請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93319完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 卿建業 | zh_TW |
| dc.contributor.advisor | Jian-Ye Ching | en |
| dc.contributor.author | 林邦軒 | zh_TW |
| dc.contributor.author | Pang-Hsuan Lin | en |
| dc.date.accessioned | 2024-07-29T16:13:57Z | - |
| dc.date.available | 2024-07-30 | - |
| dc.date.copyright | 2024-07-29 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-23 | - |
| dc.identifier.citation | Cami, B., Javankhoshdel, S., Phoon, K. K., & Ching, J. (2020). Scale of fluctuation for spatially varying soils: estimation methods and values. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 6(4), 03120002.
Ching, J., Hu, Y. G., & Phoon, K. K. (2018). Effective Young’s modulus of a spatially variable soil mass under a footing. Structural Safety, 73, 99-113. Ching, J., & Schweckendiek, T. (2021). State-of-the-art review of inherent variability and uncertainty in geotechnical properties and models. ISSMGE Technical Committee, 304. Fenton, G. A., & Griffiths, D. (2002). Probabilistic foundation settlement on spatially random soil. Journal of Geotechnical and Geoenvironmental Engineering, 128(5), 381-390. Fenton, G. A., & Griffiths, D. (2005). Three-dimensional probabilistic foundation settlement. Journal of Geotechnical and Geoenvironmental Engineering, 131(2), 232-239. Golub, G. H., Heath, M., & Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21(2), 215-223. Jha, S. K., & Ching, J. (2013). Simulating spatial averages of stationary random field using the fourier series method. Journal of Engineering Mechanics, 139(5), 594-605. Phoon, K. K. and Kulhawy F. H. (1999). Evaluation of Geotechnical Property Variability. Canadian Geotechnical Journal, 36, 625-639. Tabarroki, M., Ching, J., Lin, C. P., Liou, J. J., & Phoon, K. K. (2022). Homogenizing spatially variable Young modulus using pseudo incremental energy method. Structural Safety, 97, 102226. Vanmarcke, E. H. (1977). Probabilistic modeling of soil profiles. Journal of the geotechnical engineering division, 103(11), 1227-1246. Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (2011). Probability & Statistics for Engineers & Scientists. Pearson Education. 林佳霈. (2020). 具空間變異性土體的楊氏模數的均質化 國立臺灣大學]. 台北市. https://hdl.handle.net/11296/67vmy8 劉覲嘉. (2018). 探討具空間變異性土體的有效楊氏模數—以大地結構物為例 國立臺灣大學]. 台北市. https://hdl.handle.net/11296/g2m7m4 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93319 | - |
| dc.description.abstract | 在大地工程設計中,時常假設土壤為均質土壤以方便分析與設計,然而土壤本身在沉澱堆積的過程中產生空間變異性,為了有效模擬空間變異性對結構物的影響,常常使用隨機場分析,透過模擬許多隨機場樣本得到結構物反應(如:基礎位移及基礎反力)的變異程度,然而隨機場分析對工程師而言需耗費較長時間與成本,為方便工程設計前人提出一些空間平均模型取代隨機場分析,並將具變異性土壤以均一值表示,此過程稱為均值化。
Ching et al. (2018) 提出 pseudo incremental energy model 的概念,利用穩態對數隨機場模擬具有空間變異性的土壤,執行一次均質有限元素法得到模型中各元素的權重來計算均質化的楊氏模數(E_wg),即可得到合理的均質化楊氏模數。由於PIE模型在估計有效楊氏模數有出色表現,因此本研究延續前人研究,將PIE模型得到的變異數折減因子進行回歸,使未來工程師使用PIE模型不需要再執行有限元素分析,而是使用回歸式,較為便利。 本研究透過最小平方法,對大地工程結構物的各種情況做回歸式,並透過比較回歸式結果與隨機場分析所得到的變異數折減因子,驗證回歸式的準確性。 | zh_TW |
| dc.description.abstract | In geotechnical engineering design, it is often assumed that soil is homogeneous for ease of analysis and design. However, the soil exhibits spatial variability due to its sedimentation and accumulation processes. To effectively simulate the impact of spatial variability on structures, random finite element analysis is commonly used. This involves generating numerous random field samples to determine the variability in structural responses (e.g., foundation displacement, foundation reaction). However, random finite element analysis can be time-consuming and costly for engineers. To facilitate engineering design, some spatial averaging models have been proposed to replace random field analysis by representing the soil with variability as a homogeneous value, a process known as homogenization.
Ching et al. (2018) proposed the concept of the pseudo incremental energy (PIE) model, which uses a stationary log-normal random field to simulate soil with spatial variability. By performing homogeneous finite element method (FEM) analysis, the weights of each element in the model are calculated to determine the homogenized Young's modulus (E_wg). This provides a reasonable homogenized Young's modulus. Since the PIE model has shown excellent performance in estimating the effective Young's modulus, this study extends previous research by performing a regression on the variance reduction factors obtained from the PIE model. This allows future engineers to use the PIE model without needing to perform FEM analysis, instead utilizing the regression formula for greater convenience. This study uses the least squares method to perform regression analysis for various scenarios of geotechnical structures. By comparing the regression results with the variance reduction factors obtained from random finite element analysis, the accuracy of the regression equations is verified. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-29T16:13:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-29T16:13:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii ABSTRACT iii 第一章 緒論 1 1.1 研究背景及動機 1 1.2 研究目的 1 1.3 本文內容 2 第二章 文獻回顧 3 2.1 空間變異性 3 2.2 穩態隨機場 4 2.2.1 關聯性長度(Scale of fluctuation ,δ) 5 2.2.2 自相關性函數 6 2.2.3 穩態隨機場空間平均過程 7 2.3 變異數折減因子 8 2.4 有效楊氏模數 9 2.4.1 Uniform Geometric Average Method(UGA) 10 2.4.2 權重幾何平均模型 11 2.5 PIE Model 13 2.5.1 變異數折減因子 16 2.6 常用線性回歸模型 17 第三章 研究方法 18 3.1 研究方法 18 3.2 模型介紹 19 3.2.1 被動擋土牆 19 3.2.2 主動擋土牆(貫入岩盤) 20 3.2.3 主動擋土牆(未貫入岩盤) 21 3.2.4 條型淺基礎 23 3.2.5 三維圓形淺基礎 24 3.2.6 二維承載樁 25 3.2.7 三維承載樁 27 3.2.8 二維側推樁 29 3.2.9 三維側推樁 31 3.2.10 開挖隆起 34 3.2.11 三維開挖隆起 35 3.3 分析方法 36 3.3.1 被動擋土牆 38 3.3.2 主動擋土牆(貫入岩盤) 41 3.3.3 主動擋土牆(未貫入岩盤) 43 3.3.4 條型淺基礎 46 3.3.5 三維圓形淺基礎 49 3.3.6 樁基礎 50 3.3.7 二維開挖隆起 54 3.3.8 三維開挖隆起 55 第四章 結果分析與比較 57 4.1 被動擋土牆 58 4.2 主動擋土牆(貫入岩盤) 59 4.3 主動擋土牆(未貫入岩盤) 61 4.4 條型淺基礎 63 4.5 三維圓形淺基礎 67 4.6 二維承載樁 72 4.7 三維承載樁 75 4.8 二維側推樁 77 4.9 三維側推樁 81 4.10 二維開挖隆起 85 4.11 三維開挖隆起 88 第五章 隨機場分析驗證 91 第六章 結論與建議 97 6.1 結論 97 6.2 未來建議 97 參考文獻 98 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | 隨機場 | zh_TW |
| dc.subject | 空間變異性 | zh_TW |
| dc.subject | pseudo incremental energy model | zh_TW |
| dc.subject | 有效土壤參數 | zh_TW |
| dc.subject | 大地結構物反應 | zh_TW |
| dc.subject | response of geotechnical structures | en |
| dc.subject | random field | en |
| dc.subject | spatial variability | en |
| dc.subject | pseudo incremental energy model | en |
| dc.subject | effective soil parameters | en |
| dc.subject | finite element analysis | en |
| dc.title | 探討楊氏模數在具空間變異性土體的變異數折減因子 | zh_TW |
| dc.title | Variance Reduction Factor of Spatially Variable Young's Modulus | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王瑞斌;劉家男 | zh_TW |
| dc.contributor.oralexamcommittee | Jui-Pin Wang;Chia-Nan LIU | en |
| dc.subject.keyword | 有限元素分析,隨機場,空間變異性,pseudo incremental energy model,有效土壤參數,大地結構物反應, | zh_TW |
| dc.subject.keyword | finite element analysis,random field,spatial variability,pseudo incremental energy model,effective soil parameters,response of geotechnical structures, | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202401772 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-24 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 13.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
