 68:535-561. Cébron, A., and Garnier, J. 2005. Nitrobacter and nitrospira genera as representatives of nitrite-oxidizing bacteria: detection, quantification and growth along the lower seine river (France). Water Res. 39:4979-4992. Central waether administration (CWA). 2024. CWA observation data inquire service. https://codis.cwa.gov.tw/StationData. Accessed on 2024/06/26. Christiansen, J., Seefeldt, L. C., and Dean, D. R. 2000. Competitive substrate and inhibitor interactions at the physiologically relevant active site of nitrogenase. J. Biol. Chem. 275:36104-36107. Colimoro, M., Ripa, M., Santagata, R., Ulgiati, S. 2023. Environmental impacts and benefits of tofu production from organic and conventional soybean cropping: improvement potential from renewable energy use and circular economy patterns. Environments. 10:73. Coyne, M. S., and Focht, D. D. 1987. Nitrous oxide reduction in nodules: denitrification or N2 fixation? Appl. Environ. Microbiol. 53:1168-1170. Dasgupta, D., Kumar, K., Miglani, R., Mishra, R., Panda, A. K., and Bisht, S. S. 2021. Microbial biofertilizers: recent trends and future outlook. Pages 1-26. In: S. D. Mandal and A. K. Passari eds., Recent advancement in microbial biotechnology. Academic Press, Burlington, USA, 462pp. Davidson, E. A., and Kanter, D. 2014. Inventories and scenarios of nitrous oxide emissions. Environ. Res. Lett. 9:105012. De Lajudie, P. M., Andrews, M., Ardley, J., Eardly, B., Jumas-Bilak, E., Kuzmanović, N., Lassalle, F., Lindström, Kristina., Mhamdi, R., Martínez-Romero, E., Moulin, L. , Mousavi, S. A. , Nesme, X., Peix, A., Puławska, J., Steenkamp, E., Stępkowski, T., Tian, C., Vinuesa, P., Wei, G., Willems, A., Zilli, J., and Young, P. 2019. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int. J. Syst. Evol. Microbiol. 69:1852-1863. Delgado, J. A., Del Grosso, S. J., and Ogle, S. M. 2010. 15N isotopic crop residue cycling studies and modeling suggest that IPCC methodologies to assess residue contributions to N2O-N emissions should be reevaluated. Nutr. Cycl. Agroecosystems. 86:383-390. Dixon, R., and Kahn, D. 2004. Genetic regulation of biological nitrogen fixation. Nat. Rev. Microbiol. 2:621-631. Duan, Z., Li, Q., Wang, H., He, X., and Zhang, M. 2023. Genetic regulatory networks of soybean seed size, oil and protein contents. Front. Plant Sci. 14:1160418. Einsle, O. 2023. On the shoulders of giants-reaching for nitrogenase. Mol. Basel Switz. 28:7959. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter, W. 2008. How a century of ammonia synthesis changed the world. Nat. Geosci. 1:636-639. Etesami, H., and Jeong, B. R. 2022. Biotechnological solutions to improve nitrogenous nutrition in nonlegume crops. Pages 65-95. In: D. K. Maheshwari, R. Dobhal, and S. Dheeman eds., Nitrogen fixing bacteria: sustainable growth of non-legumes. Springer Nature, Berlin, Germany, 390 pp. Felgate, H., Giannopoulos, G., Sullivan, M. J., Gates, A. J., Clarke, T. A., Baggs, E., Rowley, G., and Richardson, D. J. 2012. The impact of copper, nitrate and carbon status on the emission of nitrous oxide by two species of bacteria with biochemically distinct denitrification pathways. Environ. Microbiol. 14:1788-1800. Fernandes, A. T., Damas, J. M., Todorovic, S., Huber, R., Baratto, M. C., Pogni, R., Soares C. M. ,and Martins L. O. 2010. The multicopper oxidase from the archaeon Pyrobaculum aerophilum shows nitrous oxide reductase activity. FEBS J. 277:3176-3189. Fischer, H. M. 1994. Genetic regulation of nitrogen fixation in rhizobia. Microbiol. Rev. 58:352-386. Fitriatin, B. N., and Nurmala, D. 2019. In vitro test for compatibility of biofertilizers containing phosphate solubilizers and nitrogen-fixing bacteria. IOP Conf. Ser. Earth Environ. Sci. 393:012049. Ge, S., Wang, S., Yang, X., Qiu, S., Li, B., and Peng, Y. 2015. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review. Chemosphere. 140:85-98. Graf, D. R. H., Zhao, M., Jones, C. M., and Hallin, S. 2016. Soil type overrides plant effect on genetic and enzymatic N2O production potential in arable soils. Soil Biol. Biochem. 100:125-128. Grundy, E. B., Gresshoff, P. M., Su, H., and Ferguson, B. J. 2023. Legumes regulate symbiosis with rhizobia via their innate immune system. Int. J. Mol. Sci. 24:2800. Gui, H., Gao, Y., Wang, Z., Shi, L., Yan, K., and Xu, J. 2021. Arbuscular mycorrhizal fungi potentially regulate N2O emissions from agricultural soils via altered expression of denitrification genes. Sci. Total Environ. 774:145133. Hallin, S., Philippot, L., Löffler, F. E., Sanford, R. A., and Jones, C. M. 2018. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol. 26:43-55. Hamza, T. A., and Alebejo, A. L. 2017. Isolation and characterization of rhizobia from rhizospher and root nodule of cowpea, elephant and lab lab plants. Int. J. Nov. Res. Interdiscip. Stud. 4:1-7. Hauser, F., Lindemann, A., Vuilleumier, S., Patrignani, A., Schlapbach, R., Fischer, H. M., and Hennecke H. 2006. Design and validation of a partial-genome microarray for transcriptional profiling of the Bradyrhizobium japonicum symbiotic gene region. Mol. Genet. Genomics. 275:55-67. Hein, S., and Simon, J. 2019. Bacterial nitrous oxide respiration: electron transport chains and copper transfer reactions. Pages 137-175. In R. K. Poole ed., Advances in microbial physiology. Academic Press, Burlington, USA, 390 pp. Hein, S., Witt, S., and Simon, J. 2017. Clade II nitrous oxide respiration of Wolinella succinogenes depends on the NosG, -C1, -C2, -H electron transport module, NosB and a Rieske/cytochrome bc complex. Environ. Microbiol. 19:4913-4925. Hénault, C., Barbier, E., Hartmann, A., and Revellin, C. 2022. New insights into the use of rhizobia to mitigate soil N2O emissions. Agriculture. 12:271. Hooper, A. B., and Terry, K. R. 1979. Hydroxylamine oxidoreductase of nitrosomonas: production of nitric oxide from hydroxylamine. Biochim. Biophys. Acta BBA - Enzymol. 571:12-20. Howieson, J. G., and Dilworth, M. J. 2016. Working with rhizobia. Australian Centre for International Agricultural Research: Canberra, Australian, Bruce. 312 pp. Inaba, S., Ikenishi, F., Itakura, M., Kikuchi, M., Eda, S., Chiba, N., Katsuyama, C., Suwa, Y., Mitsui, H., and Minamisawa, K. 2012. N2O emission from degraded soybean nodules depends on denitrification by Bradyrhizobium japonicum and other microbes in the rhizosphere. Microbes Environ. 27:470-476. Itakura, M., Uchida, Y., Akiyama, H., Hoshino, Y. T., Shimomura, Y., Morimoto, S., Tago, K., Wang, Y., Hayakawa, C., Uetake, Y., Sánchez, C., Eda, S., Hayatsu, M., and Minamisawa, K. 2013. Mitigation of nitrous oxide emissions from soils by Bradyrhizobium japonicum inoculation. Nat. Clim. Change. 3:208-212. Jasper, J., Ramos, J. V., Trncik, C., Jahn, D., Einsle, O., Layer, G., and Moser, J. 2020. Chimeric interaction of nitrogenase‐like reductases with the MoFe protein of nitrogenase. Chembiochem. 21:1733-1741. Jiang, T., Zhang, W., and Liang, Y. 2022. Uptake of individual and mixed per- and polyfluoroalkyl substances (PFAS) by soybean and their effects on functional genes related to nitrification, denitrification, and nitrogen fixation. Sci. Total Environ. 838:156640. Jiménez-Guerrero, I., Medina, C., Vinardell, J. M., Ollero, F. J., and López-Baena, F. J. 2022. The rhizobial type 3 secretion system: the Dr. Jekyll and Mr. Hyde in the rhizobium-legume symbiosis. Int. J. Mol. Sci. 23:11089. Karthik, C., Oves, M., Sathya, K., Sri Ramkumar, V., and Arulselvi, P. I. 2017. Isolation and characterization of multi-potential Rhizobium strain ND2 and its plant growth-promoting activities under Cr(VI) stress. Arch. Agron. Soil Sci. 63:1058-1069. Keyser, H. H., Bohlool, B. B., Hu, T. S., and Weber, D. F. 1982. Fast-growing rhizobia isolated from root nodules of soybean. Science. 215:1631-1632. Kim, Y., Shin, H., Yang, Y., and Hur, H.-G. 2022. Geographical distribution and genetic diversity of Bradyrhizobium spp. isolated from Korean soybean root nodules. Appl. Biol. Chem. 65:39. Kleczewski, N. M., Bradley, C. A., Hartman, G., Kandel, Y., Mueller, D., and Salamanca, L. R. 2023. A diagnostic guide for red crown rot of soybean. Plant Health Prog. 24:123-129. Knight, T. J., and Langston-Unkefer, P. J. 1988. Enhancement of symbiotic dinitrogen fixation by a toxin-releasing plant pathogen. Science. 241:951-954. Kohlen, W., Ng, J. L. P., Deinum, E. E., and Mathesius, U. 2018. Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules. J. Exp. Bot. 69:229-244. Koskey, G., Mburu, S. W., Kimiti, J. M., Ombori, O., Maingi, J. M., and Njeru, E. M. 2018. Genetic characterization and diversity of rhizobium isolated from root nodules of mid-altitude climbing bean (Phaseolus vulgaris L.) varieties. Front. Microbiol. 9:968. Lawal, I. 2021. Nitrogen fixing bacteria and their application for heavy metal removal: a mini review. J. Biochem. Microbiol. Biotechnol. 9:43-47. Lazcano, C., Barrios-Masias, F. H., and Jackson, L. E. 2014. Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes. Soil Biol. Biochem. 74:184-192. Li, X., Welbaum, G. E., Rideout, S. L., Singer, W., Zhang, B., Li, X., Welbaum, G. E., Rideout, S. L., Singer, W., and Zhang, B. 2022. Vegetable soybean and its seedling emergence in the United States. Pages 1-2. In: J. C. Jimenez-Lopez and A. Clemente eds., Legumes Research—Volume 1. IntechOpen, London, UK, 480 pp. Li, X., Zhao, R., Li, D., Wang, G., Bei, S., Ju, X., An, R., Li, L., Kuyper, T. W., Christie, P., Bender, F. S., Veen, C., van der Heijden, M. G. A., van der Putten, W. H., Zhang, F., Butterbach-Bahl, K., and Zhang, J. 2023. Mycorrhiza-mediated recruitment of complete denitrifying Pseudomonas reduces N2O emissions from soil. Microbiome. 11:45. Liang, Y., Cao, Y., Tanaka, K., Thibivilliers, S., Wan, J., Choi, J., Kang, C. h., Qiu, J., and Stacey, G. 2013. Nonlegumes respond to rhizobial nod factors by suppressing the innate immune response. Science. 341:1384-1387. Liu, H. H., Shen, Y. M., Chang, H. X., Tseng, M. N., and Lin, Y. H. 2020. First report of soybean red crown rot caused by Calonectria ilicicola in Taiwan. Plant Dis. 104:979. Liu, H.-H., Wang, J., Wu, P.-H., Lu, M.-Y. J., Li, J.-Y., Shen, Y.-M., Tzeng M.-N., Kuo C.-H., Lin Y.-H., and Chang H.-X. 2021. Whole-genome sequence resource of Calonectria ilicicola, the casual pathogen of soybean red crown rot. Mol. Plant Microbe Interact. 34:848-851. Livak, K. J., and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif. 25:402-408. Ma, Y., Zilles, J. L., and Kent, A. D. 2019. An evaluation of primers for detecting denitrifiers via their functional genes. Environ. Microbiol. 21:1196-1210. Marques, R., Rodríguez-Caballero, A., Oehmen, A., and Pijuan, M. 2016. Assessment of online monitoring strategies for measuring N2O emissions from full-scale wastewater treatment systems. Water Res. 99:171-179. Mason, M. L., Tabing, B. L., Yamamoto, A., and Saeki, Y. 2018. Influence of flooding and soil properties on the genetic diversity and distribution of indigenous soybean-nodulating bradyrhizobia in the Philippines. Heliyon. 4:e00921. Mendoza-Suárez, M., Andersen, S. U., Poole, P. S., and Sánchez-Cañizares, C. 2021. Competition, nodule occupancy, and persistence of inoculant strains: key factors in the rhizobium-legume symbioses. Front. Plant Sci. 12. Monteiro, G., Nogueira, G., Neto, C., Nascimento, V., and Freitas, J. 2021. Promotion of nitrogen assimilation by plant growth-promoting rhizobacteria. Pages 175-180. In: T. Ohyama and K. Inubushi eds., Nitrogen in agriculture-physiological, agricultural and ecological aspects. IntechOpen, London, UK, 216 pp. Nag, P., and Pal, S. 2013. Fe protein over-expression can enhance the nitrogenase activity of Azotobacter vinelandii. J. Basic Microbiol. 53:156-162. Nakei, M. D., Venkataramana, P. B., and Ndakidemi, P. A. 2023. Preliminary symbiotic performance of indigenous soybean (Glycine max)-nodulating rhizobia from agricultural soils of Tanzania. Front. Sustain. Food Syst. 6:1085843. Ngou, B. P. M., Ding, P., and Jones, J. D. G. 2022. Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell. 34:1447-1478. Nogare, S. D., and Safranski, L. W. 1958. High temperature gas chromatography apparatus. Anal. Chem. 30:894-898. Okiobe, S. T., Augustin, J., Mansour, I., and Veresoglou, S. D. 2019. Disentangling direct and indirect effects of mycorrhiza on nitrous oxide activity and denitrification. Soil Biol. Biochem. 134:142-151. Oldroyd, G. E. D. 2013. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11:252-263. Ondieki, D. K., Nyaboga, E. N., Wagacha, J. M., and Mwaura, F. B. 2017. Morphological and genetic diversity of rhizobia nodulating cowpea (Vigna unguiculata L.) from agricultural soils of lower eastern Kenya. Int. J. Microbiol. 2017:8684921. Ovchinnikova, E. 2012. Genetic analysis of symbiosome formation. ProQuest, Michigan, USA, 147 pp. Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., Hegerl, G., Howden, M., Jiang, K., Jimenez Cisneroz, B., Kattsov, V., Lee, H., Mach, K. J., Marotzke, J., Mastrandrea, M. D., Meyer, L., Minx, J., Mulugetta, Y., O'Brien, K., Oppenheimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G.-K., Pörtner, Hans-Otto , Power, S. B., Preston, B., Ravindranath, N. H., Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., Sokona, Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vuuren, D., van Ypserle, J.-P., Pachauri R. K., and Meyer L. 2014. Climate change 2014: synthesis report. IPCC, Geneva, Switzerland, 151 pp. Padgett GB, Kuruppu PU, Russin JS. 2015. Red crown rot. Pages 79-80. In: G.L. Hartman, J.C. Rupe, E.J. Sikora, L.L. Domier, J.A. Davis, and K.L. Steffey. Compendium of soybean diseases and pests, 5th edn. American Phytopathological Society Press, St. Paul, 201 pp. Pan, H., Zhou, Z., Zhang, S., Wang, F., and Wei, J. 2023. N2O emissions from aquatic ecosystems: a review. Atmosphere. 14:1291. Pankievicz, V. C. S., Irving, T. B., Maia, L. G. S., and Ané, J.-M. 2019. Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops. BMC Biol. 17:99. Pauleta, S. R., Carepo, M. S. P., and Moura, I. 2019. Source and reduction of nitrous oxide. Coord. Chem. Rev. 387:436-449. Pommeresche, R., and Hansen, S. 2017. Examining root nodule activity on legumes. FertilCrop Technical Note. Prendergast-Miller, M. T., Baggs, E. M., and Johnson, D. 2011. Nitrous oxide production by the ectomycorrhizal fungi Paxillus involutus and Tylospora fibrillosa. FEMS Microbiol. Lett. 316:31-35. Ravishankara, A. R., Daniel, J. S., and Portmann, R. W. 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science. 326:123-125. Roy, S., Liu, W., Nandety, R. S., Crook, A., Mysore, K. S., Pislariu, C. I., Frugoli, J., Dickstein, R., and Udvardi M. K. 2020. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell. 32:15-41. Rumjanek N. G., Dobert R. C., Berkum P. V., and Triplett, E. W. 1993. Common soybean inoculant strains in Brazil are members of Bradyrhizobium elkanii. Appl Environ Microbiol. 59:4371-4373. Sachs, J. L., Ehinger, M. O., and Simms, E. L. 2010. Origins of cheating and loss of symbiosis in wild bradyrhizobium. J. Evol. Biol. 23:1075-1089. Sadowsky, M. J., Keyser, H. H., and Bohlool, B. B. 1983. Biochemical characterization of fast- and slow-growing rhizobia that nodulate soybeans. Int. J. Syst. Evol. Microbiol. 33:716-722. Saeki, Y., Aimi, N., Tsukamoto, S., Yamakawa, T., Nagatomo, Y., and Akao, S. 2006. Diversity and geographical distribution of indigenous soybean-nodulating bradyrhizobia in Japan. Soil Sci. Plant Nutr. 52:418-426. Saeki, Y., Shiro, S., Tajima, T., Yamamoto, A., Sameshima-Saito, R., Sato, T., and Yamakawa, T. 2013. Mathematical ecology analysis of geographical distribution of soybean-nodulating bradyrhizobia in Japan. Microbes Environ. 28:470-478. Salas, A., Cabrera, J. J., Jiménez-Leiva, A., Mesa, S., Bedmar, E. J., Richardson, D. J., Gates, A. J., Delgado, and M. J. 2021. Bacterial nitric oxide metabolism: Recent insights in rhizobia. Pages 259-315. In: R. K. Poole and D. J. Kelly eds., Advances in microbial physiology. Academic Press, Burlington, USA, 390 pp. Sameshima-Saito, R., Chiba, K., and Minamisawa, K. 2006a. Correlation of denitrifying capability with the existence of nap, nir, nor and nos genes in diverse strains of soybean bradyrhizobia. Microbes Environ. 21:174-184. Sameshima-Saito, R., Chiba, K., Hirayama, J., Itakura, M., Mitsui, H., Eda, S., and Minamisawa K. 2006b. Symbiotic Bradyrhizobium japonicum reduces N2O surrounding the soybean root system via nitrous oxide reductase. Appl. Environ. Microbiol. 72:2526-2532. Sanford, R. A., Wagner, D. D., Wu, Q., and Löffler, F. E. 2012. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc. Natl. Acad. Sci. 109:19709-19714. Shan, J., Sanford, R. A., Chee-Sanford, J., Ooi, S. K., Löffler, F. E., Konstantinidis, K. T., and Yang W. H. 2021. Beyond denitrification: The role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Glob. Change Biol. 27:2669-2683. Shapleigh, J. P. 2006. The Denitrifying Prokaryotes. Pages 769-792. In: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt eds., The prokaryotes: volume 2: ecophysiology and biochemistry. Springer Nature, Berlin, Germany, 1107 pp. Shiina, Y., Itakura, M., Choi, H., Saeki, Y., Hayatsu, M., and Minamisawa, K. 2014. Relationship between soil type and N2O reductase genotype (nosZ) of indigenous soybean bradyrhizobia: nosZ-minus populations are dominant in andosols. Microbes Environ. 29:420-426. Shiro, S., Matsuura, S., Saiki, R., Sigua, G. C., Yamamoto, A., Umehara, Y., Hayashi, M., and Saeki, Y. 2013. Genetic diversity and geographical distribution of indigenous soybean-nodulating bradyrhizobia in the United States. Appl. Environ. Microbiol. 79:3610-3618. Sinha, B., and Annachhatre, A. P. 2007. Partial nitrification—operational parameters and microorganisms involved. Rev. Environ. Sci. Biotechnol. 6:285-313. Siqueira A. F., Ormeño-Orrillo E., Souza R. C., Rodrigues E. P., Almeida L. G. P., Barcellos F. G., Batista J. S., Nakatani A. S., Martínez-Romero E., Vasconcelos A. T. R, and Hungria, M. 2014. Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics. 15(1):1-21. Siqueira, A. F., Minamisawa, K., and Sánchez, C. 2017. Anaerobic reduction of nitrate to nitrous oxide is lower in Bradyrhizobium japonicum than in Bradyrhizobium diazoefficiens. Microbes Environ. 32:398-401. Soumare, A., Diedhiou, A. G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., and Kouisni, L. 2020. Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants. 9:1011. Storer, K., Coggan, A., Ineson, P., and Hodge, A. 2018. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots. New Phytol. 220:1285-1295. Sugawara, M., and Sadowsky, M. J. 2013. Influence of elevated atmospheric carbon dioxide on transcriptional responses of Bradyrhizobium japonicum in the soybean rhizoplane. Microbes Environ. 28:217-227. Sullivan, M. J., Gates, A. J., Appia-Ayme, C., Rowley, G., and Richardson, D. J. 2013. Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism. Proc. Natl. Acad. Sci. U. S. A. 110:19926-19931. Takai, K. 2019. The nitrogen cycle: a large, fast, and mystifying cycle. Microbes Environ. 34:223-225. Tjepkema, J. D. 1983. Oxygen concentration within the nitrogen-fixing root nodules of Myrica gale L. Amer. J. Bot. 70(1): 59-63. Tjepkema, J. D. and Yocum, C. S.1974. Measurement of oxygen partial pressure within soybeani nodules by oxygen microelectrodes. Planta. 119: 351-360. Torres, M. J., Simon, J., Rowley, G., Bedmar, E. J., Richardson, D. J., Gates, A. J., and Delgado, M. J. 2016. Nitrous oxide metabolism in nitrate-reducing bacteria: physiology and regulatory mechanisms. Adv. Microb. Physiol. 68:353-432. Tortosa, G., Hidalgo, A., Salas, A., Bedmar, E. J., Mesa, S., and Delgado, M. J. 2015. Nitrate and flooding induce N2O emissions from soybean nodules. Symbiosis. 67:125-133. Treusch, A. H., Leininger, S., Kletzin, A., Schuster, S. C., Klenk, H.-P., and Schleper, C. 2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ. Microbiol. 7:1985-1995. Uchida, Y., and Akiyama, H. 2013. Mitigation of postharvest nitrous oxide emissions from soybean ecosystems: a review. Soil Sci. Plant Nutr. 59:477-487. Ulzen, J., Abaidoo, R. C., Mensah, N. E., Masso, C., and AbdelGadir, A. H. 2016. Bradyrhizobium inoculants enhance grain yields of soybean and cowpea in Northern Ghana. Front. Plant Sci. 7:1770. United States Department of Agriculture (USDA). 2024. Soybean Explorer. https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=2222000. Accessed on 2024/3/21. van Ham, R., O’Callaghan, M., Geurts, R., Ridgway, H. J., Ballard, R., Noble, A., Macara, G., and Wakelin, S. A. 2016. Soil moisture deficit selects for desiccation tolerant Rhizobium leguminosarum bv. trifolii. Appl. Soil Ecol. 108:371-380. Vorster, B. J., Schlüter, U., Plessis, M. D., Wyk V. S., Makgopa, M. E., Ncube, I., Quain, M. D., Kunert, K., and Foyer, C.H. 2013. The cysteine protease–cysteine protease inhibitor system explored in soybean nodule development. Agronomy. 3:550-570. Wang, E. T., Tian, C. F., Chen, W. F., Young, J. P. W., and Chen, W. X. 2019. Ecology and evolution of rhizobia. Springer Nature, Berlin, Germany, 273pp. Wang, Q., Liu, J., and Zhu, H. 2018. Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Front. Plant Sci. 9:313. Wasai-Hara, S., Itakura, M., Fernandes Siqueira, A., Takemoto, D., Sugawara, M., Mitsui, H., Sato, S., Inagaki, N., Yamazaki, T., Imaizumi-Anraku, H., Shimoda, Y., and Minamisawa, K. 2023. Bradyrhizobium ottawaense efficiently reduces nitrous oxide through high nosZ gene expression. Sci. Rep. 13:18862. Waters, A. W. 1978. Gas chromatography—what it is and how it works. Meas. Control. 11:447-450. Wekesa, C., Jalloh, A. A., Muoma, J. O., Korir, H., Omenge, K. M., Maingi, J. M., Furch, A. C. U., and Oelmüller, R. 2022. Distribution, characterization and the commercialization of elite rhizobia strains in Africa. Int. J. Mol. Sci. 23:6599. Whitehead, L. F., and Day, D. A. 1997. The peribacteroid membrane. Physiol. Plant. 100:30-44. Wrage, N., Velthof, G. L., van Beusichem, M. L., and Oenema, O. 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 33:1723-1732. Wrage-Mönnig, N., Horn, M. A., Well, R., Müller, C., Velthof, G., and Oenema, O. 2018. The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol. Biochem. 123:A3-A16. Wrather, J.A., Anderson, T.R., Arsyad, D.M., Tan, Y., Ploper, L.D., Porta-Puglia, A., Ram, H.H., and Yorinori, J.T. 2001. Soybean disease loss estimates for the top ten soybean-producing countries in 1998. Can J Plant Pathol. 23:115-121. Wu, P.-H., Tseng, M.-N., Chou, K.-L., Lin, Y.-H., and Chang, H.-X. 2024. Research status and prospects on soybean red crown rot. J. Plant Med. Xing, L., Qin, W., Manevski, K., Zhang, Y., Hu, C., Zhang, L., Dong, W., Wang, Y., Li X., Gaudel, G., and Qin, S. 2021. An improved microelectrode method reveals significant emission of nitrous oxide from the rhizosphere of a long-term fertilized soil in the North China Plain. Sci. Total Environ. 783:147011. Zaman, M., Kleineidam, K., Bakken, L., Berendt, J., Bracken, C., Butterbach-Bahl, K., Cai, Z., Chang, S. X., Clough, T., Dawar, K., Ding, W. X., Dörsch, P., dos Reis Martins, M., Eckhardt, C., Fiedler, S., Frosch, T., Goopy, J., Görres, C.-M., Gupta, A., Henjes, S., Hofmann, M. E. G., Horn, M. A., Jahangir, M. M. R., Jansen-Willems, A., Lenhart, K., Heng, L., Lewicka-Szczebak, D., Lucic, G., Merbold, L., Mohn, J., Molstad, L., Moser, G., Murphy, P., Sanz-Cobena, A., Šimek, M., Urquiaga, S., Well, R., Wrage-Mönnig, N., Zaman, S., Zhang, J., and Müller, C. 2021. Greenhouse gases from agriculture. Page 1-10. In: M. Zaman, L. Heng, and C. Müller eds, Measuring emission of agricultural greenhouse gases and developing mitigation options using nuclear and related techniques: applications of nuclear techniques for GHGs. Springer Nature, Berlin, Germany, 337 pp. Zeipina, S., Alsiņa, I., and Lepse, L. 2017. Insight in edamame yield and quality parameters: A review. Res. Rural Dev. 2:40-45. Zhang, L., Wüst, A., Prasser, B., Müller, C., and Einsle, O. 2019. Functional assembly of nitrous oxide reductase provides insights into copper site maturation. Proc. Natl. Acad. Sci. U. S. A. 116:12822-12827. Zhao, R., Li, X., Bei, S., Li, D., Li, H., Christie, P., Bender, S. F., and Zhang, J. 2021. Enrichment of nosZ-type denitrifiers by arbuscular mycorrhizal fungi mitigates N2O emissions from soybean stubbles. Environ. Microbiol. 23:6587-6602. Zhu, Y.-G., Peng, J., Chen, C., Xiong, C., Li, S., Ge, A., Wang, E., and Liesack, W. 2023. Harnessing biological nitrogen fixation in plant leaves. Trends Plant Sci. 28:1391-1405. Zumft, W. G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. MMBR. 61:533-616. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93351 | - |
dc.description.abstract | 大豆 (Glycine max) 是世界上重要的糧食作物之一,其根系在種植過程中能與根瘤菌共生形成根瘤,並藉由根瘤菌的固氮酶 (nitrogenase) 將大氣中的氮氣 (N2) 固定成氨以供植物利用。除了固氮作用外,有些根瘤菌如 Bradyrhizobium diazoefficiens USDA110還能進行反硝化作用,將硝酸鹽依序還原成亞硝酸鹽、一氧化氮、氧化亞氮 (N2O) 及 N2。然而有些根瘤菌如 Bradyrhizobium japonicum USDA6因缺乏反硝化作用最後一步的 N2O 還原酶 (N2O reductase),導致最終產物為 N2O。N2O 是一種強溫室作用氣體,其溫室效應比二氧化碳強約300倍,因此若缺乏 N2O 還原酶、或乘載 N2O 還原酶的 nosZ 基因表現下降時,皆會造成較多 N2O 產生並逸散至大氣中。許多研究已證實環境因子會影響 N2O 還原酶活性或 nos 基因表現,然而紅冠腐菌 (Calonectria ilicicola) 是否會影響 nos 基因表現而增加 N2O 逸散的風險目前尚未被研究。本研究將 B. diazoefficiens 及 B. japonicum 分別培養在添加 KNO3 的液態培養基中,透過 N2O 微電極器檢測發現,缺乏 nosZ 基因的 B. japonicum 確實產生較多 N2O。後續在與 C. ilicicola 分生孢子共同培養時,結果發現不論是具有 nosZ 基因的 B. diazoefficiens 或缺乏 nosZ 基因的 B. japonicum ,其 N2O 產量皆無顯著差異,而 B. diazoefficiens 的 nosZ 基因表現亦未受到影響。盆栽試驗結果顯示大豆接種 B. japonicum 產生的 N2O 約為接種 B. diazoefficiens 的6.5倍,另外大豆受到 C. ilicicola 感染會降低 B. diazoefficiens 的 nosZ 基因表現量而導致 N2O 的產量增加。另計算根罹病度、根瘤重量、根瘤數量及根瘤大小,發現罹病大豆根瘤的健康狀況較對照組差,因此推測根瘤的健康可能會影響 B. diazoefficiens 的nosZ 基因表現下降,故而提高 N2O 產量。鑑於缺乏 nosZ 基因可造成約6.5倍的 N2O 產量,本研究進一步調查臺灣大豆田的根瘤菌組成及 nosZ 基因普及率,結果發現 B. diazoefficiens、Bradyrhizobium elkanii 及 Bradyrhizobium liaoningense 在花蓮及桃園是優勢菌種且根瘤樣本內皆可測得 nosZ 基因;然而主要產毛豆的高屏地區發現 B. elkanii 及 B. liaoningense 為優勢菌種但普遍缺乏 nosZ 基因。綜合上述,本研究建立檢測大豆根瘤內 N2O 產量的試驗系統,證實選擇具有 nosZ 基因的根瘤菌種至關重要,後可配合防治病原菌以降低 N2O 產量,為大豆種植在淨零碳排的願景下提供理論基礎。 | zh_TW |
dc.description.abstract | Soybean (Glycine max) is one of the most important crops worldwide, and soybean roots can form nodules with symbiotic rhizobia to fix nitrogen (N2) into ammonia as extra nutrients. In addition to N2 fixation, some rhizobia can also perform denitrification. For example, Bradyrhizobium diazoefficiens USDA110 can sequentially reduce nitrate to nitrite, nitric oxide, nitrous oxide (N2O), and N2. Another species, Bradyrhizobium japonicum USDA6, which lacks N2O reductase, produces N2O as the final product. N2O is a greenhouse gas with global warming potential 300 times stronger than CO2. Therefore, the absence of N2O reductase or the decreased expression of the N2O reductase-coding gene nosZ can lead to more N2O production. Many studies have shown that environmental factors can affect the activity of N2O reductase or the expression of the nosZ gene. However, whether Calonectria ilicicola could affect nosZ gene expression or N2O emission has not been studied. This study used N2O microsensor to detect B. diazoefficiens and B. japonicum culture broth supplemented with KNO3, and it was found that B. japonicum indeed produced detectable N2O. Then co-culturing of B. diazoefficiens and B. japonicum with C. ilicicola conidia revealed that N2O emission was not affected by C. ilicicola, and the expression of the B. diazoefficiens nosZ gene was unaffected either. Pot experiments showed that soybeans inoculated with B. japonicum produced approximately 6.5 times N2O more than those inoculated with B. diazoefficiens. Additionally, soybeans infected with C. ilicicola reduced the expression of the B. diazoefficiens nosZ gene, leading to more N2O production. The results of root disease severity, nodule weight, nodule number, and nodule size showed that C. ilicicola affects nodules health, which may reduce the expression of the nosZ gene and consequently increase N2O production. Considering the importance of having nosZ gene in soybean nodules to minimize N2O production, our field survey revealed that B. diazoefficiens, Bradyrhizobium elkanii, and Bradyrhizobium liaoningense are dominant rhizobia species in Taoyuan city and Hualien county, and the nosZ gene was detected in most soybean nodules from these regions. However, Kaohsiung city and Pingtung county, which are the main regions for edamame production, showed that B. elkanii and B. liaoningense are dominant species, and low detection rate of nosZ gene. In summary, this study establishes a system for detecting N2O production in soybean nodules, and the results confirm the importance of nosZ gene in the rhizobia species, following by the pathogen control to reduce N2O emissions for soybean industry under the net-zero vision. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-29T16:24:00Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-29T16:24:00Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要 I
ABSTRACT III 目次 V 表次 VIII 圖次 IX 第壹章 前人研究 1 1.1 大豆栽培與病害 1 1.2 根瘤菌與根瘤釋義 2 1.3 氮循環 5 1.3.1 氮循環簡介 5 1.3.2 固氮作用 5 1.3.3 硝化作用 7 1.3.4 反硝化作用 7 1.4 氧化亞氮 (N2O) 9 1.5 影響氧化亞氮還原酶及 nosZ 基因表現的因子 10 1.6 研究動機 12 第貳章 材料方法 13 2.1 供試菌株的培養及保存 13 2.1.1 根瘤菌 13 2.1.2 紅冠腐菌 13 2.2 建立 N2O 微電極器的使用方法 13 2.2.1 前置作業 (pre-activation) 13 2.2.2 極化 (polarization) 14 2.2.3 校正 (calibration) 14 2.2.4 測量及暫存 15 2.3 根瘤菌接種源製備及建立生長曲線 15 2.4 根瘤菌在添加 KNO3 培養液中 N2O 產量的差異 15 2.5 紅冠腐菌的分生孢子對 B. diazoefficiens USDA 110 及 B. japonicum USDA 6 在培養液中 N2O 產量的影響 16 2.6 紅冠腐菌感染大豆根部對根瘤 N2O 產量的影響 16 2.6.1 根瘤菌接種源製備 16 2.6.2 紅冠腐菌接種源製備 16 2.6.3 測量根瘤 N2O 的濃度 16 2.7 檢測根瘤菌的 nifH 及 nosZ 基因表現 17 2.7.1 根瘤菌及根瘤的 RNA 萃取 17 2.7.2 去除 DNA 及 cDNA 生合成 18 2.7.3 反轉錄酶連鎖反應 (Reverse transcription quantitative polymerase chain reaction, RT-qPCR) 18 2.8 大豆接種紅冠腐菌之病徵 19 2.9 根瘤菌菌種及 nosZ 基因在臺灣大豆田的分布 19 2.9.1 根瘤採集及清洗 19 2.9.2 根瘤的 DNA 萃取 19 2.9.3 即時定量聚合酶連鎖反應 (RT-qPCR) 20 2.10 實驗數據統計與分析 21 第參章 結果 22 3.1 N2O 微電極器 22 3.2 qPCR 引子測試結果 22 3.3 B. diazoefficiens USDA 110 及 B. japonicum USDA 6 在添加 KNO3 培養液中 N2O 產量的差異 23 3.4 紅冠腐菌的分生孢子對 B. diazoefficiens USDA 110 及 B. japonicum USDA 6 在培養液中 N2O 產量及nifH 與 nosZ 基因表現量的影響 23 3.5 紅冠腐菌感染大豆根部對根瘤 N2O 產量及nifH 與 nosZ 基因表現量的影響 24 3.6 紅冠腐菌感染大豆根部對根瘤健康的影響 25 3.7 根瘤菌菌種及 nosZ 基因在臺灣大豆田的分布 26 第肆章 討論 28 4.1 比較檢測 N2O 的方法及優缺點 28 4.2 選擇適當根瘤菌菌種降低 N2O 釋放量 28 4.3 控制紅冠腐菌能降低 N2O 的釋放量 29 4.4 探討 nifH 基因表現差異 30 4.5 臺灣田間菌株與國外比較 31 4.6 研究總結與未來展望 32 參考文獻 33 表 47 圖 51 附錄 74 | - |
dc.language.iso | zh_TW | - |
dc.title | 探討紅冠腐菌對大豆根瘤產生氧化亞氮 (N2O) 之影響 | zh_TW |
dc.title | The Effect of Calonectria ilicicola on Nitrous Oxide (N2O) Emission from Soybean Nodules | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 郭章信;林乃君 | zh_TW |
dc.contributor.oralexamcommittee | Chang-Hsin Kuo;Nai-Chun Lin | en |
dc.subject.keyword | 反硝化作用,nosZ 基因,N2O還原酶,Bradyrhizobium diazoefficiens,Bradyrhizobium japonicum,Calonectria ilicicola,N2O, | zh_TW |
dc.subject.keyword | Bradyrhizobium diazoefficiens,Bradyrhizobium japonicum,Calonectria ilicicola,denitrification,N2O,nitrous oxide reductase,nosZ gene, | en |
dc.relation.page | 90 | - |
dc.identifier.doi | 10.6342/NTU202401895 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-07-18 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 植物病理與微生物學系 | - |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.31 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。