Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93322
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許良彥zh_TW
dc.contributor.advisorLiang-Yan Hsuen
dc.contributor.author蔡宏昇zh_TW
dc.contributor.authorHung-Sheng Tsaien
dc.date.accessioned2024-07-29T16:15:00Z-
dc.date.available2024-07-30-
dc.date.copyright2024-07-29-
dc.date.issued2024-
dc.date.submitted2024-07-15-
dc.identifier.citation[1] Tsai, H.-S.; Shen, C.-E.; Hsu, L.-Y. Generalized Born-Huang Expansion Under Macroscopic Quantum Electrodynamics Framework. J. Chem. Phys. 2024, 160, 144112.
[2] Melikyan, A. O.; Kryzhanovsky, B. V. Modeling of the Optical Properties of Silver with Use of Six Fitting Parameters. Opt. Mem. Neural Netw. 2014, 23, 1–5.
[3] Schäfer, C.; Ruggenthaler, M.; Rubio, A. Ab Initio Nonrelativistic Quantum Electrodynamics: Bridging Quantum Chemistry and Quantum Optics from Weak to Strong Coupling. Phys. Rev. A 2018, 98, 043801.
[4] Stokes, G. G. On the Change of Refrangibility of Light. Phil. Trans. R. Soc. 1852, 142, 463–562.
[5] Einstein, A. Zur Quantentheorie der Strahlung. Phys. Z. 1917, 18, 121–128.
[6] Planck, M. Ueber Das Gesetz der Energieverteilung Im Normalspectrum. Ann. Phys. (Berlin) 1901, 309, 553–563.
[7] Dirac, P. A. M. The Quantum Theory of the Emission and Absorption of Radiation. Proc. R. Soc. Lond. A 1927, 114, 243–265.
[8] Oppenheimer, J. R. Note on the Theory of the Interaction of Field and Matter. Phys. Rev. 1930, 35, 461–477.
[9] Bloch, F.; Nordsieck, A. Note on the Radiation Field of the Electron. Phys. Rev. 1937, 52, 54–59.
[10] Weisskopf, V.; Wigner, E. Berechnung der Natürlichen Linienbreite Auf Grund der Diracschen Lichttheorie. Z. Phys. 1930, 63, 54–73.
[11] Weisskopf, V. Zur Theorie der Resonanzfluoreszenz. Ann. Phys. (Berlin) 1931, 401, 23–66.
[12] Weisskopf, V. F. On the Self-Energy and the Electromagnetic Field of the Electron. Phys. Rev. 1939, 56, 72–85.
[13] Perrin, J. Radiochimie de la Fluorescence. C. R. Hebd. Séances Acad. Sci. 1923, 177, 612–618.
[14] Perrin, J. Radiochimie de la Fluorescence (Suite). C. R. Hebd. Séances Acad. Sci. 1923, 177, 665–666.
[15] Perrin, J.; Choucroun, M. Fluorescence, et Lois Générales Relatives aux Vitesses de Réaction. C. R. Hebd. Séances Acad. Sci. 1924, 178, 1401–1406.
[16] Perrin, J. Fluorescence et Induction Moléculaire Par Résonance. C. R. Hebd. Séances Acad. Sci. 1927, 184, 1097–1100.
[17] Perrin, J. Radiation and Chemistry. Trans. Faraday Soc. 1922, 17, 546–572.
[18] Perrin, F. Loi de Décroissance du Pouvoir Fluorescent en Fonction de la Concentration. C. R. Hebd. Séances Acad. Sci. 1924, 178, 1978–1980.
[19] Perrin, F. La Fluorescence des Solutions - Induction Moléculaire. - Polarisation et Durée d’émission. - Photochimie. Ann. Phys. (Paris) 1929, 10, 169–275.
[20] Perrin, F. Polarisation de la Lumière de Fluorescence. Vie Moyenne des Molécules dans L’etat Excité. J. Phys. Radium 1926, 7, 390–401.
[21] Jablonski, A. Efficiency of Anti-Stokes Fluorescence in Dyes. Nature 1933, 131, 839–840.
[22] Kasha, M. Fifty Years of the Jablonski Diagram. Acta Phys. Pol., A 1987, 71, 661– 670.
[23] Kasha, M. From Jabłoński to Femtoseconds. Evolution of Molecular Photophysics. Acta Phys. Pol., A 1999, 95, 15–36.
[24] Valeur, B.; Berberan-Santos, M. N. Molecular Fluorescence: Principles and Applications; Wiley-VCH Verlag GmbH & Co. KGaA, 2012.
[25] Purcell, E. M.; Torrey, H. C.; Pound, R. V. Resonance Absorption by Nuclear Magnetic Moments in a Solid. Phys. Rev. 1946, 69, 37–38.
[26] Drexhage, K. H. Multiphoton Excitation of Fluorescence in Standing Light Waves and Measurement of Picosecond Pulses. Appl. Phys. Lett. 1969, 14, 318–320.
[27] Drexhage, K. Influence of a Dielectric Interface on Fluorescence Decay Time. J. Lumin. 1970, 1-2, 693–701.
[28] Tews, K.-H.; Inacker, O.; Kuhn, H. Variation of the Luminescence Lifetime of a Molecule Near an Interface Between Differently Polarizable Dielectrics. Nature 1970, 228, 276–278.
[29] Kuhn, H. Classical Aspects of Energy Transfer in Molecular Systems. J. Chem. Phys. 1970, 53, 101–108.
[30] Chance, R. R.; Prock, A.; Silbey, R. Lifetime of an Emitting Molecule Near a Partially Reflecting Surface. J. Chem. Phys. 1974, 60, 2744–2748.
[31] Chance, R. R.; Miller, A. H.; Prock, A.; Silbey, R. Fluorescence and Energy Transfer Near Interfaces: The Complete and Quantitative Description of the Eu+3/mirror Systems. J. Chem. Phys. 1975, 63, 1589–1595.
[32] Chance, R. R.; Prock, A.; Silbey, R. Molecular Fluorescence and Energy Transfer Near Interfaces. In Advances in Chemical Physics; John Wiley & Sons, Ltd, 1978; pp 1–65.
[33] Goy, P.; Raimond, J. M.; Gross, M.; Haroche, S. Observation of Cavity-Enhanced Single-Atom Spontaneous Emission. Phys. Rev. Lett. 1983, 50, 1903–1906.
[34] Kühn, S.; Håkanson, U.; Rogobete, L.; Sandoghdar, V. Enhancement of Single- Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna. Phys. Rev. Lett. 2006, 97, 017402.
[35] Lakowicz, J. R.; Shen, B. B.; Gryczynski, Z.; D’Auria, S.; Gryczynski, I. Intrinsic Fluorescence from DNA Can Be Enhanced by Metallic Particles. Biochem. Biophys. Res. Commun. 2001, 286, 875–879.
[36] Kleppner, D. Inhibited Spontaneous Emission. Phys. Rev. Lett. 1981, 47, 233–236.
[37] Hulet, R. G.; Hilfer, E. S.; Kleppner, D. Inhibited Spontaneous Emission by a Rydberg Atom. Phys. Rev. Lett. 1985, 55, 2137–2140.
[38] Gabrielse, G.; Dehmelt, H. Observation of Inhibited Spontaneous Emission. Phys. Rev. Lett. 1985, 55, 67–70.
[39] Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and Quenching of Single- Molecule Fluorescence. Phys. Rev. Lett. 2006, 96, 113002.
[40] Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press, 2006.
[41] Kasha, M. Characterization of Electronic Transitions in Complex Molecules. Discuss. Faraday Soc. 1950, 9, 14–19.
[42] Gouterman, M. Radiationless Transitions: A Semiclassical Model. J. Chem. Phys. 1962, 36, 2846–2853.
[43] Robinson, G. W. Spectra and Energy Transfer Phenomena in Crystalline Rare Gas Solvents. J. Mol. Spectrosc. 1961, 6, 58–83.
[44] Robinson, G. W.; Frosch, R. P. Theory of Electronic Energy Relaxation in the Solid Phase. J. Chem. Phys. 1962, 37, 1962–1973.
[45] Robinson, G. W.; Frosch, R. P. Electronic Excitation Transfer and Relaxation. J. Chem. Phys. 1963, 38, 1187–1203.
[46] Lin, S. H. Rate of Interconversion of Electronic and Vibrational Energy. J. Chem. Phys. 1966, 44, 3759–3767.
[47] Lin, S. H.; Bersohn, R. Effect of Partial Deuteration and Temperature on Triplet‐ State Lifetimes. J. Chem. Phys. 1968, 48, 2732–2736.
[48] Lin, S. H. Energy Gap Law and Franck-Condon Factor in Radiationless Transitions. J. Chem. Phys. 1970, 53, 3766–3767.
[49] Siebrand, W. Radiationless Transitions in Polyatomic Molecules. I. Calculation of Franck-Condon Factors. J. Chem. Phys. 1967, 46, 440–447.
[50] Siebrand, W. Radiationless Transitions in Polyatomic Molecules. II. Triplet‐ Ground‐State Transitions in Aromatic Hydrocarbons. J. Chem. Phys. 1967, 47, 2411–2422.
[51] Siebrand, W.; Williams, D. F. Radiationless Transitions in Polyatomic Molecules. III. Anharmonicity, Isotope Effects, and Singlet‐to‐Ground‐State Transitions in Aromatic Hydrocarbons. J. Chem. Phys. 1968, 49, 1860–1871.
[52] Bixon, M.; Jortner, J. Intramolecular Radiationless Transitions. J. Chem. Phys. 1968, 48, 715–726.
[53] Chock, D. P.; Jortner, J.; Rice, S. A. Theory of Radiationless Transitions in an Isolated Molecule. J. Chem. Phys. 1968, 49, 610–621.
[54] Englman, R.; Jortner, J. The Energy Gap Law for Radiationless Transitions in Large Molecules. Mol. Phys. 1970, 18, 145–164.
[55] Nitzan, A.; Jortner, J. What Is the Nature of Intramolecular Coupling Responsible for Internal Conversion in Large Molecules?. Chem. Phys. Lett. 1971, 11, 458–463.
[56] Malhado, J. P.; Bearpark, M. J.; Hynes, J. T. Non-Adiabatic Dynamics Close to Conical Intersections and the Surface Hopping Perspective. Front. Chem. 2014, 2.
[57] Lin, S. H. Study of the Non-Adiabatic Transitions with Application to NO. Theoret. Chim. Acta 1967, 8, 1–7.
[58] Beer, M. P.; Longuet‐Higgins, H. C. Anomalous Light Emission of Azulene. J. Chem. Phys. 1955, 23, 1390–1391.
[59] Viswanath, G.; Kasha, M. Confirmation of the Anomalous Fluorescence of Azulene. J. Chem. Phys. 1956, 24, 574–577.
[60] Binsch, G.; Heilbronner, E.; Jankow, R.; Schmidt, D. On the Fluorescence Anomaly of Azulene. Chem. Phys. Lett. 1967, 1, 135–138.
[61] Rentzepis, P. M. Direct Measurements of Radiationless Transitions in Liquids. Chem. Phys. Lett. 1968, 2, 117–120.
[62] Gillispie, G. D. An Energy-Gap Correlation of Internal Conversion Rates. Chem. Phys. Lett. 1979, 63, 193–198.
[63] Maciejewski, A.; Safarzadeh-Amiri, A.; Verrall, R.; Steer, R. Radiationless Decay of the Second Excited Singlet States of Aromatic Thiones: Experimental Verification of the Energy Gap Law. Chem. Phys. 1984, 87, 295–303.
[64] Griesser, H. J.; Wild, U. P. The Energy Gap Dependence of the Radiationless Transition Rates in Azulene and Its Derivatives. Chem. Phys. 1980, 52, 117–131.
[65] Kober, E. M.; Caspar, J. V.; Lumpkin, R. S.; Meyer, T. J. Application of the Energy Gap Law to Excited-State Decay of Osmium(ii)-Polypyridine Complexes: Calculation of Relative Nonradiative Decay Rates from Emission Spectral Profiles. J. Phys. Chem. 1986, 90, 3722–3734.
[66] Bixon, M.; Jortner, J.; Cortes, J.; Heitele, H.; Michel-Beyerle, M. E. Energy Gap Law for Nonradiative and Radiative Charge Transfer in Isolated and in Solvated Supermolecules. J. Phys. Chem. 1994, 98, 7289–7299.
[67] Erker, C.; Basché, T. The Energy Gap Law at Work: Emission Yield and Rate Fluctuations of Single NIR Emitters. J. Am. Chem. Soc. 2022, 144, 14053–14056.
[68] Zhang, Q.; Kuwabara, H.; Potscavage, W. J.; Huang, S.; Hatae, Y.; Shibata, T.; Adachi, C. Anthraquinone-Based Intramolecular Charge-Transfer Compounds: Computational Molecular Design, Thermally Activated Delayed Fluorescence, and Highly Efficient Red Electroluminescence. J. Am. Chem. Soc. 2014, 136, 18070– 18081.
[69] Shizu, K.; Uejima, M.; Nomura, H.; Sato, T.; Tanaka, K.; Kaji, H.; Adachi, C. Enhanced Electroluminescence from a Thermally Activated Delayed-Fluorescence Emitter by Suppressing Nonradiative Decay. Phys. Rev. Appl 2015, 3, 014001.
[70] Zampetti, A.; Minotto, A.; Cacialli, F. Near-Infrared (NIR) Organic Light-Emitting Diodes (OLEDs): Challenges and Opportunities. Adv. Funct. Mater. 2019, 29, 1807623.
[71] Zhang, H.; Chen, Z.; Zhu, L.; Wu, Y.; Xu, Y.; Chen, S.; Wong, W. High Performance NIR OLEDs with Emission Peak beyond 760 nm and Maximum EQE of 6.39%. Adv. Opt. Mater. 2022, 10, 2200111.
[72] Sun, C.; Li, B.; Zhao, M.; Wang, S.; Lei, Z.; Lu, L.; Zhang, H.; Feng, L.; Dou, C.; Yin, D.; Xu, H.; Cheng, Y.; Zhang, F. J-Aggregates of Cyanine Dye for NIR-II in Vivo Dynamic Vascular Imaging Beyond 1500 nm. J. Am. Chem. Soc. 2019, 141, 19221–19225.
[73] Yuan, L.; Lin, W.; Zhao, S.; Gao, W.; Chen, B.; He, L.; Zhu, S. A Unique Approach to Development of Near-Infrared Fluorescent Sensors for in Vivo Imaging. J. Am. Chem. Soc. 2012, 134, 13510–13523.
[74] Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y. New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chem. Rev. 2010, 110, 2620–2640.
[75] Nagl, S.; Schaeferling, M.; Wolfbeis, O. S. Fluorescence Analysis in Microarray Technology. Microchim. Acta 2005, 151, 1–21.
[76] Pauli, J.; Grabolle, M.; Brehm, R.; Spieles, M.; Hamann, F. M.; Wenzel, M.; Hilger, I.; Resch-Genger, U. Suitable Labels for Molecular Imaging–Influence of Dye Structure and Hydrophilicity on the Spectroscopic Properties of Igg Conjugates. Bioconjugate Chem. 2011, 22, 1298–1308.
[77] Wang, S.; Fan, Y.; Li, D.; Sun, C.; Lei, Z.; Lu, L.; Wang, T.; Zhang, F. Anti- Quenching NIR-II Molecular Fluorophores for in Vivo High-Contrast Imaging and Ph Sensing. Nat. Commun. 2019, 10, 1058.
[78] Wong, K.-L.; Bünzli, J.-C. G.; Tanner, P. A. Quantum Yield and Brightness. J. Lumin. 2020, 224, 117256.
[79] Nijegorodov, N. I.; Downey, W. S. The Influence of Planarity and Rigidity on the Absorption and Fluorescence Parameters and Intersystem Crossing Rate Constant in Aromatic Molecules. J. Phys. Chem. 1994, 98, 5639–5643.
[80] Kim, S.; Kim, B.; Lee, J.-H.; Shin, H.; Park, Y.-I.; Park, J. Design of Fluorescent Blue Light-Emitting Materials Based on Analyses of Chemical Structures and Their Effects. Mater. Sci. Eng., R. 2016, 99, 1–22.
[81] Wei, Y.-C.; Wang, S. F.; Hu, Y.; Liao, L.-S.; Chen, D.-G.; Chang, K.-H.; Wang, C.- W.; Liu, S.-H.; Chan, W.-H.; Liao, J.-L.; Hung, W.-Y.; Wang, T.-H.; Chen, P.-T.; Hsu, H.-F.; Chi, Y.; Chou, P.-T. Overcoming the Energy Gap Law in Near-Infrared OLEDs by Exciton-Vibration Decoupling. Nat. Photon. 2020, 14, 570–577.
[82] Wang, S.-F.; Su, B.-K.; Wang, X.-Q.; Wei, Y.-C.; Kuo, K.-H.; Wang, C.-H.; Liu, S.- H.; Liao, L.-S.; Hung, W.-Y.; Fu, L.-W.; Chuang, W.-T.; Qin, M.; Lu, X.; You, C.; Chi, Y.; Chou, P.-T. Polyatomic Molecules with Emission Quantum Yields >20% Enable Efficient Organic Light-Emitting Diodes in the NIR(II) Window. Nat. Photon. 2022, 16, 843–850.
[83] de Torres, J.; Ferrand, P.; Colas, G.; Wenger, J. Coupling Emitters and Silver Nanowires to Achieve Long-Range Plasmon-Mediated Fluorescence Energy Transfer. ACS Nano 2016, 10, 3968–3976.
[84] Zhong, X.; Chervy, T.; Zhang, L.; Thomas, A.; George, J.; Genet, C.; Hutchison, J. A.; Ebbesen, T. W. Energy Transfer Between Spatially Separated Entangled Molecules. Angew. Chem. Int. Ed. 2017, 56, 9034–9038.
[85] Hsu, L.-Y.; Ding, W.; Schatz, G. C. Plasmon-Coupled Resonance Energy Transfer. J. Phys. Chem. Lett. 2017, 8, 2357–2367.
[86] Collison, R.; Pérez-Sánchez, J. B.; Du, M.; Trevino, J.; Yuen-Zhou, J.; O’Brien, S.; Menon, V. M. Purcell Effect of Plasmonic Surface Lattice Resonances and Its Influence on Energy Transfer. ACS Photonics 2021, 8, 2211–2219.
[87] Semenov, A.; Nitzan, A. Electron Transfer in Confined Electromagnetic Fields. J. Chem. Phys. 2019, 150, 174122.
[88] Wei, Y.-C.; Hsu, L.-Y. Cavity-Free Quantum-Electrodynamic Electron Transfer Reactions. J. Phys. Chem. Lett. 2022, 13, 9695–9702.
[89] Pavošević, F.; Hammes-Schiffer, S.; Rubio, A.; Flick, J. Cavity-Modulated Proton Transfer Reactions. J. Am. Chem. Soc. 2022, 144, 4995–5002.
[90] Thomas, A.; Lethuillier-Karl, L.; Nagarajan, K.; Vergauwe, R. M. A.; George, J.; Chervy, T.; Shalabney, A.; Devaux, E.; Genet, C.; Moran, J.; Ebbesen, T. W. Tilting a Ground-State Reactivity Landscape by Vibrational Strong Coupling. Science 2019, 363, 615–619.
[91] Sau, A.; Nagarajan, K.; Patrahau, B.; Lethuillier‐Karl, L.; Vergauwe, R. M. A.; Thomas, A.; Moran, J.; Genet, C.; Ebbesen, T. W. Modifying Woodward-Hoffmann Stereoselectivity Under Vibrational Strong Coupling. Angew. Chem. Int. Ed. 2021, 60, 5712–5717.
[92] Pavošević, F.; Smith, R. L.; Rubio, A. Cavity Click Chemistry: Cavity-Catalyzed Azide-Alkyne Cycloaddition. J. Phys. Chem. A 2023, 127, 10184–10188.
[93] Hopfield, J. J. Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. Phys. Rev. 1958, 112, 1555–1567.
[94] Huttner, B.; Barnett, S. M. Quantization of the Electromagnetic Field in Dielectrics. Phys. Rev. A 1992, 46, 4306–4322.
[95] Gruner, T.; Welsch, D.-G. Correlation of Radiation-Field Ground-State Fluctuations in a Dispersive and Lossy Dielectric. Phys. Rev. A 1995, 51, 3246–3256.
[96] Buhmann, S. Y. Dispersion Forces I; Springer, 2012.
[97] Salam, A. Molecular Quantum Electrodynamics: Long-Range Intermolecular Interactions; Wiley, 2010.
[98] Craig, D. P.; Thirunamachandran, T. Molecular Quantum Electrodynamics; Courier Corporation, 2012.
[99] Gruner, T.; Welsch, D.-G. Green-Function Approach to the Radiation-Field Quantization for Homogeneous and Inhomogeneous Kramers-Kronig Dielectrics. Phys. Rev. A 1996, 53, 1818–1829.
[100] Scheel, S.; Knöll, L.; Welsch, D.-G. QED Commutation Relations for Inhomogeneous Kramers-Kronig Dielectrics. Phys. Rev. A 1998, 58, 700–706.
[101] Dung, H. T.; Knöll, L.; Welsch, D.-G. Three-Dimensional Quantization of the Electromagnetic Field in Dispersive and Absorbing Inhomogeneous Dielectrics. Phys. Rev. A 1998, 57, 3931–3942.
[102] Wang, S.; Scholes, G. D.; Hsu, L.-Y. Quantum Dynamics of a Molecular Emitter Strongly Coupled with Surface Plasmon Polaritons: A Macroscopic Quantum Electrodynamics Approach. J. Chem. Phys. 2019, 151, 014105.
[103] Wick, G. C. The Evaluation of the Collision Matrix. Phys. Rev. 1950, 80, 268–272.
[104] Wei, Y.-C.; Hsu, L.-Y. Polaritonic Huang-Rhys Factor: Basic Concepts and Quantifying Light-Matter Interactions in Media. J. Phys. Chem. Lett. 2023, 14, 2395– 2401.
[105] Spohn, H. Dynamics of Charged Particles and Their Radiation Field; Cambridge University Press, 2004.
[106] Rokaj, V.; Welakuh, D. M.; Ruggenthaler, M.; Rubio, A. Light-Matter Interaction in the Long-Wavelength Limit: No Ground-State Without Dipole Self-Energy. J. Phys. B: At., Mol. Opt. Phys. 2018, 51, 034005.
[107] Schäfer, C.; Ruggenthaler, M.; Rokaj, V.; Rubio, A. Relevance of the Quadratic Diamagnetic and Self-Polarization Terms in Cavity Quantum Electrodynamics. ACS Photonics 2020, 7, 975–990.
[108] Svendsen, M. K.; Thygesen, K. S.; Rubio, A.; Flick, J. Ab Initio Calculations of Quantum Light-Matter Interactions in General Electromagnetic Environments. J. Chem. Theory Comput. 2024, 20, 926–936.
[109] Flick, J.; Ruggenthaler, M.; Appel, H.; Rubio, A. Atoms and Molecules in Cavities, from Weak to Strong Coupling in Quantum-Electrodynamics (QED) Chemistry. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 3026–3034.
[110] Mandal, A.; Vega, S. M.; Huo, P. Polarized Fock States and the Dynamical Casimir Effect in Molecular Cavity Quantum Electrodynamics. J. Phys. Chem. Lett. 2020, 11, 9215–9223.
[111] Hoffmann, N. M.; Appel, H.; Rubio, A.; Maitra, N. T. Light-Matter Interactions Via the Exact Factorization Approach. Eur. Phys. J. B 2018, 91.
[112] Domcke, W.; Yarkony, D.; Köppel, H. Conical Intersections: Theory, Computation and Experiment; World Scientific, 2011.
[113] Griesemer, M.; Lieb, E. H.; Loss, M. Ground States in Non-Relativistic Quantum Electrodynamics. Invent. Math. 2001, 145, 557–595.
[114] Buhmann, S. Y. Dispersion Forces II; Springer, 2012.
[115] Wang, S.; Scholes, G. D.; Hsu, L.-Y. Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons. J. Phys. Chem. Lett. 2020, 11, 5948–5955.
[116] Condon, E. U. Nuclear Motions Associated with Electron Transitions in Diatomic Molecules. Phys. Rev. 1928, 32, 858–872.
[117] Lax, M. The Franck‐Condon Principle and Its Application to Crystals. J. Chem. Phys. 1952, 20, 1752–1760.
[118] Sakurai, J. J.; Napolitano, J. Modern Quantum Mechanics, 3rd ed.; Cambridge University Press, 2020.
[119] Dung, H. T.; Knöll, L.; Welsch, D.-G. Spontaneous Decay in the Presence of Dispersing and Absorbing bodies: General Theory and Application to a Spherical Cavity. Phys. Rev. A 2000, 62, 053804.
[120] Knoll, L.; Scheel, S.; Welsch, D.-G.; QED in Dispersing and Absorbing Media; 2003.
[121] Fitzpatrick, R. Quantum Mechanics; World Scientific, 2015.
[122] Du, M.; Yuen-Zhou, J. Catalysis by Dark States in Vibropolaritonic Chemistry. Phys. Rev. Lett. 2022, 128, 096001.
[123] Campos-Gonzalez-Angulo, J.; Yuen-Zhou, J. Generalization of the Tavis–Cummings Model for Multi-Level Anharmonic Systems: Insights on the Second Excitation Manifold. J. Chem. Phys. 2022, 156, 194308.
[124] Mandal, A.; Huo, P. Investigating New Reactivities Enabled by Polariton Photochemistry. J. Phys. Chem. Lett. 2019, 10, 5519–5529.
[125] Buhmann, S. Y.; Knöll, L.; Welsch, D.-G.; Dung, H. T. Casimir-Polder Forces: A Nonperturbative Qpproach. Phys. Rev. A 2004, 70, 052117.
[126] Arfken, G. B.; Weber, H. J.; Harris, F. E. Mathematical Methods for Physicists, 7th ed.; Elsevier, 2011.
[127] Medina, I.; García-Vidal, F. J.; Fernández-Domínguez, A. I.; Feist, J. Few-Mode Field Quantization of Arbitrary Electromagnetic Spectral Densities. Phys. Rev. Lett. 2021, 126, 093601.
[128] Johnson, P. B.; Christy, R. W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379.
[129] Nikitin, A. Y.; Garcia-Vidal, F. J.; Martin-Moreno, L. Analytical Expressions for the Electromagnetic Dyadic Green’s Function in Graphene and Thin Layers. IEEE J. Sel. Topics Quantum Electron. 2013, 19, 4600611.
[130] Stefanucci, G.; van Leeuwen, R. Nonequilibrium Many-Body Theory of Quantum Systems; Cambridge University Press, 2013.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93322-
dc.description.abstract隨著有機光電技術的應用日漸廣泛,如何設計具備高亮度和高效率的有機光電裝置成為科學界關注的焦點。其中,輻射與非輻射過程的相互競爭扮演著至關重要的角色。本論文將以理論角度切入,試圖探討在不依賴分子設計的情況下,複雜介電環境如何影響輻射與非輻射過程的速率。本論文將涵蓋兩個主要部份: 第一部分在宏觀量子電動力學 (macroscopic quantum electrodynamics) 的理論框架下,利用一般性波恩-黃展開 (generalized Born-Huang expansion) 的理論方法描述電子、原子核、電磁極化子 (polariton) 三者交互作用的系統,並得到作為輻射與非輻射過程驅動力的非絕熱耦合 (non-adiabatic coupling);第二部分建立輻射和非輻射過程的統一理論,闡述不同的介電環境對其速率的影響,並發現了輻射和非輻射途徑交互作用下所產生的新躍遷過程。我們相信這些理論發現能為有機光電材料設計開拓利用分子與周遭環境交互作用的新研究方向。zh_TW
dc.description.abstractThe interplay between radiative and non-radiative processes is one of the crucial issues in designing bright and efficient organic photoelectric devices. Approaching the topic from a theoretical perspective, this thesis explores how radiative and non-radiative processes can be manipulated through complex dielectric environments without explicit molecular design. The thesis is divided into two main parts. The first part focuses on developing the generalized Born-Huang expansion within the macroscopic quantum electrodynamics framework to describe the coupled nucleus–electron–polariton system. We obtain the non-adiabatic couplings that serves as the driving force for both radiative and non-radiative processes. The second part establishes a unified theory comprising radiative and non-radiative rates, elucidating the effect of diverse dielectric environments on rate modification. Additionally, the theory uncovers new processes resulting from the interference between radiative and non-radiative pathways. We believe these findings pave the way for designing materials with desirable optical properties by utilizing the interaction between molecules and the surrounding media.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-29T16:15:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-29T16:15:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xiii
List of Tables xv
Denotation xvii
Chapter 1 Introduction 1
1.1 Molecular Fluorescence 1
1.1.1 Historical Aspects of Molecular Fluorescence 1
1.1.2 Fluorescence Near Dielectric Environments 2
1.2 Internal Conversion 4
1.2.1 Origin of Internal Conversion – Non-Adiabatic Couplings 5
1.2.2 The Energy Gap Law 6
1.2.3 Potential New Pathways for Internal Conversion – Photonic Non-Adiabatic Couplings 7
1.3 Quantum Yield – The Radiative and Non-Radiative Interplay 9
1.4 Motivation and Objective 10
Chapter 2 Generalized Born-Huang Expansion under Macroscopic Quantum Electrodynamics Framework 12
2.1 Theoretical Framework 14
2.1.1 Macroscopic Quantum Electrodynamics 14
2.1.2 System Hamiltonian 16
2.1.2.1 Hamiltonian under Long-Wavelength Approximation 16
2.1.2.2 Hamiltonian in The Coupling Operator Form 19
2.1.3 Basis Vectors and Completeness Relations 21
2.1.3.1 Polaritonic Degrees of Freedom 21
2.1.3.2 Electronic Degrees of Freedom 26
2.1.3.3 Nuclear Degrees of Freedom 27
2.2 Generalized Born-Huang Expansion 28
2.2.1 Expansion on Total Wavefunction 28
2.2.2 The Non-Adiabatic Couplings 29
2.2.2.1 Derivation of Non-Adiabatic Couplings 30
2.2.2.2 Category A – Potential Energy and Associated Terms 32
2.2.2.3 Category B – Electronic Kinetic Operator and Associated Terms 32
2.2.2.4 Category C – Nuclear Kinetic Operator and Associated Terms 33
2.2.2.5 List of Non-Adiabatic Couplings 35
2.2.3 Born-Oppenheimer Approximation and Beyond – Weak and Strong Coupling Regimes 36
2.2.3.1 Weak Coupling Regime – Perturbative Approach 38
2.2.3.2 Strong Coupling Regime – Self-Consistent Approach 38
2.2.4 Estimation of Non-Adiabatic Couplings 40
Chapter 3 Unified Theory of Radiative and Non-Radiative Processes 44
3.1 Description of the Transition Processes 45
3.1.1 Initial and Final States 45
3.1.2 Electronic States under Born-Oppenheimer Approximation
– A Connection to Traditional Quantum Chemistry 47
3.2 Non-Adiabatic Coupling Matrix Elements 49
3.2.1 Approximations on Non-Adiabatic Coupling Matrix Elements 51
3.2.2 Polariton-Free Non-Adiabatic Couplings Matrix Element 53
3.2.3 Polaritonic Derivatives 54
3.2.4 Electronic Derivatives 57
3.2.5 Polariton-Related Non-Adiabatic Coupling Matrix Elements 58
3.2.5.1 Polaritonic-Electronic Non-Adiabatic Coupling Matrix Elements 58
3.2.5.2 Polaritonic-Nuclear Non-Adiabatic Coupling Matrix Elements 61
3.3 Radiative and Non-Radiative Rate Formulas 62
3.3.1 Approximations on Nuclear Wavefunction 63
3.3.2 Conventional Internal Conversion Rate 65
3.3.3 Quantum Electrodynamics Internal-Conversion Rates 67
3.3.4 Fluorescence 72
3.3.4.1 Comparison with Previous Theories 73
3.3.4.2 Demonstration – Spontaneous Emission of Hydrogen Atom 74
Chapter 4 Summary and Future Outlook 75
References 78
Appendix A — Supplementary Derivations for Polaritonic Degrees of Freedom 93
A.1 Derivations of Equations (2.14) and (2.15) 93
A.2 Derivations of Equation (2.22) 95
Appendix B — Supplementary Derivations of Non-Adiabatic Couplings 98
B.1 Derivation of Equation (2.46) 98
B.2 Derivation of Equations (2.53), (2.54), and (2.56) 102
Appendix C — Supplementary Details for Non-Adiabatic Coupling Estimation 105
C.1 Derivation of Equation (2.65) 105
C.2 Computational Details of First-Order Polaritonic Electronic Non-Adiabatic Coupling g(1)pol−elec 106
Appendix D — Supplementary Derivations of Polaritonic Derivatives 109
D.1 Derivations of Equation (3.22) 109
D.2 Derivations of Equation (3.26) 113
-
dc.language.isoen-
dc.subject宏觀量子電動力學zh_TW
dc.subject電磁極化子zh_TW
dc.subject螢光zh_TW
dc.subject分子內轉換zh_TW
dc.subject非絕熱耦合zh_TW
dc.subjectNon-Adiabatic Couplingsen
dc.subjectMacroscopic Quantum Electrodynamicsen
dc.subjectPolaritonen
dc.subjectFluorescenceen
dc.subjectMolecular Internal Conversionen
dc.title以宏觀量子電動力學觀點探討輻射和非輻射過程的統一理論zh_TW
dc.titleUnified Theory of Radiative and Non-Radiative Processes: A Macroscopic Quantum Electrodynamics Perspectiveen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林倫年;陸駿逸zh_TW
dc.contributor.oralexamcommitteeMichitoshi Hayashi;Chun-Yi David Luen
dc.subject.keyword宏觀量子電動力學,電磁極化子,螢光,分子內轉換,非絕熱耦合,zh_TW
dc.subject.keywordMacroscopic Quantum Electrodynamics,Polariton,Fluorescence,Molecular Internal Conversion,Non-Adiabatic Couplings,en
dc.relation.page114-
dc.identifier.doi10.6342/NTU202401241-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-16-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf3.99 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved