Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93301
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳和麟zh_TW
dc.contributor.advisorHo-Lin Chenen
dc.contributor.author葉子瑄zh_TW
dc.contributor.authorTzu-Hsuan Yehen
dc.date.accessioned2024-07-29T16:08:10Z-
dc.date.available2024-07-30-
dc.date.copyright2024-07-29-
dc.date.issued2024-
dc.date.submitted2024-07-25-
dc.identifier.citation[1] L. Bao and J. J. Garcia-Luna-Aceves. Topology management in ad hoc networks. In Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing, pages 129–140, 2003.
[2] D. Chalupa. An order-based algorithm for minimum dominating set with application in graph mining. Information Sciences, 426:101–116, 2018.
[3] W. Y. Chiu and C. Chen. Linear-time self-stabilizing algorithms for minimal dom- ination in graphs. In International Workshop on Combinatorial Algorithms, pages 115–126. Springer, 2013.
[4] W. Y. Chiu, C. Chen, and S.-Y. Tsai. A 4n-move self-stabilizing algorithm for the minimal dominating set problem using an unfair distributed daemon. Information Processing Letters, 114(10):515–518, 2014
[5] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the ACM, 17(11):643–644, 1974.
[6] X. Ding, J. Chen, and J. Qiu. A fast and differentiable optimization model for finding the minimum dominating set in large-scale graphs. Journal of Computational Science, 73:102146, 2023.
[7] Y. Fan, Y. Lai, C. Li, N. Li, Z. Ma, J. Zhou, L. J. Latecki, and K. Su. Efficient local search for minimum dominating sets in large graphs. In International Conference on Database Systems for Advanced Applications, pages 211–228. Springer, 2019.
[8] M. Gairing, W. Goddard, S. T. Hedetniemi, P. Kristiansen, and A. A. McRae. Distance-two information in self-stabilizing algorithms. Parallel Processing Letters, 14(03n04):387–398, 2004.
[9] M. R. Garey and D. S. Johnson. Computers and intractability, volume 174. freeman San Francisco, 1979.
[10] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, P. K. Srimani, and Z. Xu. Self-stabilizing graph protocols. Parallel Processing Letters, 18(01):189–199, 2008.
[11] S. M. Hedetniemi, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Self-stabilizing
algorithms for minimal dominating sets and maximal independent sets. Computers & Mathematics with Applications, 46(5-6):805–811, 2003.
[12] F. Molnár, S. Sreenivasan, B. K. Szymanski, and G. Korniss. Minimum dominating sets in scale-free network ensembles. Scientific reports, 3(1):1736, 2013.
[13] A. Potluri and C. Bhagvati. Novel morphological algorithms for dominating sets on graphs with applications to image analysis. In Combinatorial Image Analaysis: 15th International Workshop, IWCIA 2012, Austin, TX, USA, November 28-30, 2012. Proceedings 15, pages 249–262. Springer, 2012.
[14] H. Samuel, W. Zhuang, and B. Preiss. Dtn based dominating set routing for manet in heterogeneous wireless networking. Mobile Networks and Applications, 14(2):154–164, 2009.
[15] C. Shen and T. Li. Multi-document summarization via the minimum dominating set. In Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 984–992, 2010.
[16] S. Y. Tsai. An efficient self-stabilizing algorithm for the minimal dominating set problem under a distributed scheduler. http://hdl.handle.net/11536/47522, 2011.
[17] V. Turau. Linear self-stabilizing algorithms for the independent and dominating set problems using an unfair distributed scheduler. Information Processing Letters, 103(3):88–93, 2007.
[18] V. Turau. Efficient transformation of distance-2 self-stabilizing algorithms. Journal of Parallel and Distributed Computing, 72(4):603–612, 2012.
[19] Z. Xu, S. T. Hedetniemi, W. Goddard, and P. K. Srimani. A synchronous self-stabilizing minimal domination protocol in an arbitrary network graph. In Distributed Computing-IWDC 2003: 5th International Workshop, Kolkata, India, December 27-30, 2003. Proceedings 5, pages 26–32. Springer, 2003.
[20] B. Yao and L. Fei-Fei. Action recognition with exemplar based 2.5 d graph matching. In Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part IV 12, pages 173–186. Springer, 2012.
[21] D. Zhao, G. Xiao, Z. Wang, L. Wang, and L. Xu. Minimum dominating set of multiplex networks: Definition, application, and identification. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(12):7823–7837, 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93301-
dc.description.abstract極小控制集(minimal dominating set, MDS)在解決優化問題方面有廣泛的應用,特別是在分散式系統中。本論文以分散式系統作為應用背景,這些系統通常由多個相互連接的計算機節點組成,透過網絡進行通信和協作。然而,這種分散式環境中的系統設計面臨著多重挑戰,如節點故障、通信延遲和節點間的不一致性狀態。
為了應對這些挑戰,本研究採用了自我穩定演算法(self-stabilizing algorithms)。自我穩定演算法能夠使系統在面對節點狀態變化或故障時自動恢復到一個合法的運行狀態,而無需中央控制的介入。我們提出了兩種基於自我穩定演算法的設計,分別應用於不同距離的圖形模型,並證明他們皆能夠在距離為3的範圍內達到穩定狀態。其中,第二個演算法在距離為2的更短圖形模型上運行,但所需的移動次數和輪數的上界僅比第一個演算法高出常數倍。
此外,我們證明任何演算法穩定所需的時間都必然與節點數量成線性關係,因為無法輕易破壞圖形對稱性。在一個任意起始狀態下的圖形中,我們的第一個演算法從最近的邱等人[3]那篇研究最多需要$2n$的移動次數減少至$n$,而第二個演算法除了與先前在完全相同的衡量標準上進行比較外,還新增了一個重要特性:具有局部修正的能力,能有效地防止錯誤的傳播,因此,我們的演算法實際需要的穩定時間與系統中被修改(即出現錯誤)的節點數量成正比。
zh_TW
dc.description.abstractThe minimal dominating set (MDS) is widely applied in optimization problems, particularly in distributed systems. This thesis focuses on distributed systems where multiple interconnected computing nodes communicate and collaborate via networks. However, designing systems in such distributed environments presents several challenges, including transient faults, communication delays, and inconsistent node states.
To address these challenges, this study employs self-stabilizing algorithms. These algorithms enable systems to automatically recover to a legitimate configuration in response to node state changes or transient faults, without the need for centralized control intervention. We propose two self-stabilizing algorithms under different distance models, demonstrating their ability to achieve system stabilization within a distance of 3 hops. The second algorithm, although designed for a shorter distance-2 model, requires only a constant factor more moves and rounds than the first algorithm to stabilize.
Furthermore, we prove that the stabilization time required by any algorithm must inherently scale linearly with the number of nodes, due to the difficulty in breaking graph symmetry. Starting from any initial configuration, we have reduced the number of moves required by the first algorithm from a maximum of $2n$ to $n$, improving upon the latest research by Chiu et al. [3]. Additionally, our second algorithm, while maintaining the same performance standards as the latest research by Chiu et al., introduces a significant new property: localized error correction. This feature effectively prevents error propagation, resulting in the stabilization time being proportional to the number of nodes that have been modified (i.e., contain errors).
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-29T16:08:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-29T16:08:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsPage
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xi
List of Tables xiii
List of Algorithms xv
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Preliminaries 7
2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Self-Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Minimal Dominating Set . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter 3 LowerBoundonthe Number of Rounds 9
Chapter 4 First Local Stabilization Algorithm for MDS (distance-4) 11
4.1 Ak∆^2 Moves Algorithm (distance-4) . . . . . . . . . . . . . . . . . . 12
4.2 Correctness and Convergence . . . . . . . . . . . . . . . . . . . . . . 13
Chapter 5 Second Local Stabilization Algorithm for MDS (distance-2) 19
5.1 A 3k∆^2 −2k∆ Moves Algorithm (distance-2) . . . . . . . . . . . . . . 19
5.2 Correctness and Convergence . . . . . . . . . . . . . . . . . . . . . . 21
Chapter 6 Discussion and Conclusion 29
6.1 Discussion and Fail Attempt . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
References 33
-
dc.language.isoen-
dc.subject極小控制集zh_TW
dc.subject自我穩定演算法zh_TW
dc.subject局部錯誤修正zh_TW
dc.subject圖形對稱性zh_TW
dc.subject分散式系統zh_TW
dc.subject有限資源zh_TW
dc.subjectlocal error correctionen
dc.subjectminimal dominating seten
dc.subjectlimited resourcesen
dc.subjectdistributed systemen
dc.subjectgraph symmetryen
dc.subjectself-stabilizing algorithmen
dc.title具局部錯誤修正的自我穩定演算法應用於極小控制集zh_TW
dc.titleSelf-Stabilizing Algorithms for Minimal Dominating Sets with Local Error Correctionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡孟宗;于天立;呂學一zh_TW
dc.contributor.oralexamcommitteeMeng-Tsung Tsai;Tian-Li Yu;Hsueh-I Luen
dc.subject.keyword極小控制集,自我穩定演算法,局部錯誤修正,圖形對稱性,分散式系統,有限資源,zh_TW
dc.subject.keywordminimal dominating set,self-stabilizing algorithm,local error correction,graph symmetry,distributed system,limited resources,en
dc.relation.page35-
dc.identifier.doi10.6342/NTU202401576-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-27-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf417.46 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved