Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93342
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭漢豪zh_TW
dc.contributor.advisorHon-Ho Kwoken
dc.contributor.author楊睿哲zh_TW
dc.contributor.authorRui-Zhe Yangen
dc.date.accessioned2024-07-29T16:21:11Z-
dc.date.available2024-07-30-
dc.date.copyright2024-07-29-
dc.date.issued2024-
dc.date.submitted2024-07-22-
dc.identifier.citation[1] Yang Feng, Qingfeng Liu, Qingsong Yao, and Guoqing Zhao (2021). Model Averaging for Nonlinear Regression Models. Journal of Business and Economic Statistics, 40, 785-798.
[2] Harry H. Kelejian and Ingmar R. Prucha (1998). A generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances. The Journal of Real Estate Finance and Economics, 17, 99-121.
[3] Lung-fei Lee (2003). Best Spatial Two-Stage Least Squares Estimators for a Spatial Autoregressive Model with Autoregressive Disturbances. Econometric Reviews, 22, 307-335.
[4] Lung-fei Lee (2004). Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models. Econometrica, 72, 1899-1925.
[5] Lung-fei Lee (2001). Generalized Method of Moments Estimation of Spatial Autoregressive Processes. Manuscript. Department of Economics, Ohio State University.
[6] Mudit Kapoor, Harry H. Kelejian and Ingmar R. Prucha (2007). Panel Data Models with Spatially Correlated Error Components. Journal of Econometrics, 140, 97-130.
[7] Hon-Ho, Kwok (2019). Identification and Estimation of Linear Social Interaction Models. Journal of Econometrics, 210, 434-458.
[8] Xinyu Zhang and Chu-An Liu (2024). A Unified Approach to Focused Information Criterion and Plug-in Averaging Method. Statistica Sinica, 34, 771-792.
[9] Mark F.J. Steel (2020). Model Averaging and Its Use in Economics. Journal of Economic Literature, 58, 644-719.
[10] Enrique Moral-Benito (2015). Model Averaging in Economics: An Overview. Journal of Economic Surveys, 29, 46-75.
[11] Claeskens, G. and Hjort, N. (2008). Model Selection and Model Averaging. Cambridge University Press.
[12] Luc E. Anselin (1988). Spatial Econometrics: Methods and Models. Springer Science and Business Media.
[13] Whitney K. Newey and Daniel McFadden (1994). Large Sample Estimation and Hypothesis Testing. Handbook of Econometrics, 2111-2245.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93342-
dc.description.abstract本論文首先討論一般化動差法如何估計高階空間迴歸模型,為了估計效率而使用最佳化權重矩陣並列出其極限分配。接下來探討模型平均的權重決定的準則以及準則的大樣本性質,概念參考自Feng, Liu, Yao and Zhao (2021)的非線性迴歸模型(nonlinear regression model)的模型平均,討論在一般化動差法估計以及樣本外誤差的基準下,準則的函數以及它的大樣本性質。最後,從蒙地卡羅模擬中可以得知我們的模型平均方法與LASSO在估計以及預測的表現不相上下。zh_TW
dc.description.abstractThis paper first discusses how the generalized method of moments (GMM) is used to estimate high-order spatial regression models, employing the optimal weight matrix for estimation efficiency and listing its limiting distribution. Next, it explores the criteria for determining model averaging weights and the asymptotic properties of these criteria, drawing on the concept from Feng, Liu, Yao, and Zhao (2021) for model averaging in nonlinear regression models. The discussion focuses on the criterion function and its asymptotic properties under GMM estimation and out-of-sample error benchmarks. Finally, Monte Carlo simulations demonstrate that our model averaging method performs on par with LASSO in terms of estimation and prediction.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-29T16:21:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-29T16:21:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
摘要 iii
Abstract v
Contents vii
List of Tables ix
Chapter 1 Introduction 1
Chapter 2 The Model and GMM Estimation 3
2.1 High-Order Spatial Model . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 GMM Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Chapter 3 Model Averaging 9
3.1 Sub-Models and GMM . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Model Averaging (Parameter Averaging) . . . . . . . . . . . . . . . 11
3.3 Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Chapter 4 Monte Carlo Simulation 15
Chapter 5 Conclusion 19
References 21
Appendix A — Derivation of the Proposed Criterion 23
A.1 Proposed Criterion 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.2 Proposed Criterion 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Appendix B — Lemmas 29
B.1 Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
B.2 Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
B.3 Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
B.4 Lemma 4 (Kelejian and Prucha (1998)) . . . . . . . . . . . . . . . . 31
B.5 Lemma 5 (Yang Feng, Qingfeng Liu, Qingsong Yao, and Guoqing
Zhao (2021)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Appendix C — Proofs of the Theorems 33
C.1 Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
C.2 Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
C.3 Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
-
dc.language.isoen-
dc.subject空間迴歸模型zh_TW
dc.subject一般化動差法zh_TW
dc.subject模型平均zh_TW
dc.subject樣本外誤差zh_TW
dc.subject樣本內誤差zh_TW
dc.subject空間權重矩陣zh_TW
dc.subject社會網路zh_TW
dc.subjectGMMen
dc.subjectSocial Interactionen
dc.subjectSpatial Weight Matrixen
dc.subjectIn Sample Prediction Erroren
dc.subjectOut-of-Sample Prediction Erroren
dc.subjectModel averagingen
dc.subjectSpatial modelen
dc.title高階社會網路模型的一般化動差估計與模型平均zh_TW
dc.titleGeneralized Method of Moments Estimation and Model Averaging for High-Order Social Interaction Modelen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝志昇;劉祝安zh_TW
dc.contributor.oralexamcommitteeChih-Sheng Hsieh;Chu-An Liuen
dc.subject.keyword空間迴歸模型,一般化動差法,模型平均,樣本外誤差,樣本內誤差,空間權重矩陣,社會網路,zh_TW
dc.subject.keywordSpatial model,GMM,Model averaging,Out-of-Sample Prediction Error,In Sample Prediction Error,Spatial Weight Matrix,Social Interaction,en
dc.relation.page39-
dc.identifier.doi10.6342/NTU202401083-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-23-
dc.contributor.author-college社會科學院-
dc.contributor.author-dept經濟學系-
顯示於系所單位:經濟學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved