Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93346
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許聿廷zh_TW
dc.contributor.advisorYu-Ting Hsuen
dc.contributor.author戴沛辰zh_TW
dc.contributor.authorPei-Chen Taien
dc.date.accessioned2024-07-29T16:22:28Z-
dc.date.available2024-07-30-
dc.date.copyright2024-07-29-
dc.date.issued2024-
dc.date.submitted2024-07-23-
dc.identifier.citationBai, H., Yu, H., Yu, G., & Huang, X. (2022). A novel emergency situation awareness machine learning approach to assess flood disaster risk based on Chinese Weibo. Neural Computing and Applications, 1-16.
Caldera, H. J., & Wirasinghe, S. (2022). A universal severity classification for natural disasters. Natural hazards, 111(2), 1533-1573.
Cao, C., Liu, Y., Tang, O., & Gao, X. (2021). A fuzzy bi-level optimization model for multi-period post-disaster relief distribution in sustainable humanitarian supply chains. International Journal of Production Economics, 235, 108081.
De Boer, J. (1990). Definition and classification of disasters: introduction of a disaster severity scale. The Journal of emergency medicine, 8(5), 591-595.
De Boer, J. (1997). Tools for evaluating disasters: preliminary results of some hundreds of disasters. European Journal of Emergency Medicine: Official Journal of the European Society for Emergency Medicine, 4(2), 107-110.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Ghosh, S., & Desarkar, M. S. (2018). Class specific TF-IDF boosting for short-text classification: Application to short-texts generated during disasters. Companion Proceedings of the The Web Conference 2018,
Luong, M.-T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.
Nayeri, S., Tavakkoli-Moghaddam, R., Sazvar, Z., & Heydari, J. (2022). A heuristic-based simulated annealing algorithm for the scheduling of relief teams in natural disasters. Soft Computing, 1-19.
Ponce-López, V., & Spataru, C. (2022). Social media data analysis framework for disaster response. Discover Artificial Intelligence, 2(1), 10.
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.
Schempp, T., Zhang, H., Schmidt, A., Hong, M., & Akerkar, R. (2019). A framework to integrate social media and authoritative data for disaster relief detection and distribution optimization. International Journal of Disaster Risk Reduction, 39, 101143.
Srivastava, G., & Singh, A. (2023). An evolutionary approach comprising tailor-made variation operators for rescue unit allocation and scheduling with fuzzy processing times. Engineering Applications of Artificial Intelligence, 123, 106246.
Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in neural information processing systems, 27.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Wex, F., Schryen, G., Feuerriegel, S., & Neumann, D. (2014). Emergency response in natural disaster management: Allocation and scheduling of rescue units. European Journal of Operational Research, 235(3), 697-708.
Xie, S., Hou, C., Yu, H., Zhang, Z., Luo, X., & Zhu, N. (2022). Multi-label disaster text classification via supervised contrastive learning for social media data. Computers and Electrical Engineering, 104, 108401.
Yew, Y. Y., Delgado, R. C., Heslop, D. J., & González, P. A. (2019). The Yew Disaster Severity Index: a new tool in disaster metrics. Prehospital and disaster medicine, 34(1), 8-19.
Yu, M., Huang, Q., Qin, H., Scheele, C., & Yang, C. (2020). Deep learning for real-time social media text classification for situation awareness–using Hurricanes Sandy, Harvey, and Irma as case studies. In Social Sensing and Big Data Computing for Disaster Management (pp. 33-50). Routledge.
Zhao, T., Tian, S., Daly, J., Geiger, M., Jia, M., & Zhang, J. (2024). Information Retrieval and Classification of Real-Time Multi-Source Hurricane Evacuation Notices. arXiv preprint arXiv:2401.06789.
土石流及大規模崩塌防災資訊網. https://246.swcb.gov.tw/Achievement/MajorDisasters
朱易昌. (2022). 城市路網受震損建物殘骸阻斷風險分析. 國立臺灣大學土木工程學系學位論文, 2022, 1-87.
施邦築, 陳素櫻, & 劉淑燕. (2008). 運用 TELES 系統震災早期評估於防救災資源需求之量化推估. 危機管理學刊, 5(2), 1-10.
陳明湖. (2005). 地震災損評估系統應用於地區災害防救計劃之研究.
應變管理資訊系統(EMIC)介紹.(2019) https://www.nfa.gov.tw/cht/index.php?code=list&ids=1537
戴, 至佑. (2018). 以動態車輛路線最佳化模型決定高速公路事件應變車隊任務 / 戴至佑[撰] = Using dynamic vehicle routing model to dispatch emergency response teams on freeways / Chih-Yu Tai 國立臺灣大學土木工程學研究所].
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93346-
dc.description.abstract近年來,快速應對自然災害後的災情成為重要課題,受到越來越多的研究關注。以往,大量災情通報訊息傳至應變中心時,救災人員常因判斷耗時或誤判嚴重程度,影響救災效率。本研究透過大型語言模型 (Large Language Model, LLM) 微調,建立災情嚴重程度分類模型以辨識災情通報,並根據結果進行後續救災規劃。研究收集了應變管理資訊系統 (EMIC)、農業部農村發展及水土保持署 (ARDSWC)、災情新聞文本與生成式人工智慧模擬文本四個來源的災難通報訊息,建立訓練和測試資料集。整合資料集後,進行兩種類型的標註:第一種針對道路阻塞、建築物倒塌、人員受傷、死亡、失蹤五個項目分類;第二種則根據人員傷亡情況,以台灣現行「大型傷亡事件」定義進行分類,並加入無人傷亡與無法確認傷亡情況兩個分類。實驗中,使用Bidirectional Encoder Representations from Transformers (BERT)和Generative Pre-trained Transformer (GPT)進行模型微調。結果顯示,微調後的GPT模型在五個分類器的表現均優於BERT模型,且訓練時間更短。因此,後續標註與模型微調均採用OpenAI平台的GPT模型。經改進資料量與不平衡問題,微調模型取得更佳結果。最終,微調GPT模型準確辨識大型傷亡事件,並在救災派遣最佳化模型中應用災難嚴重程度作為事件權重、處理時間、派遣次數等參數。參考戴至佑(2018)的高速公路事件應變最佳化模型,本研究設計多站點車輛路徑問題模型,處理應變隊伍對城市內災難事件的指派任務,並最小化系統總應變時間與單一應變隊伍總應變時間。以2018花蓮地震案例分析,微調GPT模型成功辨識所有災難事件,救災派遣模型使整體應變時間減少22%,重大傷亡事件應變時間減少34%。敏感性分析顯示,加入微調模型辨識結果的情境在特定參數設置下,重大傷亡事件應變時間下降最高16%。zh_TW
dc.description.abstractIn recent years, how to respond quickly to natural disasters has become an important issue and has received increasing research attention. Disaster relief assignments based on personnel judgment can be challenged when a large amount of disaster report messages are transmitted to the response center, which may take a prolonged time to judge or misjudge these messages. Hence, this research seeks to develop a model that can automatically identify the severity of disasters and provide accurate countermeasures based on the disaster information transmitted to the system.
This study collected disaster-related texts to create a dataset for training and testing a disaster severity classification model. The primary sources include the Emergency Management Information Cloud (EMIC) and the Taiwan Agency of Rural Development and Soil and Water Conservation (ARDSWC). To address data imbalance in these government datasets, additional disaster descriptions from news sources were collected, and more data were generated through generative AI simulations based on descriptions in the EMIC dataset. The integrated dataset is labeled differently in two types. The first type of labeling is divided into five disaster categories, including blocked roads, building damage, personal injuries, deaths, and missing, according to their respective severity. The second type of data labeling focuses on the casualties. Therefore, the labeling of casualties is based on Taiwan’s current definition of “mass casualty events”, which uses more than 15 casualties as the classification standard, and adds two additional categories: no casualties and unknown casualties. In the experiment of fine-tuning LLMs, firstly, the two selected LLMs BERT and GPT are fine-tuned on the five disaster categories labeled with the first type of labeling. It can be found in the results that the fine-tuned GPT model trained through the OpenAI platform performs better on the five classifiers than the fine-tuned model combining BERT and neural networks, probably because it is easier for the OpenAI platform to produce more stable fine-tuning results when the dataset is not large. Further, the time required for fine-tuning training in the OpenAI platform is less. Therefore, the OpenAI platform is finally used to fine-tune the GPT model to continue testing with the second type of data labeling. The results show that a fine-tuned model can achieve better results by increasing the amount of training data and improving the problem of data imbalance. Because of the different writing patterns of disaster news and those on EMIC, generative AI is used to rewrite them in a similar manner to generating additional texts to improve the consistency within the data, which also leads to better predictions and recall rates.
The fine-tuned GPT model with the highest accuracy for mass casualty events is used to identify incident severity and develop the disaster relief dispatch optimization model. Incident severity parameters include weight, processing time, and required dispatches. Referring to Tai's (2018) optimization model for highway incident response, this study designs a multi-depot vehicle routing problem for dispatching disaster response teams. The model aims to minimize both the total system response time and the response time of individual teams. For mass casualty incidents, multiple teams are assigned simultaneously, with additional teams called for support as needed.
This study uses the 2018 Earthquake in Hualien City as a case study that considers the reported disaster impact 40 minutes after the earthquake occurred. Through the fire station dispatch records, we can learn the description text of the disaster incidents, the assigned teams and other information. GPT’s fine-tuned model can correctly identify all disaster incidents in the case, and after being incorporated into the disaster relief dispatch model, the overall response time is reduced by 22% compared with the response time in the original case, and the response time for mass casualty events is reduced by 34%. Moreover, in the sensitivity analysis, it is found that the response time for mass casualty events is reduced by up to 16% with certain parameter settings when the severity classification results of the fine-tuned model are added as event weights compared to the scenario without event weights.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-29T16:22:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-29T16:22:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
ABSTRACT IV
CONTENT VII
LIST OF FIGURES X
LIST OF TABLES XII
Chapter 1 Introduction 1
1.1 Research Background 1
1.2 Research Objectives 3
1.3 Thesis Organization 4
Chapter 2 Literature Review 5
2.1 Disaster Relief Research in Taiwan 5
2.2 Application of Text-Mining in Disaster Analysis 7
2.3 Transformer and Large Language Models 9
2.4 Disaster Severity Definition 10
2.5 Disaster Relief Optimization 12
2.6 Research Gap 15
Chapter 3 Methodology 17
3.1 Research Framework 17
3.2 Data Sources 19
3.2.1 Government data sources 19
3.2.2 Other data sources 20
3.3 Data Processing 21
3.3.1 The first type of data labeling 21
3.3.2 The second type of data labeling 24
3.3.3 The practice of text labeling 25
3.4 LLM Fine-tuning 28
3.4.1 BERT 29
3.4.2 GPT 30
3.5 LLM Fine-tuning Experiments Design 31
3.6 Fine-tuning Analysis Results 33
3.6.1 Fine-tuning performance in the first type labeled datasets 33
3.6.2 Fine-tuning performance in the second type labeled datasets 37
3.7 Disaster Relief Model Development 42
3.7.1 Operation design 43
3.7.2 Notation 44
3.7.3 Problem formulation 49
Chapter 4 Case Study 53
4.1 Study Area and Event 53
4.2 Parameters Setting 58
4.3 Model Testing and Evaluation 61
4.3.1 Comparing the model’s dispatch result with the original plan 62
4.3.2 Sensitivity analysis 66
4.4 Discussion 75
4.4.1 Request-response ratio 75
4.4.2 Different response intervals 77
4.4.3 illustration of improved dispatch results 78
4.4.4 Dispatch results with different levels of response capacity 81
Chapter 5 Conclusions 84
5.1 Research Findings and Contributions 84
5.2 Future Research 87
REFERENCES 90
-
dc.language.isoen-
dc.subjectGPTzh_TW
dc.subject救災調度最佳化zh_TW
dc.subjectBERTzh_TW
dc.subject大型語言模型微調zh_TW
dc.subject災難管理zh_TW
dc.subjectDisaster relief dispatch optimizationen
dc.subjectGPTen
dc.subjectBERTen
dc.subjectLLMs Fine-tuningen
dc.subjectDisaster managementen
dc.title以大型語言模型處理災情文本之嚴重度分類:強化救災應變zh_TW
dc.titleSeverity Classification of Disaster Text Using Large Language Models: Enhancing Disaster Responseen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳柏華;胡守任;劉瀚聰zh_TW
dc.contributor.oralexamcommitteeAlbert Y Chen;Shou-Ren Hu;Han-Tsung Liouen
dc.subject.keyword災難管理,大型語言模型微調,BERT,GPT,救災調度最佳化,zh_TW
dc.subject.keywordDisaster management,LLMs Fine-tuning,BERT,GPT,Disaster relief dispatch optimization,en
dc.relation.page92-
dc.identifier.doi10.6342/NTU202402162-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-26-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-07-23-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf2.02 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved