Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93334Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 吳文方 | zh_TW |
| dc.contributor.advisor | Wen-Fang Wu | en |
| dc.contributor.author | 董尹棠 | zh_TW |
| dc.contributor.author | Yin-Tang Tung | en |
| dc.date.accessioned | 2024-07-29T16:18:50Z | - |
| dc.date.available | 2024-07-30 | - |
| dc.date.copyright | 2024-07-29 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-22 | - |
| dc.identifier.citation | Trends in electric light-duty vehicles https://www.iea.org/energy-system/transport/electric-vehicles#tracking
Tesla 創新電池將顛覆 EV 世界 https://www.eettaiwan.com/20201007nt01-scaling-teslas-new-battery-requiresrigorous-testing/ 歐明輝。鋰離子電池之健康狀態預測與可靠度分析,碩士論文,國立臺灣大學機械工程學研究所,2021。 吳念祺、陳彥豪。電動車成本結構分析及對傳統汽車產業之影響,台灣經濟研究月刊,34(11),75-82,2011。 S. Baazouzi, N. Feistel, J. Wanner, I. Landwehr, A. Fill and K. P. Birke, "Design, Properties, and Manufacturing of Cylindrical Li-Ion Battery Cells-A Generic Overview," Batteries-Basel, vol. 9, no. 6, pp.1-20, Jun. 2023, Art no. 309. S. Li, M. W. Marzook, C. Zhang, G. J. Offer and M. Marinescu, "How to Enable Large Format 4680 Cylindrical Lithium-Ion Batteries," Applied Energy, vol. 349, pp.1-13, Nov. 2023, Art no. 121548. H. Heimes, C. Offermanns, M. Frieges, N. Ghandily, G. Zamit and J. Gorsch,"Influence of Cell Dimensions and Number of Tabs on Cylindrical Lithium-Ion Cell Sidewall and Bottom Cooling Performance," in 2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems(ITherm), pp. 1-7, Mar. 2023. T. G. Tranter, R. Timms, P. R. Shearing and D. J. L. Brett, "CommunicationPrediction of Thermal Issues for Larger Format 4680 Cylindrical Cells and Their Mitigation with Enhanced Current Collection," Journal of the Electrochemical Society, vol. 167, no. 16, pp. 1-7, Dec. 2020, Art no. 160544. M. Ank, A. Sommer, K. A. Gamra, J. Schoberl, M. Leeb, J. Schachtl, N. Streidel, S. Stock, M. Schreiber, P. Bilfinger, C. Allgauer, P. Rosner, J. Hagemeister, M. Roble, R. Daub and M. Lienkamp, "Lithium-Ion Cells in Automotive Applications: Tesla 4680 Cylindrical Cell Teardown and Characterization," Journal of the Electrochemical Society, vol. 170, no. 12, pp. 1-14, Dec. 2023, Art no. 120536. C. Yang and H. J. Shi, "Prospects of Battery Assembly for Electric Vehicles Based on Patent Analysis," International Journal of Low-Carbon Technologies, vol. 18, pp.1134-1139, Oct. 2023. F. H. Gandoman, J. Jaguemont, S. Goutam, R. Gopalakrishnan, Y. Firouz, T. Kalogiannis, N. Omar and J. V. Mierlo, “Concept of Reliability and Safety Assessment of Lithium-Ion Batteries in Electric Vehicles: Basics, Progress, and Challenges,” Applied Energy, vol. 251, pp.1-17, Oct. 2019, Art no. 113343. I.J. Fernández, C.F. Calvillo, A. Sánchez-Miralles and J. Boal, “Capacity Fade and Aging Models for Electric Batteries and Optimal Charging Strategy for Electric Vehicles,” Energy, vol. 60, pp. 35-43, Oct. 2013. S. L. Jeng, C. M. Tan and P. C. Chen, “Statistical Distribution of Lithium-Ion Batteries Useful Life and Its Application for Battery Pack Reliability,” Journal of Energy Storage, vol. 51, pp.1-13, Jul. 2022, Art no. 104399. Z. Liu, C.M. Tan and F. Leng, “A Reliability-Based Design Concept for LithiumIon Battery Pack in Electric Vehicles,” Reliability Engineering & System Safety, vol.134, pp. 169-177, Feb. 2015. A. Mills and S. Al-Hallaj,"Simulation of Passive Thermal Management System for Lithium-Ion Battery Packs," Power Sources, vol. 141, no. 2, pp. 307-315, Mar. 2005. 曾映誠。電池單元性能差異對電動車電池組可靠度分析之影響,碩士論文,國立臺灣大學機械工程學研究所,2022。 MIT Electric Vehicle Team, A Guide to Understanding Battery Specifications, Dec. 2008. O. S. Burheim, Engineering Energy Storage, pp.111-145, 2017. 何冠廷、陳弘源、陳燦耀、方冠榮、張家欽。儲能發展的勁旅─鋰離子電池,科學發展,557,60-65,2019。 X. Qian, D. Xuan, X. Zhao and Z. Shi, “Heat Dissipation Optimization of LithiumIon Battery Pack Based on Neural Networks,” Journal of Applied Thermal Engineering, vol. 162, pp.1-12, Nov. 2019, Art no. 114289. 楊善國。可靠度工程概論,第六版,全華圖書股份有限公司,台灣,2019。 C. E. Ebeling, An Introduction to Reliability and Maintainability Engineering, McGraw-Hill Inc, New York, 1996 4680 電池製成、技術、產業鏈 https://www.eet-china.com/mp/a182297.html TESLA 4680 BATTERY MANUFACTURING PROCESS REPORT https://www.tycorun.com/blogs/news/tesla-4680-battery 4680 電池詳細解析 https://www.eet-china.com/mp/a193453.html 楊鈞崴、劉偉仁。高能量矽基負極材料在鋰電池的技術發展與現況,工業材料,435,76-88,2023。 黃昱叡、黃俊翰、鄭尹瑋、劉全璞。負極材料─鋰離子電池,科學發展,564,11-15,2019。 G. Zubi, R. S. Adhikari, N. E. Sánchez and W. Acuña-Bravo, "Lithium-Ion BatteryPacks for Solar Home Systems: Layout, Cost and Implementation Perspectives," Journal of Energy Storage, vol. 32, pp.1-14, Dec. 2020, Art no. 101985. 新品種 4680 電池:看起來很美,造出來不易 https://www.usmart.hk/zh-hk/news-detail/6864790444392431964 4680 電池製成、技術、產業鏈 https://www.jishulink.com/post/1866930 Y. Lu, C. Z. Zhao, H. Yuan, J. K. Hu, J. Q. Huang and Q. Zhang, "Dry Electrode Technology, The Rising Star in Solid-State Battery Industrialization," Matter, vol. 5, no. 3, pp. 876-898, Mar. 2022. CTP/CTC/CTB 一體化電池行業分析 https://www.gii.tw/report/rinc1130741-ctp-ctc-ctb-integrated-battery-industryresearch.html The Technology of Power Battery Pack: From CTP to CTC https://etekware.com/zh-TW/ctp-ctc-battery-pack-technology/ Tesla https://www.tesla.com/ J. Shankleman, T. Biesheuvel, J. Ryan and D. Merrill, “We’re Going to Need More Lithium,” Bloomberg Businessweek, Sep. 2017. Tesla 4680 cells compared with BYD Blade and CATL Qilin structural batteries https://www.teslarati.com/tesla-4680-vs-byd-blade-vs-catl-qilin-structuralbatteries-video/ Y.-B. He, Z.-Y. Tang, Q.-S. Song, H. Xie, Q.-H. Yang, Y.-G. Liu and G.-W. Ling, "Preparation and Characterization of 18650 Li(Ni1/3Co1/3Mn1/3)O2/Graphite High Power Batteries," Journal of Power Sources, vol. 185, no. 1, pp. 526-533, Oct. 2008. T. Waldmann, R. G. Scurtu, K. Richter and M. Wohlfahrt-Mehrens, "18650 vs. 21700 Li-ion cells - A Direct Comparison of Electrochemical, Thermal, and Geometrical Properties," Journal of Power Sources, vol. 472, pp. 1-9, Oct. 2020, Art no. 228614. Tesla 4680 Cell 3.7V 24ah Cylindrical 4680 Lithium Ion Battery for EV https://lonmil.en.made-in-china.com/product/pmzYbgeAsChR/China-Tesla-4680-Cell-3-7V-24ah-Cylindrical-4680-Lithium-Ion-Battery-for-EV.html A. Sharma1, P. Zanotti and L. P.musunur, “Enabling The Electric Future of Mobility:Robotic Automation for Electric Vehicle Battery Assembly,” IEEE Access, vol. 7, pp. 170961-170991, Nov. 2019. Tesla Model Y Structural Battery Pack https://insideevs.com/news/563013/tesla-structural-battery-pack/ W. Wu, S. Wang, W. Wu, K. Chen, S. Hong and Y. Lai, “A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management,” Energy Conversion and Management, vol. 182, pp.262-281, Feb. 2019. A. Wray and K. Ebrahimi, "Octovalve Thermal Management Control for Electric Vehicle," Energies, vol. 15, no. 17, pp.1-23, Aug. 2022, Art no. 6118. K. Scott and S. Nork, “Active battery cell balancing,” Analog Devices, [Online]. Available:https://www.analog.com/en/technical-articles/active-battery-cellbalancing.html[Accessed 17 June 2022]. Y. Barsukov, “Battery Cell Balancing: What to Balance and How,” Texas Instruments, 2009. 交通部統計處,111 年自用小客車使用狀況調查報告,2023。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93334 | - |
| dc.description.abstract | 隨著電動車市場的迅速發展,電池技術的創新成為一個關鍵性議題,它直接影響電動車性能、續航力以及使用成本。電動車電池在歷經數個充放電循環後,電容量會逐漸降低,導致車輛失效風險上升。汽車製造商都致力於研究開發新型電池,以滿足不斷增長的電動車市場需求。電動車電池系統(battery system)是由多顆電池芯(battery cell)根據不同排列方式所組成,它不僅影響車輛動力輸出和續航能力,也影響車輛安全性與可靠度。電動車過去常用18650電池,然而近幾年,4680電池被視為新的亮點。相較於18650電池,4680電池除尺寸更大外,隨著無極耳(tabless)技術、高鎳三元正極材料、高矽負極材料、乾電極(dry battery electrode)工藝、CTC (cell to chassis)集成技術等發展,使其具有更低電阻、更長續航力、更高能量密度及電容量。本研究旨在探討上述兩種電池性能之差異,並依據可靠度工程(reliability engineering)原理,分析並分別比較兩種電池之電池芯與電池系統可靠度,包括比較兩種電池系統之失效率(failure rate)、平均失效時間(mean time to failure, MTTF)及車廠保固期等重要可靠度指標。本論文主要以電池芯健康度(state-of-health, SOH)衰退為基礎,考量各電池芯健康度可能存在之差異,分析獲得電池芯及電池系統隨充放電循環次數增加導致可能發生之衰退及可能發生之失效機率,藉以探討並比較前述可靠度指標。本論文研究結果顯示,在符合臺灣特定使用情況下,4680電池系統之平均失效時間為18650電池系統之1.3倍,多了3.6年的使用時間。 | zh_TW |
| dc.description.abstract | With the rapid growth of the electric vehicle (EV) market, innovation in battery technology has become a critical issue. After several charge-discharge cycles, the capacity of EV batteries gradually decreases, increasing the risk of vehicle failure. An EV battery system is composed of multiple battery cells arranged in various configurations, affecting not only the vehicle's power output and cruise range but also its safety and reliability. In the past, EVs commonly used 18650 batteries. However, in recent years, 4680 batteries have emerged, offering advantages such as larger size, tabless technology, high-nickel ternary cathode, high-silicon anode, dry electrode processes, and cell-to-chassis (CTC) integration. These advancements result in lower resistance, longer cruise range, higher energy density, and greater capacity. This study aims to explore the performance differences between the aforementioned two types of batteries and also analyze and compare, respectively, the reliabilities of the battery cells and battery systems of both types based on the principles of reliability engineering. This includes comparing reliability indicators such as failure rate, mean time to failure (MTTF), and the warranty period provided by automakers. The main basis for the analysis is the state-of-health (SOH) degradation of battery cells. This study considers possible SOH differences of battery cells, and finds through analysis potential degradation and failure probabilities that may occur as the number of charge-discharge cycles increases. The aforementioned reliability indicators are then explored and compared. The result of this study shows that under specific usage conditions in Taiwan, the mean time to failure for the 4680 battery system is 1.3 times that of the 18650 battery system, providing an additional 3.6 years of use. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-29T16:18:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-29T16:18:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT III 目次 IV 圖次 VII 表次 IX 第一章 緒論 1 1.1研究背景與動機 1 1.2文獻回顧 2 1.3研究目標 4 1.4論文架構 4 第二章 電池相關理論概述 5 2.1電池相關名詞定義 5 2.1.1電池組成相關名詞 5 2.1.2電池狀態相關名詞 5 2.1.3電池規格相關名詞 6 2.2 電池運作原理及失效類型 7 2.2.1鋰電池工作原理 7 2.2.2鋰電池失效類型 8 2.3 電池芯半經驗模型 11 第三章 可靠度工程概論 12 3.1機率基本理論以及隨機事件 12 3.2可靠度相關概念 13 3.2.1基本定義 14 3.2.2機率分布函數 18 3.3系統可靠度 21 3.3.1串聯系統 21 3.3.2並聯系統 22 3.3.3混合系統 23 3.3.4 k-out-of-n系統 24 第四章 電池技術及電池系統排列方式 26 4.1 4680電池技術 26 4.1.1全極耳技術 26 4.1.2電池正負極材料 28 4.1.3電池形狀選擇 30 4.1.4乾電極技術 32 4.1.5集成技術 33 4.2電動車電池系統排列方式 34 4.3兩種電池性能比較 36 4.3.1電容量差異 36 4.3.2容量維持率差異 37 第五章 電動車電池系統之可靠度分析 39 5.1電池芯之可靠度分析 39 5.1.1基本假設 39 5.1.2電池芯之健康度及標準差 44 5.1.3電池芯之可靠度 46 5.2電池系統之可靠度分析 55 5.2.1 18650電池系統可靠度 55 5.2.2 4680電池系統可靠度 60 5.2.3電池系統可靠度比較 64 5.3其他可靠度指標之比較 65 5.3.1失效率比較 65 5.3.2平均失效循環次數比較 67 5.3.3平均失效時間(MTTF)比較 68 5.3.4車廠保固期比較 70 第六章 綜整與結論 72 參考文獻 74 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 電動車 | zh_TW |
| dc.subject | 4680電池 | zh_TW |
| dc.subject | 18650電池 | zh_TW |
| dc.subject | 電池芯 | zh_TW |
| dc.subject | 電池系統 | zh_TW |
| dc.subject | 可靠度工程 | zh_TW |
| dc.subject | 平均失效時間 | zh_TW |
| dc.subject | 4680 battery | en |
| dc.subject | mean time to failure | en |
| dc.subject | reliability engineering | en |
| dc.subject | battery system | en |
| dc.subject | battery cell | en |
| dc.subject | 18650 battery | en |
| dc.subject | electric vehicle | en |
| dc.title | 兩種電動車用電池系統之性能比較及其對可靠度分析之影響 | zh_TW |
| dc.title | Performance Comparison and Reliability Analyses of Two EV Battery Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林正平;李志中 | zh_TW |
| dc.contributor.oralexamcommittee | Chang-Pin Lin;Jyh-Jone Lee | en |
| dc.subject.keyword | 電動車,4680電池,18650電池,電池芯,電池系統,可靠度工程,平均失效時間, | zh_TW |
| dc.subject.keyword | electric vehicle,4680 battery,18650 battery,battery cell,battery system,reliability engineering,mean time to failure, | en |
| dc.relation.page | 78 | - |
| dc.identifier.doi | 10.6342/NTU202401795 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-07-22 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Restricted Access | 6.16 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
