Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93345
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王建凱zh_TW
dc.contributor.advisorChien-Kai Wangen
dc.contributor.author廖紹宏zh_TW
dc.contributor.authorShao-Hong Liaoen
dc.date.accessioned2024-07-29T16:22:11Z-
dc.date.available2024-07-30-
dc.date.copyright2024-07-29-
dc.date.issued2024-
dc.date.submitted2024-07-22-
dc.identifier.citation[1] Qiang Guo, Mei Zhao, and HongFang Wang. Smt solder joint’s semi-experimental fatigue model. Mechanics Research Communications, 32(3):351–358, 2005.
[2] W.H. Schroen, P.S. Blanton, and D.R. Edwards. Finite element analysis application to semiconductor devices. In Ninth Annual IEEE/AESS Dayton Chapter Symposium ’Avionics Integrity Program, pages 35–46, 1988.
[3] Takashi Aihara, Shingo Ito, Hideaki Sasajima, and Ken Oota. Development of Reliability and Moldability on Fine Pitch Ball Grid Array by Optimizing Materials. Journal of Electronic Packaging, 123(1):88–94, 08 2000.
[4] A. Chowdhury, B. Guenin, ChanHee Woo, SeungMo Kim, and S. Lee. The effect of die attach layer delamination on the thermal performance of plastic packages. In 1998 Proceedings. 48th Electronic Components and Technology Conference (Cat. No.98CH36206), pages 1140–1147, 1998.
[5] V Lakshminarayanan and N Sriraam. The effect of temperature on the reliability of electronic components. In 2014 IEEE international conference on electronics, computing and communication technologies (CONECCT), pages 1–6. IEEE, 2014.
[6] John D Ferry. Viscoelastic properties of polymers. John Wiley & Sons, 1980.
[7] 林哲宇. 以黏彈生物力學特性量化評估踝關節之穩定性. PhD thesis,國立臺灣 大學,Jan2013.
[8] Attila Kossa and András Levente Horváth. Powerful calibration strategy for the two layer viscoplastic model. Polymer Testing, 99:107206, 2021.
[9] V-D Nguyen, Frédéric Lani, Thomas Pardoen, XP Morelle, and Ludovic Noels. A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers. International Journal of Solids and Structures, 96:192–216, 2016.
[10] S. Timoshenko. Analysis of bi-metal thermostats. J. Opt. Soc. Am., 11(3):233–255, Sep 1925.
[11] E Suhir and JD Weld. Application of a ‘surrogate’ layer for lower bending stress in a vulnerable material of a tri-material body. Microelectronics Reliability, 38(12):1949–1954, 1998.
[12] Tsung-Yu Pan and Yi-Hsin Pao. Deformation in Multilayer Stacked Assemblies. Journal of Electronic Packaging, 112(1):30–34, 03 1990.
[13] WT Chen and CW Nelson. Thermal stress in bonded joints. IBM Journal of Research and Development, 23(2):179–188, 1979.
[14] MY Tsai, CH Hsu, and CN Han. A note on suhir’s solution of thermal stresses for a die-substrate assembly. J. Electron. Packag., 126(1):115–119, 2004.
[15] Jiangbo He, Wu Zhou, Xiaoping He, Huijun Yu, Peng Peng, and Shuang Wang. Analytical model for adhesive die-attaching subjected to thermal loads using second-order beam theory. International Journal of Adhesion and Adhesives, 82:282–289, 2018
[16] 莊建祥. 塑膠球格陣列封裝之熱應力分析與最佳化. PhD thesis, National Taiwan University Department of Mechanical Engineering, 2000.
[17] Chang-Chun Lee and Hao-Zhou Lin. Modeling the cure shrinkage–induced warpage of epoxy molding compound. International Journal of Mechanical Sciences, 268:109056, 2024.
[18] Satyajit S Walwadkar, PW Farrell, Lawrence E Felton, and Junghyun Cho. Effect of die-attach adhesives on the stress evolution in mems packaging. In Proceedings of SPIE, volume 19, pages 847–852. Citeseer, 2003.
[19] Sung Yi, Paresh D Daharwal, Yeong J Lee, and BR Harkness. Effects of low modulus die attach adhesive on warpage and damage of bga. In 2005 International Symposium on Electronics Materials and Packaging, pages 162–168. IEEE, 2005.
[20] M.F. Sousa, S. Riches, C. Johnston, and P.S. Grant. Assessing the reliability of die attach materials in electronic packages for high temperature applications. IMAP Source Proceedings, 2010(HITEC):1–6, 1 2010.
[21] Luis A Navarro, Xavier Perpiñà, Miquel Vellvehí, Viorel Banu, and Xavier Jordà. Thermal cycling analysis of high temperature die-attach materials. Microelectronics Reliability, 52(9-10):2314–2320, 2012.
[22] Guojun Hu, Jing-En Luan, and Spencer Chew. Characterization of Chemical Cure Shrinkage of Epoxy Molding Compound With Application to Warpage Analysis. Journal of Electronic Packaging, 131(1):011010, 02 2009.
[23] Jorgen S Bergstrom. Mechanics of solid polymers: theory and computational modeling. William Andrew, 2015.
[24] JbRektor. How to know if a material is linear viscoelastic. https://polymerfem.com/how-to-know-if-a-material-is-linear-viscoelastic/, Aug 2023.
[25] Asim Gillani. Development of Material Model Subroutines for Linear and Nonlinear Response of Elastomers. PhD thesis, The University of Western Ontario (Canada), 2018.
[26] Johannes Berner. Out of Equilibrium Dynamics of Driven Colloids in Viscoelastic Media. PhD thesis, Universität Konstanz, Konstanz, 2020.
[27] Danton Gutierrez-Lemini. Engineering viscoelasticity, volume 910. Springer, 2014.
[28] Jean Lemaitre. Handbook of materials behavior models, three-volume set: nonlinear models and properties. Elsevier, 2001.
[29] Syed Ali Ashter. Thermoforming of single and multilayer laminates: plastic films technologies, testing, and applications. William Andrew, 2013.
[30] Horst Czichos, Tetsuya Saito, and Leslie E Smith. Springer handbook of metrology and testing. Springer Science & Business Media, 2011.
[31] Robin Aalto and Daniel Käll. Implementation of a Material Model for Adhesives in Abaqus. PhD thesis, Chalmers University of Technology, 2022.
[32] Severino PC Marques and Guillermo J Creus. Computational viscoelasticity. Springer Science & Business Media, 2012.
[33] Marina V Shitikova and Anastasiya I Krusser. Models of viscoelastic materials: A review on historical development and formulation. Theoretical Analyses, Computations, and Experiments of Multiscale Materials: A Tribute to Francesco Dell’Isola, pages 285–326, 2022.
[34] A I Krusser and M V Shitikova. Classification of viscoelastic models with integer and fractional order derivatives. IOP Conference Series: Materials Science and Engineering, 747(1):012007, jan 2020.
[35] 陳韋鈞. 以應力鬆弛曲線重建蠕變曲線之黏彈數學模型建立與驗證. Master’s thesis, 國立臺灣大學,Jan 2023.
[36] 張宗祺. 足跟墊軟組織之機械特性研究. Master’s thesis, 國立臺灣大學,Jan 2007.
[37] A Serra-Aguila, JM Puigoriol-Forcada, G Reyes, and J Menacho. Viscoelastic mod els revisited: characteristics and interconversion formulas for generalized kelvin-voigt and maxwell models. Acta Mechanica Sinica, 35:1191–1209, 2019.
[38] Yuan-cheng Fung. Biomechanics: mechanical properties of living tissues. Springer Science & Business Media, 2013.
[39] Matthew Head, James Hickey, Joachim Gottsmann, and Nicolas Fournier. The in fluence of viscoelastic crustal rheologies on volcanic ground deformation: Insights from models of pressure and volume change. Journal of Geophysical Research: Solid Earth, 124(8):8127–8146, 2019.
[40] Stuart Mitchell. Characterization of polymers using dynamic mechanical analysis (DMA). https://www.eag.com/app-note/characterization-of-polymers-using-dynamic-mechanical-analysis-dma/, May 2024.
[41] Libretexts. Dynamic mechanical analysis. https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Physical_Methods_in_Chemistry_and_Nano_Science_(Barron)/02:_Physical_and_Thermal_Analysis/2.10:_Dynamic_Mechanical_ Analysis, Aug 2022.
[42] Naheed Saba, Mohammad Jawaid, Othman Y Alothman, and MT Paridah. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction and Building Materials, 106:149–159, 2016.
[43] Malcolm L Williams, Robert F Landel, and John D Ferry. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical society, 77(14):3701–3707, 1955.
[44] Steven Eric Zeltmann, Keerthana A Prakash, Mrityunjay Doddamani, and Nikhil Gupta. Prediction of modulus at various strain rates from dynamic mechanical anal analysis data for polymer matrix composites. Composites Part B: Engineering, 120:27 34, 2017.
[45] David Roylance. Engineering viscoelasticity. Department of Materials Science and Engineering–Massachusetts Institute of Technology, Cambridge MA, 2139:1 37, 2001.
[46] Rafał Michalczyk. Implementation of generalized viscoelastic material model in abaqus code. Logistyka, 2011.
[47] Jörgen Bergström. Calculation of prony series parameters from dynamic frequency data. Polym FEM, 2005.
[48] Manuel Alejandro Tapia-Romero, Mariamne Dehonor-Gómez, and Luis Edmundo Lugo-Uribe. Prony series calculation for viscoelastic behavior modeling of structural adhesives from dma data. Ingeniería, investigación y tecnología, 21(2), 2020.
[49] Peter R Barrett. Debugging complex finite element analysis using a single element model. https://www.engineering.com/story/debugging-complex-finite-element-analysis-using-a-single-element-model, 2014.
[50] Kong Juan and Yuan Ju-yun. Application of linear viscoelastic differential constitutive equation in abaqus. In 2010 International Conference On Computer Design and Applications, volume 5, pages V5–152. IEEE, 2010.
[51] Aude Vandenbroucke, H Laurent, N Aït Hocine, and G Rio. A hyperelasto-visco-hysteresis model for an elastomeric behaviour: Experimental and numerical investigations. Computational Materials Science, 48(3):495–503, 2010.
[52] Martin Johannessen Skovly. Viscoelastic response of hydrogel materials at finite strains. Master’s thesis, NTNU, 2015.
[53] 王建凱. Shear locking and incompatible mode element (課程講義). 機械工程學 研究所,國立台灣大學,2022.
[54] 王建凱. Generalization of finite element procedures for linear elasticity (課程講 義). 機械工程學研究所,國立台灣大學,2022.
[55] Gerard Kelly and Gerard Kelly. Thermomechanical stress in a pqfp. The Simulation of Thermomechanically Induced Stress in Plastic Encapsulated IC Packages, pages 23–45, 1999.
[56] Niño Rigo Emil G Lim, Aristotle T Ubando, Jeremias A Gonzaga, and Richard Raymond N Dimagiba. Finite element analysis on the factors affecting die crack propagation in bga under thermo-mechanical loading. Engineering Failure Analysis, 116:104717, 2020.
[57] Xiuyun Hao, Liancheng Qin, Daoguo Yang, and Shilong Liu. Thermal-mechanical stress and fatigue failure analysis of a pbga. In Fifth International Conference on Electronic Packaging Technology Proceedings, 2003. ICEPT2003., pages 438–442. IEEE, 2003.
[58] Joshua A Depiver, Sabuj Mallik, and Emeka H Amalu. Thermal fatigue life of ball grid array (bga) solder joints made from different alloy compositions. Engineering Failure Analysis, 125:105447, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93345-
dc.description.abstract隨著全球對電子零件的需求提升,市場對於半導體晶片的數量和品質要求也 隨之水漲船高,然而隨著摩爾定律(Moore's law)逐漸達到瓶頸,半導體產業的晶片封裝技術也面臨著挑戰,尤其是在封裝製程中,存在不可避免的溫度梯度分佈,使得在異質材料之間,由於材料彈性模數(Modulus)與熱膨脹係數(Coefficient of thermal expansion)差異引致的熱翹曲變形(Warpage)問題,顯著地影響著晶片製程可靠度與產品性能表現。
於半導體封裝製程中,包含有晶片黏合膠(Die-attach adhesive)、底部填充膠(Underfill)和固態模封材料(Epoxy molding compound),都是晶片封裝技術 常使用具有非線性機械行為的聚合物(Polymer)材料。本文提出以具備時變性 (Time-dependent)和溫變性(Temperature-dependent)的黏彈性材料(Viscoelastic material)模型,分析使用於打線技術(Wire bonding)及球格陣列封裝(Ball grid array)的晶片黏合膠:實驗方面透過拉伸實驗(Tensile test)和流變儀實驗 (Rheometer test),輔以聚合物材料的應力應變曲線(Stress-strain curve)、鬆弛 現象(Relaxation)與主導曲線(Master curve)分析,再運用有限元素法建立模型, 經過和Matlab 演算法的執行與整合,運用其最佳化函式得出最適黏彈性材料的材料參數,以探討溫度變化速率對晶片整體熱翹曲變形的影響。
zh_TW
dc.description.abstractAs global demand for electronic components increases, the market's requirements for the quantity and quality of semiconductor chips are also rising. However, with Moore's Law approaching its limits, the semiconductor industry faces challenges in chip packaging technology. Specifically, the temperature gradient distribution during the packaging process causes thermal warpage deformation due to the mismatch of the elastic modulus and the coefficient of thermal expansion between different materials. This significantly affects the reliability of chip manufacturing and product performance.
In semiconductor packaging processes, materials such as die-attach adhesive, underfill, and epoxy molding compounds, which exhibit nonlinear mechanical behavior, are commonly used. This study proposes using a viscoelastic material model with time-dependent and temperature-dependent properties to analyze die-attach adhesive used in wire bonding and ball grid array packaging. Experimentally, tensile and rheometer tests were conducted, supported by stress-strain curve analysis, relaxation test, and master curve analysis of polymer materials. A model was then established using the finite element method, and the optimal viscoelastic material parameters were obtained through execution and integration with Matlab algorithms. This approach aims to explore the impact of temperature change rates on the overall thermal warpage deformation of the chip.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-29T16:22:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-29T16:22:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要i
Abstract iii
目次v
圖次ix
表次xv
第一章 緒論1
1.1研究背景1
1.2文獻回顧6
1.3研究目的與架構9
第二章 黏彈性材料11
2.1黏彈性材料的材料行為12
2.1.1應力鬆弛(StressRelaxation) 15
2.1.2潛變(Creep) 17
2.2黏彈性材料的數學模型 20
2.2.1基礎模型 20
2.2.2廣義模型 25
2.3黏彈性材料的材料實驗 32
2.3.1單軸拉伸試驗 32
2.3.2流變儀試驗 34
第三章 黏彈性材料有限元素模型與參數最佳化 43
3.1擬合流程一:多重試驗擬合 44
3.1.1擬合公式介紹 44
3.1.2模型擬合 46
3.2擬合流程二:拉伸試驗擬合 51
3.2.1單一元素模型 51
3.2.2擬合參數選定 56
3.2.3實驗數據平滑化 57
3.2.4模型擬合 61
第四章 應用:膠材熱應力與翹曲現象 79
4.1同質等長多層薄板封裝體結構 80
4.1.1線彈性多層薄板理論 80
4.1.2模型驗證 84
4.2非等長樑封裝體結構 91
4.2.1與線彈性多層薄板理論之討論 97
4.2.2線彈性膠材之熱翹曲影響 104
4.2.3黏彈性膠材之熱翹曲影響 107
第五章 結論與未來展望 141
5.1結論 141
5.2未來展望 143
參考文獻 145
附錄A 單一元素模型與試片模型之有限元成果比較 153
-
dc.language.isozh_TW-
dc.subject翹曲變形zh_TW
dc.subject有限元素法zh_TW
dc.subject黏彈性材料zh_TW
dc.subject晶片黏合膠zh_TW
dc.subject球格陣列封裝zh_TW
dc.subjectBall grid array (BGA)en
dc.subjectViscoelasticen
dc.subjectWarpageen
dc.subjectFinite element methoden
dc.subjectDie-attach adhesiveen
dc.title具聚合物薄膜多層堆疊組件於電子封裝製程之非線性變形研究zh_TW
dc.titleNonlinear Deformation of Multi-layer Stacked Assemblies with Polymer Films in Electronic Packagingen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee莊嘉揚;黃育熙;吳筱梅;廖國基zh_TW
dc.contributor.oralexamcommitteeJia-Yang Juang;Yu-Hsi Huang;Hsiao-Mei Wu;Kuo-Chi Liaoen
dc.subject.keyword翹曲變形,球格陣列封裝,晶片黏合膠,黏彈性材料,有限元素法,zh_TW
dc.subject.keywordWarpage,Ball grid array (BGA),Die-attach adhesive,Viscoelastic,Finite element method,en
dc.relation.page155-
dc.identifier.doi10.6342/NTU202402062-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-23-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2029-07-22-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
23.74 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved