請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93290
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 管希聖 | zh_TW |
dc.contributor.advisor | Hsi-Sheng Goan | en |
dc.contributor.author | 陳昱澔 | zh_TW |
dc.contributor.author | Yu-Hao Chen | en |
dc.date.accessioned | 2024-07-26T16:07:47Z | - |
dc.date.available | 2024-07-27 | - |
dc.date.copyright | 2024-07-26 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-24 | - |
dc.identifier.citation | [1] R. P. Feynman. Simulating physics with computers. Int.J. Theor. Phys., 21(6/7):467–488, 1982.
[2] M. Nielsen and I. L. Chuang. Quantum computation and quantum information. Cam bridge University Press, 2010. [3] T. E. Roth, R.C. Ma, and W.C. Chew. The transmon qubit for electromagnetics engineers: An introduction. IEEE Antenn Propag M, 65(2):8–20, 2023. [4] M. Kjaergaard et al. Superconducting qubits: Current state of play. Annu. Rev. Condens. Matter Phys., 11(1):369–395, 2020. [5] K. H. Kingdon. A method for the neutralization of electron space charge by positive ionization at very low gas pressures. Phys. Rev., 21:408–418, 1923. [6] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland. Quantum dynamics of single trapped ions. Rev. Mod. Phys., 75:281–324, 2003. [7] H. Haffner, C. Roos, and R. Blatt. Quantum computing with trapped ions. Phys. Rep., 469(4):155–203, 2008. [8] J. R. Petta et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science, 309(5744):2180–2184, 2005. [9] W. Huang et al. Fidelity benchmarks for two-qubit gates in silicon. arxiv.1805.05027, 2018. [10] D. Loss and D. P. DiVincenzo. Quantum computation with quantum dots. Phys. Rev. A, 57:120–126, 1998. [11] M. Russ et al. High-fidelity quantum gates in si/sige double quantum dots. Phys. Rev. B, 97:085421, 2018. [12] F. A. Zwanenburg et al. Silicon quantum electronics. Rev. Mod. Phys., 85:961–1019, 2013. [13] S. Greenaway, F. Sauvage, K. E. Khosla, and F. Mintert. Efficient assessment of process fidelity. Phys. Rev. Res., 3:033031, 2021. [14] J. M. Renes et al. Symmetric informationally complete quantum measurements. J. Math. Phys., 45(6):2171–2180, 2004. [15] E. Knill et al. Randomized benchmarking of quantum gates. Phys. Rev. A, 77:012307, 2008. [16] E. Kawakami et al. Gate fidelity and coherence of an electron spin in an si/sige quantum dot with micromagnet. PNAS, 113(42):11738–11743, 2016. [17] T. F. Watson et al. A programmable two-qubit quantum processor in silicon. Nature, 555(7698):633–637, 2018. [18] S. T. Flammia and Y.-K. Liu. Direct fidelity estimation from few pauli measurements. Phys. Rev. Lett., 106:230501, 2011. [19] S. Endo, S. C. Benjamin, and Y. Li. Practical quantum error mitigation for near-future applications. Phys. Rev. X, 8:031027, 2018. [20] K. Temme, S. Bravyi, and J. M. Gambetta. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 119:180509, 2017. [21] J. Helsen et al. General framework for randomized benchmarking. PRX Quantum, 3:020357, 2022. [22] Y.-H. Chen, R. Wong, and H.-S. Goan. Making the zeroth-order process fidelity independent of state preparation and measurement errors. arXiv:2312.08590, 2023. [23] R. Barends et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature, 508(7497):500—503, 2014. [24] S. Boixo et al. Characterizing quantum supremacy in near-term devices. Nat. Phys, 14(6):595–600, 2018. [25] F. Arute et al. Quantum supremacy using a programmable superconducting proces sor. Nature, 574:505–510, 2019. [26] I. Pogorelov et al. Compact ion-trap quantum computing demonstrator. PRX Quantum, 2(2):020343, 2021. [27] P. Kaufmann et al. High-fidelity preservation of quantum information during trapped-ion transport. Phys. Rev. Lett., 120:010501, 2018. [28] J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom. Room-temperature spin memory in two-dimensional electron gases. Science, 277(5330):1284–1287, 1997. [29] J. M. Kikkawa and D. D. Awschalom. Resonant spin amplification in n-type gaas. Phys. Rev. Lett., 80:4313–4316, 1998. [30] V. Cerletti, W. A. Coish, O. Gywat, and D. Loss. Recipes for spin-based quantum computing. Nanotechnology, 16(4):R27–R49, 2005. [31] M. Ciorga et al. Addition spectrum of a lateral dot from coulomb and spin-blockade spectroscopy. Phys. Rev. B, 61:R16315–R16318, 2000. [32] L.-A. Wu, M. S. Sarandy, and D. A. Lidar. Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett., 93:250404, 2004. [33] G. Medeiros-Ribeiro, E. Ribeiro, and H. Westfahl Jr. g-factor engineering and control in self-assembled quantum dots. Appl Phys A-Mater, 77(6):725–729, 2003. [34] A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring. Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B, 68:193207, 2003. [35] F. H. L. Koppens, K. C. Nowack, and L. M. K. Vandersypen. Spin echo of a single electron spin in a quantum dot. Phys. Rev. Lett., 100:236802, 2008. [36] E. Kawakami et al. Electrical control of a long-lived spin qubit in a si/SiGe quantum dot. Nat. Nanotechnol, 9(9):666–670, 2014. [37] M. Veldhorst et al. An addressable quantum dot qubit with fault-tolerant control fidelity. Nat. Nanotechnol, 9(12):981–985, 2014. [38] J. Yoneda et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol, 13(2):102–106, 2017. [39] K. C. Nowack et al. Single-shot correlations and two-qubit gate of solid-state spins. Science, 333(6047):1269–1272, 2011. [40] X-C. Yang and X. Wang. Suppression of charge noise using barrier control of a singlet-triplet qubit. Phys. Rev. A, 96:012318, 2017. [41] F. Martins et al. Noise suppression using symmetric exchange gates in spin qubits. Phys. Rev. Lett., 116:116801, 2016. [42] T. Meunier, V. E. Calado, and L. M. K. Vandersypen. Efficient controlled-phase gate for single-spin qubits in quantum dots. Phys. Rev. B, 83:121403, 2011. [43] G. Burkard, D. Loss, D. P. DiVincenzo, and J. A. Smolin. Physical optimization of quantum error correction circuits. Phys. Rev. B, 60:11404–11416, 1999. [44] D. M. Zajac et al. Resonantly driven cnot gate for electron spins. Science, 359(6374):439–442, 2018. [45] A. Erhard et al. Characterizing large-scale quantum computers via cycle benchmark ing. Nat. Commun, 10(1):5347, 2019. [46] I. Hamamura and T. Imamichi. Efficient evaluation of quantum observables using entangled measurements. Npj Quantum Inf., 6(1):56, 2020. [47] J. Emerson, R. Alicki, and K. Życzkowski. Scalable noise estimation with random unitary operators. J. Opt. B: Quantum Semiclassical Opt., 7(10):S347, 2005. [48] B. Schumacher. Sending entanglement through noisy quantum channels. Phys. Rev. A, 54:2614–2628, 1996. [49] K. Mayer and E. Knill. Quantum process fidelity bounds from sets of input states. Phys. Rev. A, 98(5):052326, 2018. [50] M. A. Nielsen. The entanglement fidelity and quantum error correction. arXiv:quant ph/9606012, 1996. [51] C. Dankert, R. Cleve, J. Emerson, and E. Livine. Exact and approximate unitary 2- designs and their application to fidelity estimation. Phys. Rev. A, 80:012304, 2009. [52] M. D. Bowdrey et al. Fidelity of single qubit maps. Phys. Lett. A, 294(5):258–260, 2002. [53] E. Magesan, J. M. Gambetta, and J. Emerson. Characterizing quantum gates via randomized benchmarking. Phys. Rev. A, 85:042311, 2012. [54] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Phys. Rev. A, 70:052328, 2004. [55] G. Aleksandrowicz et al. Qiskit: An open-source framework for quantum comput ing. https://zenodo.org/records/2562111, v.0.7.2 (software), 2019. [56] D. C. McKay et al. Three-qubit randomized benchmarking. Phys. Rev. Lett., 122:200502, 2019. [57] T. Giurgica-Tiron et al. Digital zero noise extrapolation for quantum error mitiga tion. 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 306–316, 2020. [58] E. Bannai and E. Bannai. A survey on spherical designs and algebraic combinatorics on spheres. Eur. J. Comb., 30(6):1392–1425, 2009. [59] A. Roy and S. Suda. Complex spherical designs and codes. J Comb Des, 22:105– 148, 2013. [60] O. Di Matteo. A short introduction to unitary 2-designs. unpublished, https:// api.semanticscholar.org/CorpusID:52059910, (accessed: June 2024), 2014. [61] A. A. Mele. Introduction to haar measure tools in quantum information: A beginner’s tutorial. Quantum, 8:1340, 2024. [62] A. Klappenecker and M. Rotteler. Mutually unbiased bases are complex projective 2-designs. In Proceedings. International Symposium on Information Theory, 2005. ISIT 2005., pages 1740–1744, 2005. [63] J. Etxezarreta Martinez, A. deMarti iOlius, and P. M. Crespo. Superadditivity effects of quantum capacity decrease with the dimension for qudit depolarizing channels. Phys. Rev. A, 108:032602, 2023. [64] E. Magesan et al. Efficient measurement of quantum gate error by interleaved ran domized benchmarking. Phys. Rev. Lett., 109:080505, 2012. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93290 | - |
dc.description.abstract | 在這項工作中,我們證明了零保真度(過程保真度的零階)是過程保真度的近似值,可以與隨機基準測試相結合,使其對狀態準備和測量錯誤具有穩健性.然而,由於隨機基準測試需要在量子位元數量增加時在克利福德組中隨機選擇極大量的克利福德元素,因此這種組合也僅限於最多具有三個量子位元的量子系統。為了使零保真度獨立於狀態準備和測量錯誤並適用於多量子位元情況,我們採用了通道雜訊縮放方法,類似於用於量子錯誤緩解的全局酉折疊或身份縮放方法。與需要隨機選擇克利福德閘並應用最終反轉操作的隨機基準測試不同,這種恆等縮放技術插入恆等閘層(或恆等電路)以延長電路通過通道的持續時間,從而允許擬合零保真度呈指數衰減。因此,我們提出的將通道雜訊縮放與零保真度相結合的方法比用於解決量子通道零保真度中的狀態準備和測量錯誤的隨機基準測試的方法更具可擴展性和資源效率。 | zh_TW |
dc.description.abstract | In this work, we demonstrated that zero-fidelity (the zeroth-order of process fidelity), an approximation to process fidelity, can be combined with randomized benchmarking to make it robust to state preparation and measurement (SPAM) errors. However, due to randomized benchmarking which requires randomly choosing an extremely large number of Clifford elements in the Clifford group when the qubit number increases, this combination is also limited to quantum systems with up to three qubits. To make the zero-fidelity independent of SPAM errors and applicable to multi-qubit cases, we employ a channel noise scaling method, similar to the method of global unitary folding or identity scaling used for quantum error mitigation. Unlike randomized benchmarking which requires choosing randomly Clifford gates and applying a final inversion operation, this technique of identity scaling inserts layers of identity gates (or identity circuits) to extend the duration of the circuit through the channel, and consequently allows fitting the zero-fidelity with exponential decay. Therefore, our proposed method of combining the channel noise scaling with the zero-fidelity is more scalable and resource-efficient than that with randomized benchmarking for addressing SPAM errors in the zero-fidelity of a quantum channel. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-26T16:07:46Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-26T16:07:47Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures xi List of Tables xix Chapter 1 Introduction 1 Chapter 2 Semiconductor quantum dots 6 2.1 Quantum dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Silicon-based quantum computing . . . . . . . . . . . . . . . . . . . 10 2.3 Theoretical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 3 Approximated process fidelity 15 3.1 Symmetric, informationally complete states . . . . . . . . . . . . . . 16 3.2 Process fidelity and k-fidelity . . . . . . . . . . . . . . . . . . . . . 17 3.3 Zero-fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Chapter 4 Zero-fidelity randomized benchmarking and channel noise scal ing 26 4.1 Regular randomized benchmarking and gate fidelity . . . . . . . . . 27 4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.1 Unitary t-design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.2 Average gate fidelity . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 Randomized benchmarking and the process fidelity . . . . . . . . . . 33 4.4 Randomized benchmarking and the zero-fidelity . . . . . . . . . . . 36 4.5 Channel noise scaling . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.5.1 The physical meaning of parameter p of channel noise scaling . . . 43 4.5.1.1 Complex projective t-design . . . . . . . . . . . . . . . 43 4.5.1.2 Quantum state design and depolarizing channel . . . . 45 Chapter 5 Results 49 5.1 Three-qubit zero fidelity . . . . . . . . . . . . . . . . . . . . . . . . 49 5.1.1 Three-qubit zero fidelity with a channel consisting of CZ gates . . . 49 5.1.2 Three-qubit zero fidelity with a channel consisting of CNOT gates . 50 5.2 Combination of zero fidelity with RB . . . . . . . . . . . . . . . . . 55 5.2.1 Results for two qubits . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.2.2 Results for three qubits . . . . . . . . . . . . . . . . . . . . . . . . 58 5.2.3 Comparison between zero-fidelity randomized benchmarking and process fidelity randomized benchmarking . . . . . . . . . . . . . . 60 5.2.4 Zero-fidelity and channel noise scaling method . . . . . . . . . . . 62 Chapter 6 Conclusion 68 References 73 Appendix A — The other form of process fidelity 80 A.1 Preliminary notation . . . . . . . . . . . . . . . . . . . . . . . . . . 80 A.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Appendix B — Decay rate of 0-fidelity 86 | - |
dc.language.iso | en | - |
dc.title | 使零階過程保真度獨立於狀態準備與測量誤差 | zh_TW |
dc.title | Making the zeroth-order process fidelity independent of state preparation and measurement errors | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張慶瑞;鄭原忠 | zh_TW |
dc.contributor.oralexamcommittee | Ching-Ray Chang;Yuan-Chung Cheng | en |
dc.subject.keyword | 零保真度,過程保真度,隨機基準測試,量子通道,狀態準備和測量誤差,通道噪音縮放, | zh_TW |
dc.subject.keyword | Zero-fidelity,process fidelity,randomized benchmarking,quantum channels,state preparation and measurement errors,channel noise scaling, | en |
dc.relation.page | 88 | - |
dc.identifier.doi | 10.6342/NTU202304468 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-07-26 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 物理學系 | - |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 2.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。