Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93303
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王建凱zh_TW
dc.contributor.advisorChien-Kai Wangen
dc.contributor.author陳宣伃zh_TW
dc.contributor.authorShiuan-Yu Chenen
dc.date.accessioned2024-07-29T16:08:56Z-
dc.date.available2024-07-30-
dc.date.copyright2024-07-29-
dc.date.issued2024-
dc.date.submitted2024-07-26-
dc.identifier.citation[1] Allan F Bower. Applied mechanics of solids. CRC Press, 2009.
[2] Hermann Matthies and Gilbert Strang. The solution of nonlinear finite element equations. International Journal for Numerical Methods in Engineering, 14(11):1613–1626, 1979.
[3] Melvin Mooney. A theory of large elastic deformation. Journal of Applied Physics,11(9):582–592, 1940.
[4] Raymond William Ogden. Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 326(1567):565–584, 1972.
[5] Ellen M. Arruda and Mary C. Boyce. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41(2):389–412, 1993.
[6] D. Peirce, R.J. Asaro, and A. Needleman. Material rate dependence and localized deformation in crystalline solids. Acta Metallurgica, 31(12):1951–1976, 1983.
[7] R. J. Clifton. High Strain Rate Behavior of Metals. Applied Mechanics Reviews, 43(5S):S9–S22, 05 1990.
[8] J.S. Bergström and M.C. Boyce. Constitutive modeling of the large strain time-dependent behavior of elastomers. Journal of the Mechanics and Physics of Solids, 46(5):931–954, 1998.
[9] W.G Baxt. Application of artificial neural networks to clinical medicine. The Lancet, 346(8983):1135–1138, 1995.
[10] Hiroshi Hirose, Tetsuro Takayama, Shigenari Hozawa, Toshifumi Hibi, and Ikuo Saito. Prediction of metabolic syndrome using artificial neural network system based on clinical data including insulin resistance index and serum adiponectin. Computers in Biology and Medicine, 41(11):1051–1056, 2011.
[11] Birgul Egeli. Stock market prediction using artificial neural networks. Decision Support Systems, 22:171–185, 2003.
[12] Aleksandar Kupusinac, Edita Stokić, and Rade Doroslovački. Predicting body fat percentage based on gender, age and bmi by using artificial neural networks. Computer Methods and Programs in Biomedicine, 113(2):610–619, 2014.
[13] Mohammed Jamala and Samy Abu-Naser. Predicting mpg for automobile using artificial neural network analysis. Information Systems Research, 2:5–21, 10 2018.
[14] M Kolich. Predicting automobile seat comfort using a neural network. International Journal of Industrial Ergonomics, 33(4):285–293, 2004.
[15] Philip R Bevington. Data Reduction and Error Analysis. McGraw Hill, 1969.
[16] Peter Benner Anke Stoll. Machine learning for material characterization with an application for predicting mechanical properties. GAMM-Mitteilungen, 44(1):e202100003, 2021.
[17] Daniel J. Cruz, Manuel R. Barbosa, Abel D. Santos, Sara S. Miranda, and Rui L. Amaral. Application of machine learning to bending processes and material identification. Metals, 11(9), 2021.
[18] Dassault Systèmes. ABAQUS/Standard User’s Manual, Version 6.6. Dassault Systèmes Simulia Corp, United States, 2006.
[19] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain mechanisms. Technical report, Cornell Aeronautical Lab Inc Buffalo NY, 1961.
[20] J J Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.
[21] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 807–814, 2010.
[22] Sridhar Narayan. The generalized sigmoid activation function: Competitive supervised learning. Information Sciences, 99(1):69–82, 1997.
[23] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing, 503:92–108, 2022.
[24] Inc. The MathWorks. Levenberg-Marquardt Backpropagation Release 2006a. Natick, Massachusetts, United States, 2006.
[25] Inc. The MathWorks. Deep Learning Toolbox Release 2021a. Natick, Massachusetts, United States, 2021.
[26] Inc. The MathWorks. Function Approximation and Nonlinear Regression —Examples: Body Fat Estimation Release 2021a. Natick, Massachusetts, United States, 2021.
[27] Inc. The MathWorks. Correlation coefficients - corrcoeff. Natick, Massachusetts, United States, 2023.
[28] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93303-
dc.description.abstract  本論文研究旨在應用淺層神經網路技術,識別非線性材料之機械力學特性。研究使用有限元素法 (Finite Element Method,簡記為FEM) 對材料單元素模型進行拉伸,模擬實際實驗之材料拉伸行為,以獲取材料質點之應力─應變曲線,對曲線使用MATLAB之曲線擬合功能轉換為一組特定指標,將具有一定規模數目之原始應力對應應變資訊,縮減為可代表各曲線特徵的關鍵變數指標組,一組指標即代表一條應力─應變曲線,不僅大幅減少了輸入變數之數量,亦使本研究使用之前饋式神經網路更易於有效地學習非線性材料機械力學曲線之特徵。
  本論文實作應用含有四層隱藏層的淺層神經網路,針對前述轉換非線性材料應力─應變曲線得到的指標組進行學習,並預測出能夠呈現材料機械力學特性的特定參數,包括且不侷限於材料之彈性模數與體積模數等參數群,對於許多機械工程應用之材料建構與設計具有重要意義。再者,本論文研究方法具另一顯著的優勢,通過有限元素法,得以直接獲取模型訓練所需之輸入變數和輸出變數,從而避免了對訓練數據進行額外標註的繁瑣過程,此數據蒐集方式確保了訓練數據的準確性和一致性,因而顯著地提高了識別實作的效率。
  綜上所述,本研究提出了一種高效且準確的方法,成功透過有限元素法直接獲取模型的訓練數據,並利用淺層神經網路進行非線性材料機械力學特性識別,為先進材料特性相關之尖端工程應用,展開了新的思路。
zh_TW
dc.description.abstractThis study aims to apply shallow neural network technology to identify the mechanical properties of nonlinear materials. The study utilizes the finite element method to perform tensile tests on single-element models, simulating the tensile behavior of materials in actual experiments to obtain stress-strain curves of material points. MATLAB curve-fitting functionality is employed to convert these curves into a set of specific indicators. The original stress-strain data, of considerable scale, is thus reduced to key variable indicators representing the characteristics of each curve. One set of indicators represents one stress-strain curve, significantly reducing the number of input variables and facilitating the feedforward neural network used in this study to learn the features of nonlinear material mechanical properties more effectively.
This study implements a shallow neural network with four hidden layers to learn from the indicators as mentioned above derived from nonlinear material stress-strain curves and to predict specific parameters that reflect the mechanical properties of materials. These parameters include but are not limited to, the elastic modulus and bulk modulus. This is of significant importance for material construction and design in various mechanical engineering applications. Furthermore, the research method in this study has another notable advantage: using the finite element method, the input and output variables required for model training can be directly obtained, thereby avoiding the tedious process of additional labeling of training data. This data collection method ensures the accuracy and consistency of the training data, significantly improving the efficiency of the identification implementation.
In summary, this study proposes an efficient and accurate method for obtaining training data directly through the finite element method and using shallow neural networks to identify the mechanical properties of nonlinear materials. This opens up new avenues for advanced engineering applications related to the properties of advanced materials.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-29T16:08:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-29T16:08:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract iv
目次 vi
圖次 x
表次 xiv

第一章 緒論 1
1.1 研究背景、動機與目的 1
1.2 文獻回顧 3
1.3 論文架構與內容介紹 6

第二章 有限元素法之彈性材料力學分析 8
2.1 有限元素法概述 8
2.2 線性彈性材料 (Linear elastic material) 9
2.2.1 線性彈性材料行為以及彈塑性材料行為簡介 9
2.2.2 線性彈性材料之有限元素法 10
2.2.2.1 形狀函數 11
2.2.2.2 單一元素之應力、應變、以及應變能密度 12
2.2.2.3 元素勁度矩陣與全域勁度矩陣 13
2.2.2.4 邊界負荷 14
2.2.2.5 指定位移 16
2.2.3 最小化位能法 17
2.2.4 虛功定理 17
2.2.5 線性彈性材料控制方程式 18
2.2.6 有限元素法方程式推導 19
2.3 非應變率依賴之非線性彈性材料21
2.3.1 牛頓-拉福森法 21
2.3.2 亞彈性材料 (Hypoelastic material) 22
2.3.2.1 亞彈性材料本構定律 23
2.3.2.2 亞彈性材料控制方程式 24
2.3.2.3 有限元素法方程式推導 24
2.3.3 超彈性材料 (Hyperelastic material) 28
2.3.3.1 超彈性材料本構定律 29
2.3.3.2 超彈性材料控制方程式 30
2.3.3.3 有限元素法方程式推導 31
2.4 應變率依賴之非線性材料 34
2.4.1 黏彈塑材料 (Elastic-viscoplastic material) 34
2.4.1.1 黏彈塑材料控制方程式 34
2.4.1.2 彈性本構定律 35
2.4.1.3 塑性流勢能 35
2.4.1.4 有限元素法方程式推導 36
2.5 單元素模型方法驗證 40

第三章 淺層神經網路 45
3.1 人工神經網路概述 45
3.1.1 監督式學習 45
3.1.2 前饋式神經網路 47
3.2 淺層神經網路模型應用說明 49
3.2.1 運用淺層神經網路預測體脂率 49
3.2.2 MATLAB 淺層神經網路非線性回歸範例 51
3.3 淺層神經網路預測模型設置介紹 53
3.3.1 使用之硬體規格與軟體環境 53
3.3.2 模型架構與相關設置 54
3.3.3 去除模型隨機性之目的與優劣討論 55
3.3.4 衡量模型之標準說明 57
3.4 實驗曲線轉為指標之目的與優勢 59
3.5 結合指標轉換與淺層神經網路模型之特色討論 63

第四章 淺層神經網路模型訓練及預測結果 64
4.1 訓練與預測流程概述 64
4.2 線性彈性材料 65
4.2.1 線性彈性材料訓練及預測結果 65
4.2.1.1 訓練資料分佈與測試資料集 65
4.2.1.2 輸入變數、轉換後的指標、輸出變數介紹 69
4.2.1.3 線性彈性材料預測結果 70
4.2.1.4 小結 ─ 線性彈性材料 79
4.3 非應變率依賴之非線性彈性材料 81
4.3.1 亞彈性材料訓練及預測結果 81
4.3.1.1 訓練資料分佈與測試資料集 81
4.3.1.2 輸入變數、轉換後的指標、輸出變數介紹 86
4.3.1.3 亞彈性材料預測結果 87
4.3.1.4 小結 ─ 亞彈性材料 97
4.3.2 超彈性材料訓練及預測結果 99
4.3.2.1 訓練資料分佈與測試資料集 99
4.3.2.2 輸入變數、轉換後的指標、輸出變數介紹 103
4.3.2.3 超彈性材料預測結果 104
4.3.2.4 小結 ─ 超彈性材料 114
4.3.3 亞彈性預測模型與超彈性預測模型比較 116
4.4 應變率依賴之非線性彈塑性材料 118
4.4.1 黏彈塑材料訓練及預測結果 118
4.4.1.1 訓練資料分佈與測試資料集 118
4.4.1.2 輸入變數、轉換後的指標、輸出變數介紹 123
4.4.1.3 黏彈塑材料預測結果 124
4.4.1.4 小結 ─ 黏彈塑材料 134

第五章 結論與未來展望 136
5.1 結論 136
5.2 未來展望 137

參考文獻 139
-
dc.language.isozh_TW-
dc.subject非線性材料zh_TW
dc.subject固體力學zh_TW
dc.subject神經網路zh_TW
dc.subject機器學習zh_TW
dc.subject有限元素法zh_TW
dc.subjectFinite Element Methoden
dc.subjectMachine Learningen
dc.subjectNeural Networksen
dc.subjectNonlinear Materialsen
dc.subjectSolid Mechanicsen
dc.title應用淺層神經網路技術於非線性材料之機械力學特性識別研究zh_TW
dc.titleApplication of Shallow Neural Network Techniques in Identification of Mechanical Properties of Nonlinear Materialsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖國基;董奕鍾;陳壁彰;吳筱梅zh_TW
dc.contributor.oralexamcommitteeKuo-Chi Liao;Yi-Chung Tung;Bi-Chang Chen;Hsiao-Mei Wuen
dc.subject.keyword固體力學,非線性材料,有限元素法,機器學習,神經網路,zh_TW
dc.subject.keywordSolid Mechanics,Nonlinear Materials,Finite Element Method,Machine Learning,Neural Networks,en
dc.relation.page142-
dc.identifier.doi10.6342/NTU202402074-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-28-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
Access limited in NTU ip range
8.6 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved