Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93285
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊昀叡zh_TW
dc.contributor.advisorRay Y. Chuangen
dc.contributor.author李聿修zh_TW
dc.contributor.authorYu-Hsiu Leeen
dc.date.accessioned2024-07-23T16:40:58Z-
dc.date.available2024-07-24-
dc.date.copyright2024-07-23-
dc.date.issued2024-
dc.date.submitted2024-07-21-
dc.identifier.citationAbidin, H. Z., Andreas, H., Gumilar, I., Sidiq, T. P., & Fukuda, Y. (2013). Land subsidence in coastal city of Semarang (Indonesia): characteristics, impacts and causes. Geomatics, Natural Hazards and Risk, 4(3), 226-240. https://doi.org/10.1080/19475705.2012.692336
Aimaiti, Y., Yamazaki, F., & Liu, W. (2018). Multi-Sensor InSAR Analysis of Progressive Land Subsidence over the Coastal City of Urayasu, Japan. Remote Sensing, 10(8). https://doi.org/10.3390/rs10081304
Albino, F., Biggs, J., Yu, C., & Li, Z. (2020). Automated Methods for Detecting Volcanic Deformation Using Sentinel‐1 InSAR Time Series Illustrated by the 2017–2018 Unrest at Agung, Indonesia. Journal of Geophysical Research: Solid Earth, 125(2). https://doi.org/10.1029/2019jb017908
Allison, M., Yuill, B., Törnqvist, T., Amelung, F., Dixon, T., Erkens, G., Stuurman, R., Jones, C., Milne, G., Steckler, M., Syvitski, J., & Teatini, P. (2016). Global Risks and Research Priorities for Coastal Subsidence. Eos, 97. https://doi.org/10.1029/2016eo055013
Amelung, F., Galloway, D. L., Bell, J. W., Zebker, H. A., & Laczniak, R. J. (1999). Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology, 27(6). https://doi.org/10.1130/0091-7613(1999)027<0483:Stuado>2.3.Co;2
Ansari, H., De Zan, F., & Parizzi, A. (2021). Study of Systematic Bias in Measuring Surface Deformation With SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 59(2), 1285-1301. https://doi.org/10.1109/tgrs.2020.3003421
Ao, Z., Hu, X., Tao, S., Hu, X., Wang, G., Li, M., Wang, F., Hu, L., Liang, X., Xiao, J., Yusup, A., Qi, W., Ran, Q., Fang, J., Chang, J., Zeng, Z., Fu, Y., Xue, B., Wang, P., . . . Fang, J. (2024). A national-scale assessment of land subsidence in China's major cities. Science, 384(6693), 301-306. https://doi.org/10.1126/science.adl4366
Azevedo de Almeida, B., & Mostafavi, A. (2016). Resilience of Infrastructure Systems to Sea-Level Rise in Coastal Areas: Impacts, Adaptation Measures, and Implementation Challenges. Sustainability, 8(11). https://doi.org/10.3390/su8111115
Bürgmann, R., Rosen, P. A., & Fielding, E. J. (2000). Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and Its Deformation. Annual Review of Earth and Planetary Sciences, 28(1), 169-209. https://doi.org/10.1146/annurev.earth.28.1.169
Bagheri-Gavkosh, M., Hosseini, S. M., Ataie-Ashtiani, B., Sohani, Y., Ebrahimian, H., Morovat, F., & Ashrafi, S. (2021). Land subsidence: A global challenge. Science of the Total Environment, 778, 146193. https://doi.org/10.1016/j.scitotenv.2021.146193
Bekaert, D. P. S., Walters, R. J., Wright, T. J., Hooper, A. J., & Parker, D. J. (2015). Statistical comparison of InSAR tropospheric correction techniques. Remote Sensing of Environment, 170, 40-47. https://doi.org/10.1016/j.rse.2015.08.035
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375-2383. https://doi.org/10.1109/tgrs.2002.803792
Blackwell, E., Shirzaei, M., Ojha, C., & Werth, S. (2020). Tracking California's sinking coast from space: Implications for relative sea-level rise. Science advances, 6(31), eaba4551. https://doi.org/10.1126/sciadv.aba4551
Braun, A., & Veci, L. (2021). Sentinel-1 Toolbox: TOPS Interferometry Tutorial. ESA. https://reurl.cc/j30D3q
Buckley, S. M. (2003). Land subsidence in Houston, Texas, measured by radar interferometry and constrained by extensometers. Journal of Geophysical Research, 108(B11). https://doi.org/10.1029/2002jb001848
Buffardi, C., & Ruberti, D. (2023). The Issue of Land Subsidence in Coastal and Alluvial Plains: A Bibliometric Review. Remote Sensing, 15(9). https://doi.org/10.3390/rs15092409
Catalao, J., Raju, D., & Nico, G. (2020). Insar Maps of Land Subsidence and Sea Level Scenarios to Quantify the Flood Inundation Risk in Coastal Cities: The Case of Singapore. Remote Sensing, 12(2), Article 296. https://doi.org/10.3390/rs12020296
Central Weather Bureau. (2022). Tidal Observation Data Annual Report 2022. Central Weather Bureau, Ministry of Transportation and Communications, Republic of China (Taiwan). https://www.cwa.gov.tw/Data/service/notice/download/Publish_20230428093816.pdf
Chaussard, E., Bürgmann, R., Fattahi, H., Nadeau, R. M., Taira, T., Johnson, C. W., & Johanson, I. (2015). Potential for larger earthquakes in the East San Francisco Bay Area due to the direct connection between the Hayward and Calaveras Faults. Geophysical Research Letters, 42(8), 2734-2741. https://doi.org/10.1002/2015gl063575
Chen, C.-H., Ho, H.-C., Shea, K.-S., Lo, W., Lin, W.-H., Chang, H.-C., Huang, C.-S., Lin, C.-W., Chen, G.-H., Yang, C.-N., & Lee, Y.-H. (2000). Geologic Map of Taiwan, scale 1:500,000. Central Geological Survey, Ministry of Economic Affairs.
Chen, C. W., & Zebker, H. A. (2001). Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. Journal of the Optical Society of America, 18(2), 338-351. https://doi.org/10.1364/josaa.18.000338
Chen, D., Rojas, M., Samset, B. H., Cobb, K., Niang, A. D., Edwards, P., Emori, S., Faria, S. H., Hawkins, E., Hope, P., Huybrechts, P., Meinshausen, M., Mustafa, S. K., Plattner, G.-K., & Tréguier, A.-M. (2021). Framing, Context, and Methods. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 147-286). Cambridge University Press. https://doi.org/10.1017/9781009157896.003
Chen, K.-H., Chuang, R. Y., & Ching, K.-E. (2020). Realization approach of non-linear postseismic deformation model for Taiwan semi-kinematic reference frame. Earth, Planets and Space, 72(1). https://doi.org/10.1186/s40623-020-01209-y
Chen, Y.-A., Chang, C.-P., Hung, W.-C., Yen, J.-Y., Lu, C.-H., & Hwang, C. (2021). Space-Time Evolutions of Land Subsidence in the Choushui River Alluvial Fan (Taiwan) from Multiple-Sensor Observations. Remote Sensing, 13(12). https://doi.org/10.3390/rs13122281
Chiang, C.-J., Lai, T.-C., Lai, T.-H., Huang, C.-C., Fei, L.-Y., Hou, C.-S., Chen, J.-E., Chen, L.-C., Lu, S.-Y., Chou, S.-C., E, Z.-X., Huang, M.-C., Lu, W.-C., Chang, M.-H., Liu, H.-H., & Lee, Y.-W. (1999). General Report on Hydrogeology Research in Zhuoshui River Alluvial fan. Central Geological Survey. https://twgeoref.gsmma.gov.tw/GipOpenWeb/wSite/ct?xItem=120955&ctNode=289&mp=6
Chien, L. K., & Oh, Y. N. (2000). Laboratory and Field Shear Wave Measurement at a Reclaimed Site in West Taiwan. Geotechnical Testing Journal, 23(1), 21-35. https://doi.org/10.1520/gtj11120j
Ching, K.-E., Rau, R.-J., Johnson, K. M., Lee, J.-C., & Hu, J.-C. (2011). Present-day kinematics of active mountain building in Taiwan from GPS observations during 1995–2005. Journal of Geophysical Research, 116(B9). https://doi.org/10.1029/2010jb008058
Ching, K.-E., Rau, R.-J., Lee, J.-C., & Hu, J.-C. (2007). Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995–2005. Earth and Planetary Science Letters, 262(3-4), 601-619. https://doi.org/10.1016/j.epsl.2007.08.017
Chou, P.-Y., & Ting, C.-S. (2007). Feasible groundwater allocation scenarios for land subsidence area of Pingtung Plain, Taiwan. Water Resources, 34(3), 259-267. https://doi.org/10.1134/s0097807807030037
Cian, F., Blasco, J. M. D., & Carrera, L. (2019). Sentinel-1 for Monitoring Land Subsidence of Coastal Cities in Africa Using PSInSAR: A Methodology Based on the Integration of SNAP and StaMPS. Geosciences, 9(3), Article 124. https://doi.org/10.3390/geosciences9030124
Cianflone, G., Tolomei, C., Brunori, C., & Dominici, R. (2015). InSAR Time Series Analysis of Natural and Anthropogenic Coastal Plain Subsidence: The Case of Sibari (Southern Italy). Remote Sensing, 7(12), 16004-16023. https://doi.org/10.3390/rs71215812
Coastal Zone Management Act. (2015). https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=D0070222
Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., & Crippa, B. (2016). Persistent Scatterer Interferometry: A review. Isprs Journal of Photogrammetry and Remote Sensing, 115, 78-89. https://doi.org/10.1016/j.isprsjprs.2015.10.011
Darvishi, M., Cuozzo, G., Bruzzone, L., & Nilfouroushan, F. (2020). Performance Evaluation of Phase and Weather-Based Models in Atmospheric Correction With Sentinel-1Data: Corvara Landslide in the Alps. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1332-1346. https://doi.org/10.1109/jstars.2020.2969726
de Luna, R. M. R., dos Anjos Garnés, S. J., da Silva Pereira Cabral, J. J., & dos Santos, S. M. (2021). Suitability of GNSS for analysis of soil subsidence in Recife in a highly urbanized coastal area. Natural Hazards, 106(3), 1821-1837. https://doi.org/10.1007/s11069-021-04513-2
Del Soldato, M., Confuorto, P., Bianchini, S., Sbarra, P., & Casagli, N. (2021). Review of Works Combining GNSS and InSAR in Europe. Remote Sensing, 13(9). https://doi.org/10.3390/rs13091684
Department of Household Registration. (2024). Demographics. https://www.ris.gov.tw/app/portal/346
Doin, M. P., Lasserre, C., Peltzer, G., Cavalié, O., & Doubre, C. (2009). Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models. Journal of Applied Geophysics, 69(1), 35-50. https://doi.org/10.1016/j.jappgeo.2009.03.010
Du, Z., Ge, L., Ng, A. H.-M., Xiaojing, L., & Li, L. (2017). Mapping land subsidence over the eastern Beijing city using satellite radar interferometry. International Journal of Digital Earth, 11(5), 504-519. https://doi.org/10.1080/17538947.2017.1336651
European Space Agency, S. (2021). Copernicus Global Digital Elevation Model [Dataset]. OpenTopography. https://doi.org/10.5069/G9028PQB
Even, M., & Schulz, K. (2018). InSAR Deformation Analysis with Distributed Scatterers: A Review Complemented by New Advances. Remote Sensing, 10(5). https://doi.org/10.3390/rs10050744
Fan, H., Deng, K., Ju, C., Zhu, C., & Xue, J. (2011). Land subsidence monitoring by D-InSAR technique. Mining Science and Technology (China), 21(6), 869-872. https://doi.org/10.1016/j.mstc.2011.05.030
Fang, J., Nicholls, R. J., Brown, S., Lincke, D., Hinkel, J., Vafeidis, A. T., Du, S., Zhao, Q., Liu, M., & Shi, P. (2022). Benefits of subsidence control for coastal flooding in China. Nature Communications, 13(1), 6946. https://doi.org/10.1038/s41467-022-34525-w
Ferretti, A. (2014). Satellite InSAR data: reservoir monitoring from space. EAGE.
Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2202-2212. https://doi.org/10.1109/36.868878
Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20. https://doi.org/10.1109/36.898661
Ferretti, A., Savio, G., Barzaghi, R., Borghi, A., Musazzi, S., Novali, F., Prati, C., & Rocca, F. (2007). Submillimeter accuracy of InSAR time series: Experimental validation. IEEE Transactions on Geoscience and Remote Sensing, 45(5), 1142-1153. https://doi.org/10.1109/Tgrs.2007.894440
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., & Yu, Y. (2021). Ocean, Cryosphere and Sea Level Change. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1211-1362). Cambridge University Press. https://doi.org/10.1017/9781009157896.011
Furuno, K., Kagawa, A., Kazaoka, O., Kusuda, T., & Nirei, H. (2015). Groundwater management based on monitoring of land subsidence and groundwater levels in the Kanto Groundwater Basin, Central Japan. Proceedings of the International Association of Hydrological Sciences, 372, 53-57. https://doi.org/10.5194/piahs-372-53-2015
Gabriel, A. K., Goldstein, R. M., & Zebker, H. A. (1989). Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research, 94(B7). https://doi.org/10.1029/JB094iB07p09183
Galloway, D., Jones, D. R., & Ingebritsen, S. E. (1999). Land subsidence in the United States (Vol. 1182). U.S. Geological Survey.
Galloway, D. L., & Burbey, T. J. (2011). Review: Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459-1486. https://doi.org/10.1007/s10040-011-0775-5
Galloway, D. L., Hudnut, K. W., Ingebritsen, S. E., Phillips, S. P., Peltzer, G., Rogez, F., & Rosen, P. A. (1998). Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resources Research, 34(10), 2573-2585. https://doi.org/10.1029/98wr01285
Gao, G., San, L. H., & Zhu, Y. (2021). Flood Inundation Analysis in Penang Island (Malaysia) Based on InSAR Maps of Land Subsidence and Local Sea Level Scenarios. Water, 13(11). https://doi.org/10.3390/w13111518
Garner, G. G., Hermans, T., Kopp, R. E., Slangen, A. B. A., Edwards, T. L., Levermann, A., Nowikci, S., Palmer, M. D., Smith, C., Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., . . . Pearson, B. (2021). IPCC AR6 Sea-Level Rise Projections. Version 20210809 [Data set]. PO.DAAC. https://doi.org/10.5281/zenodo.5914709
Gesch, D. B. (2018). Best Practices for Elevation-Based Assessments of Sea-Level Rise and Coastal Flooding Exposure. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00230
Ghilani, C. D., & Wolf, P. R. (2014). Elementary Surveying: An Introduction to Geomatics (14th ed.). Pearson.
Haghighi, M. H., & Motagh, M. (2019). Ground surface response to continuous compaction of aquifer system in Tehran, Iran: Results from a long-term multi-sensor InSAR analysis. Remote Sensing of Environment, 221, 534-550. https://doi.org/10.1016/j.rse.2018.11.003
Hakim, W. L., Achmad, A. R., Eom, J., & Lee, C. W. (2020). Land Subsidence Measurement of Jakarta Coastal Area Using Time Series Interferometry with Sentinel-1 SAR Data. Journal of Coastal Research, 102(sp1), 75-81. https://doi.org/10.2112/Si102-010.1
Hamlington, B. D., Tripathi, A., Rounce, D. R., Weathers, M., Adams, K. H., Blackwood, C., Carter, J., Collini, R. C., Engeman, L., Haasnoot, M., & Kopp, R. E. (2023). Satellite monitoring for coastal dynamic adaptation policy pathways. Climate Risk Management, 42. https://doi.org/ARTN 10055510.1016/j.crm.2023.100555
Hasan, M. F., Smith, R., Vajedian, S., Pommerenke, R., & Majumdar, S. (2023). Global land subsidence mapping reveals widespread loss of aquifer storage capacity. Nat Commun, 14(1), 6180. https://doi.org/10.1038/s41467-023-41933-z
Hauer, M. E., Fussell, E., Mueller, V., Burkett, M., Call, M., Abel, K., McLeman, R., & Wrathall, D. (2020). Sea-level rise and human migration. Nature Reviews Earth & Environment, 1(1), 28-39. https://doi.org/10.1038/s43017-019-0002-9
Hausfather, Z., & Peters, G. P. (2020). Emissions - the 'business as usual' story is misleading. Nature, 577(7792), 618-620. https://doi.org/10.1038/d41586-020-00177-3
Herrera-Garcia, G., Ezquerro, P., Tomas, R., Bejar-Pizarro, M., Lopez-Vinielles, J., Rossi, M., Mateos, R. M., Carreon-Freyre, D., Lambert, J., Teatini, P., Cabral-Cano, E., Erkens, G., Galloway, D., Hung, W. C., Kakar, N., Sneed, M., Tosi, L., Wang, H., & Ye, S. (2021). Mapping the global threat of land subsidence. Science, 371(6524), 34-36. https://doi.org/10.1126/science.abb8549
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., . . . Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049. https://doi.org/10.1002/qj.3803
Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23). https://doi.org/10.1029/2004gl021737
Hsiao, S. C., Fu, H. S., Chen, W. B., Chang, T. Y., Wu, H. L., & Liang, T. Y. (2022). Assessment of future possible maximum flooding extent in the midwestern coastal region of Taiwan resulting from sea-level rise and land subsidence. Environmental Research Communications, 4(9). https://doi.org/10.1088/2515-7620/ac8f15
Hsieh, C.-S., Shih, T.-Y., Hu, J.-C., Tung, H., Huang, M.-H., & Angelier, J. (2011). Using differential SAR interferometry to map land subsidence: a case study in the Pingtung Plain of SW Taiwan. Natural Hazards, 58(3), 1311-1332. https://doi.org/10.1007/s11069-011-9734-7
Hsu, W.-C., Chang, H.-C., Chang, K.-T., Lin, E.-K., Liu, J.-K., & Liou, Y.-A. (2015). Observing Land Subsidence and Revealing the Factors That Influence It Using a Multi-Sensor Approach in Yunlin County, Taiwan. Remote Sensing, 7(6), 8202-8223. https://doi.org/10.3390/rs70608202
Huang, M., Hu, J., & Shieh, C. (2004, December). The application of InSAR for crustal deformation and land subsidence in Taiwan. American Geophysical Union Fall Meeting 2004, San Francisco, CA. https://ui.adsabs.harvard.edu/abs/2004AGUFM.T11D1308H/abstract
Hung, C.-K. (2020). On the Deformation Model of Greater Taipei Area with InSAR [Master's thesis, National Chiao Tung University]. National Digital Library of Theses and Dissertations in Taiwan. https://hdl.handle.net/11296/n5t8z3
Hung, W.-C., Hwang, C., Chen, Y.-A., Chang, C.-P., Yen, J.-Y., Hooper, A., & Yang, C.-Y. (2011). Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sensing of Environment, 115(4), 957-967. https://doi.org/10.1016/j.rse.2010.11.007
Hung, W.-C., Hwang, C., Chen, Y.-A., Zhang, L., Chen, K.-H., Wei, S.-H., Huang, D.-R., & Lin, S.-H. (2017). Land Subsidence in Chiayi, Taiwan, from Compaction Well, Leveling and ALOS/PALSAR: Aquaculture-Induced Relative Sea Level Rise. Remote Sensing, 10(2). https://doi.org/10.3390/rs10010040
Hung, W.-C., Hwang, C., Tosi, L., Lin, S.-H., Tsai, P.-C., Chen, Y.-A., Wang, W.-J., Li, E.-C., & Ge, S. (2023). Toward sustainable inland aquaculture: Coastal subsidence monitoring in Taiwan. Remote Sensing Applications: Society and Environment, 30. https://doi.org/10.1016/j.rsase.2023.100930
Hung, W. C., Hwang, C., Chang, C. P., Yen, J. Y., Liu, C. H., & Yang, W. H. (2010). Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan. Environmental Earth Sciences, 59(7), 1535-1548. https://doi.org/10.1007/s12665-009-0139-9
Information of Land Subsidence Prevention in Taiwan. (2018). Precision level elevation measurement. http://www.lsprc.ncku.edu.tw/en/trend.php?action=view&id=6
Ingebritsen, S. E., & Galloway, D. L. (2014). Coastal subsidence and relative sea level rise. Environmental Research Letters, 9(9). https://doi.org/10.1088/1748-9326/9/9/091002
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou, Eds.). Cambridge University Press. https://doi.org/10.1017/9781009157896
Jolivet, R., Agram, P. S., Lin, N. Y., Simons, M., Doin, M. P., Peltzer, G., & Li, Z. (2014). Improving InSAR geodesy using Global Atmospheric Models. Journal of Geophysical Research: Solid Earth, 119(3), 2324-2341. https://doi.org/10.1002/2013jb010588
Juhász, L., Xu, J., & Parkinson, R. W. (2023). Beyond the Tide: A Comprehensive Guide to Sea-Level-Rise Inundation Mapping Using FOSS4G. Geomatics, 3(4), 522-540. https://doi.org/10.3390/geomatics3040028
Karegar, M. A., Dixon, T. H., & Engelhart, S. E. (2016). Subsidence along the Atlantic Coast of North America: Insights from GPS and late Holocene relative sea level data. Geophysical Research Letters, 43(7), 3126-3133. https://doi.org/10.1002/2016gl068015
Kasmalkar, I., Wagenaar, D., Bill-Weilandt, A., Choong, J., Manimaran, S., Lim, T. N., Rabonza, M., & Lallemant, D. (2024). Flow-tub model: A modified bathtub flood model with hydraulic connectivity and path-based attenuation. MethodsX, 12. https://doi.org/10.1016/j.mex.2023.102524
Kirui, P. K. e., Reinosch, E., Isya, N., Riedel, B., & Gerke, M. (2021). Mitigation of Atmospheric Artefacts in Multi Temporal InSAR: A Review. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 89(3), 251-272. https://doi.org/10.1007/s41064-021-00138-z
Koster, K., Stafleu, J., & Stouthamer, E. (2018). Differential subsidence in the urbanised coastal-deltaic plain of the Netherlands. Netherlands Journal of Geosciences, 97(4), 215-227. https://doi.org/10.1017/njg.2018.11
Kulp, S. A., & Strauss, B. H. (2019). New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat Commun, 10(1), 4844. https://doi.org/10.1038/s41467-019-12808-z
Laignel, B., Vignudelli, S., Almar, R., Becker, M., Bentamy, A., Benveniste, J., Birol, F., Frappart, F., Idier, D., Salameh, E., Passaro, M., Menende, M., Simard, M., Turki, E. I., & Verpoorter, C. (2023). Observation of the Coastal Areas, Estuaries and Deltas from Space. Surveys in Geophysics, 44(5), 1309-1356. https://doi.org/10.1007/s10712-022-09757-6
Lallemand, S. E., & Tsien, H. H. (1997). An introduction to active collision in Taiwan. Tectonophysics, 274(1-3), 1-4. https://doi.org/Doi 10.1016/S0040-1951(96)00294-6
Lan, Y.-J., Hsu, T.-W., Lin, Y.-C., & Huang, C.-J. (2013). An Adaptation Due to Climate Change in Southwest Coast of Taiwan. Coastal Management, 41(2), 172-189. https://doi.org/10.1080/08920753.2013.768514
Lanari, R., Mora, O., Manunta, M., Mallorqui, J. J., Berardino, P., & Sansosti, E. (2004). A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 42(7), 1377-1386. https://doi.org/10.1109/tgrs.2004.828196
Li, E.-C. (2020). Detecting land subsidence in coastal Pingtung using Sentinel-1A SAR and SBAS [Master's thesis, National Chiao Tung University]. National Digital Library of Theses and Dissertations in Taiwan. https://hdl.handle.net/11296/ty9dr8
Li, S., Xu, W., & Li, Z. (2022). Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geodesy and Geodynamics, 13(2), 114-126. https://doi.org/10.1016/j.geog.2021.09.007
Li, Z., Zhu, W., Yu, C., Zhang, Q., Zhnag, C., Liu, Z., Zhang, X., Chen, B., Du, J., & Song, C. (2022). Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook. Acta Geodaetica et Cartographica Sinica, 51(7), 1485-1519.
Lichter, M., Vafeidis, A. T., & Nicholls, R. J. (2011). Exploring Data-Related Uncertainties in Analyses of Land Area and Population in the “Low-Elevation Coastal Zone” (LECZ). Journal of Coastal Research, 27(4). https://doi.org/10.2112/jcoastres-d-10-00072.1
Liew, P. M., Hsieh, M. L., & Shyu, B. H. (2004). An overview of coastal development in a Young Mountain Belt-Taiwan. Quaternary International, 115-116, 39-45. https://doi.org/10.1016/s1040-6182(03)00095-8
Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote Sensing and Image Interpretation. Wiley.
Lin, A. T., & Watts, A. B. (2002). Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research: Solid Earth, 107(B9). https://doi.org/10.1029/2001jb000669
Lin, J.-C. (1996). Coastal modification due to human influence in south-western Taiwan. Quaternary Science Reviews, 15(8-9), 895-900. https://doi.org/10.1016/s0277-3791(96)00060-1
Liu, C. H., Pan, Y. W., Liao, J. J., Huang, C. T., & Ouyang, S. (2004). Characterization of land subsidence in the Choshui River alluvial fan, Taiwan. Environmental Geology, 45(8), 1154-1166. https://doi.org/10.1007/s00254-004-0983-6
Liu, G., Buckley, S. M., Ding, X., Chen, Q., & Luo, X. (2009). Estimating Spatiotemporal Ground Deformation With Improved Persistent-Scatterer Radar Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 47(9), 3209-3219. https://doi.org/10.1109/tgrs.2009.2028797
Lu, C.-H., Ni, C.-F., Chang, C.-P., Chen, Y.-A., & Yen, J.-Y. (2016). Geostatistical Data Fusion of Multiple Type Observations to Improve Land Subsidence Monitoring Resolution in the Choushui River Fluvial Plain, Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(4). https://doi.org/10.3319/tao.2016.01.29.02(isrs)
Lu, C. Y., Hu, J. C., Chan, Y. C., Su, Y. F., & Chang, C. H. (2020). The Relationship between Surface Displacement and Groundwater Level Change and Its Hydrogeological Implications in an Alluvial Fan: Case Study of the Choshui River, Taiwan. Remote Sensing, 12(20), 20, Article 3315. https://doi.org/10.3390/rs12203315
Massonnet, D., Holzer, T., & Vadon, H. (1997). Land subsidence caused by the East Mesa Geothermal Field, California, observed using SAR interferometry. Geophysical Research Letters, 24(8), 901-904. https://doi.org/10.1029/97gl00817
Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., & Rabaute, T. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364(6433), 138-142. https://doi.org/10.1038/364138a0
McGranahan, G., Balk, D., & Anderson, B. (2007). The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environment and Urbanization, 19(1), 17-37. https://doi.org/10.1177/0956247807076960
McLeman, R. (2018). Migration and displacement risks due to mean sea-level rise. Bulletin of the Atomic Scientists, 74(3), 148-154. https://doi.org/10.1080/00963402.2018.1461951
Ministry of Economic Affairs. (2017). Regulations on Groundwater Conservation. https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0110026
Ministry of the Interior. (2017). Jheng Ti Hai An Guan Li Ji Hua [Integrated Coastal Zone Management Plan]. https://www.cpami.gov.tw/filesys/file/chinese/dept/rp3/rp1060206.pdf
Mirzaee, S., Amelung, F., & Fattahi, H. (2023). Non-linear phase linking using joined distributed and persistent scatterers. Computers & Geosciences, 171. https://doi.org/10.1016/j.cageo.2022.105291
Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6-43. https://doi.org/10.1109/mgrs.2013.2248301
Murray, K. D., Bekaert, D. P. S., & Lohman, R. B. (2019). Tropospheric corrections for InSAR: Statistical assessments and applications to the Central United States and Mexico. Remote Sensing of Environment, 232. https://doi.org/10.1016/j.rse.2019.111326
National Central University. (2014). Planning groundwater recharge with coupled numerical models of surface and subsurface water. Water Resource Agency.
National Land Management Agency. (2022, May 26). Coastal Protection Plan. https://reurl.cc/lQGMWv
National Land Surveying and Mapping Center. (n.d.). Taiwan Electronic Map. https://wmts.nlsc.gov.tw/wmts
Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., & Mitchum, G. T. (2018). Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences of the United States of America, 115(9), 2022-2025. https://doi.org/10.1073/pnas.1717312115
Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding: a global assessment. PLoS One, 10(3), e0118571. https://doi.org/10.1371/journal.pone.0118571
Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal zones. Science, 328(5985), 1517-1520. https://doi.org/10.1126/science.1185782
Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., Hanson, S. E., Merkens, J.-L., & Fang, J. (2021). A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change, 11(4), 338-342. https://doi.org/10.1038/s41558-021-00993-z
NOAA. (n.d.). National Tidal Datum Epoch. https://tidesandcurrents.noaa.gov/datum-updates/ntde/
O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., & van Vuuren, D. P. (2014). A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change, 122(3), 387-400. https://doi.org/10.1007/s10584-013-0905-2
Ohenhen, L. O., Shirzaei, M., Ojha, C., & Kirwan, M. L. (2023). Hidden vulnerability of US Atlantic coast to sea-level rise due to vertical land motion. Nature Communications, 14(1), 2038. https://doi.org/10.1038/s41467-023-37853-7
Ohenhen, L. O., Shirzaei, M., Ojha, C., Sherpa, S. F., & Nicholls, R. J. (2024). Disappearing cities on US coasts. Nature, 627(8002), 108-115. https://doi.org/10.1038/s41586-024-07038-3
Osmanoğlu, B., Sunar, F., Wdowinski, S., & Cabral-Cano, E. (2016). Time series analysis of InSAR data: Methods and trends. Isprs Journal of Photogrammetry and Remote Sensing, 115, 90-102. https://doi.org/10.1016/j.isprsjprs.2015.10.003
Pérez-Falls, Z., Martínez-Flores, G., & Sarychikhina, O. (2022). Land Subsidence Detection in the Coastal Plain of Tabasco, Mexico Using Differential SAR Interferometry. Land, 11(9). https://doi.org/10.3390/land11091473
Pepe, A., & Lanari, R. (2006). On the Extension of the Minimum Cost Flow Algorithm for Phase Unwrapping of Multitemporal Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2374-2383. https://doi.org/10.1109/tgrs.2006.873207
Psimoulis, P., Ghilardi, M., Fouache, E., & Stiros, S. (2007). Subsidence and evolution of the Thessaloniki plain, Greece, based on historical leveling and GPS data. Engineering Geology, 90(1-2), 55-70. https://doi.org/10.1016/j.enggeo.2006.12.001
Qu, F., Lu, Z., Zhang, Q., Bawden, G. W., Kim, J.-W., Zhao, C., & Qu, W. (2015). Mapping ground deformation over Houston–Galveston, Texas using multi-temporal InSAR. Remote Sensing of Environment, 169, 290-306. https://doi.org/10.1016/j.rse.2015.08.027
Rosen, P. A., Gurrola, E., Sacco, G. F., & Zebker, H. (2012). The InSAR scientific computing environment. In EUSAR 2012; 9th European conference on synthetic aperture radar (pp. 730-733).
Sengupta, D., Chen, R., Meadows, M. E., & Banerjee, A. (2020). Gaining or losing ground? Tracking Asia's hunger for 'new' coastal land in the era of sea level rise. Science of the Total Environment, 732, 139290. https://doi.org/10.1016/j.scitotenv.2020.139290
Shirzaei, M., & Burgmann, R. (2018). Global climate change and local land subsidence exacerbate inundation risk to the San Francisco Bay Area. Science advances, 4(3), eaap9234. https://doi.org/10.1126/sciadv.aap9234
Shirzaei, M., Freymueller, J., Törnqvist, T. E., Galloway, D. L., Dura, T., & Minderhoud, P. S. J. (2020). Measuring, modelling and projecting coastal land subsidence. Nature Reviews Earth & Environment, 2(1), 40-58. https://doi.org/10.1038/s43017-020-00115-x
Stouthamer, E., Erkens, G., Cohen, K., Hegger, D., Driessen, P., Weikard, H. P., Hefting, M., Hanssen, R., Fokker, P., van den Akker, J., Groothuijse, F., & van Rijswick, M. (2020). Dutch national scientific research program on land subsidence: Living on soft soils – subsidence and society. Proceedings of the International Association of Hydrological Sciences, 382, 815-819. https://doi.org/10.5194/piahs-382-815-2020
Suppe, J. (1984). Kinematics of arc–continent collision, flipping of subduction and back-arc spreading near Taiwan. Memoir of the Geological Society of China (Taiwan), 6, 21-33.
Taramelli, A., Manzo, C., Valentini, E., & Cornacchia, L. (2018). Coastal Subsidence: Causes, Mapping and Monitoring. In R. Singh & D. Bartlett (Eds.), Natural Hazards (pp. 253-289). CRC Press. https://doi.org/10.1201/9781315166841
Tay, C., Lindsey, E. O., Chin, S. T., McCaughey, J. W., Bekaert, D., Nguyen, M., Hua, H., Manipon, G., Karim, M., Horton, B. P., Li, T., & Hill, E. M. (2022). Sea-level rise from land subsidence in major coastal cities. Nature Sustainability. https://doi.org/10.1038/s41893-022-00947-z
Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., & Kim, S. (2017). Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental Modelling & Software, 90, 201-216. https://doi.org/10.1016/j.envsoft.2017.01.006
Thomas, M. Y., Avouac, J. P., Champenois, J., Lee, J. C., & Kuo, L. C. (2014). Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan. Journal of Geophysical Research: Solid Earth, 119(6), 5114-5139. https://doi.org/10.1002/2013jb010603
Ting, C.-S., Chiang, K.-F., Hsieh, S.-H., Tsao, C.-H., Chuang, C.-H., & Fan, K.-T. (2020). Land subsidence and managed aquifer recharge in Pingtung Plain, Taiwan. Proceedings of the International Association of Hydrological Sciences, 382, 843-849. https://doi.org/10.5194/piahs-382-843-2020
Tung, H., & Hu, J. C. (2012). Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR. Tectonophysics, 578, 126-135. https://doi.org/10.1016/j.tecto.2012.08.009
United Nations. (2015). Transforming Our World: the 2030 Agenda for Sustainable Development. (A/RES/70/1). Retrieved from https://undocs.org/en/A/RES/70/1
Vernimmen, R., & Hooijer, A. (2023). New LiDAR‐Based Elevation Model Shows Greatest Increase in Global Coastal Exposure to Flooding to Be Caused by Early‐Stage Sea‐Level Rise. Earth's Future, 11(1). https://doi.org/10.1029/2022ef002880
Wang, G., Greuter, A., Petersen, C. M., & Turco, M. J. (2022). Houston GNSS Network for Subsidence and Faulting Monitoring: Data Analysis Methods and Products. Journal of Surveying Engineering, 148(4). https://doi.org/10.1061/(asce)su.1943-5428.0000399
Wang, H., Wright, T. J., Yu, Y. P., Lin, H., Jiang, L. L., Li, C. H., & Qiu, G. X. (2012). InSAR reveals coastal subsidence in the Pearl River Delta, China. Geophysical Journal International, 191(3), 1119-1128. https://doi.org/10.1111/j.1365-246X.2012.05687.x
Wang, J., Gao, W., Xu, S., & Yu, L. (2012). Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China. Climatic Change, 115(3-4), 537-558. https://doi.org/10.1007/s10584-012-0468-7
Water Resources Agency. (2005). The operation specification for the delineation of the serious land subsidence area. https://law.moea.gov.tw/LawContent.aspx?id=FL037471
Water Resources Agency. (2015). The benchmark leveling and analysis standard for land subsidence. https://law.moea.gov.tw/LawContent.aspx?id=FL075705
Water Resources Agency. (2020). First-grade Coastal Protection Plan of Yunlin County. https://reurl.cc/YEyAel
Woodhouse, I. H. (2005). Introduction to Microwave Remote Sensing. CRC Press.
Wu, P. C., Wei, M., & D’Hondt, S. (2022). Subsidence in Coastal Cities Throughout the World Observed by InSAR. Geophysical Research Letters, 49(7). https://doi.org/10.1029/2022gl098477
Xiao, R., Yu, C., Li, Z., Song, C., & He, X. (2020). General Survey of Large-scale Land Subsidence by GACOS-Corrected InSAR Stacking: Case Study in North China Plain. Proceedings of the International Association of Hydrological Sciences, 382, 213-218. https://doi.org/10.5194/piahs-382-213-2020
Xu, B., Feng, G., Li, Z., Wang, Q., Wang, C., & Xie, R. (2016). Coastal Subsidence Monitoring Associated with Land Reclamation Using the Point Target Based SBAS-InSAR Method: A Case Study of Shenzhen, China. Remote Sensing, 8(8). https://doi.org/10.3390/rs8080652
Xue, F., Lv, X., Dou, F., & Yun, Y. (2020). A Review of Time-Series Interferometric SAR Techniques: A Tutorial for Surface Deformation Analysis. IEEE Geoscience and Remote Sensing Magazine, 8(1), 22-42. https://doi.org/10.1109/mgrs.2019.2956165
Yang, G.-S., & Shen, S.-M. (2010). Tai wan cyuan jhih (jyuan er) tu di jhih di sing pian. Taiwan Historica.
Yang, Y. J., Hwang, C., Hung, W. C., Fuhrmann, T., Chen, Y. A., & Wei, S. H. (2019). Surface Deformation from Sentinel-1A InSAR: Relation to Seasonal Groundwater Extraction and Rainfall in Central Taiwan. Remote Sensing, 11(23), 2817. https://doi.org/10.3390/rs11232817
Yastika, P. E., Shimizu, N., & Abidin, H. Z. (2019). Monitoring of long-term land subsidence from 2003 to 2017 in coastal area of Semarang, Indonesia by SBAS DInSAR analyses using Envisat-ASAR, ALOS-PALSAR, and Sentinel-1A SAR data. Advances in Space Research, 63(5), 1719-1736. https://doi.org/10.1016/j.asr.2018.11.008
Yip, S. T. H., Biggs, J., & Albino, F. (2019). Reevaluating Volcanic Deformation Using Atmospheric Corrections: Implications for the Magmatic System of Agung Volcano, Indonesia. Geophysical Research Letters, 46(23), 13704-13711. https://doi.org/10.1029/2019gl085233
Yu, C., Li, Z., Penna, N. T., & Crippa, P. (2018). Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. Journal of Geophysical Research: Solid Earth, 123(10), 9202-9222. https://doi.org/10.1029/2017jb015305
Yu, H., Lan, Y., Yuan, Z., Xu, J., & Lee, H. (2019). Phase Unwrapping in InSAR : A Review. IEEE Geoscience and Remote Sensing Magazine, 7(1), 40-58. https://doi.org/10.1109/mgrs.2018.2873644
Yunjun, Z., Fattahi, H., & Amelung, F. (2019). Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Computers & Geosciences, 133. https://doi.org/10.1016/j.cageo.2019.104331
Yunus, A., Avtar, R., Kraines, S., Yamamuro, M., Lindberg, F., & Grimmond, C. (2016). Uncertainties in Tidally Adjusted Estimates of Sea Level Rise Flooding (Bathtub Model) for the Greater London. Remote Sensing, 8(5). https://doi.org/10.3390/rs8050366
Zhang, L., Ding, X., & Lu, Z. (2011). Modeling PSInSAR Time Series Without Phase Unwrapping. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 547-556. https://doi.org/10.1109/tgrs.2010.2052625
Zhang, L., & Lu, Z. (2022). Advances in InSAR Imaging and Data Processing. Remote Sensing, 14(17). https://doi.org/10.3390/rs14174307
Zhao, Q., Pan, J., Devlin, A. T., Tang, M., Yao, C., Zamparelli, V., Falabella, F., & Pepe, A. (2022). On the Exploitation of Remote Sensing Technologies for the Monitoring of Coastal and River Delta Regions. Remote Sensing, 14(10). https://doi.org/10.3390/rs14102384
Zhao, Y., Zuo, X., Li, Y., Guo, S., Bu, J., & Yang, Q. (2023). Evaluation of InSAR Tropospheric Delay Correction Methods in a Low-Latitude Alpine Canyon Region. Remote Sensing, 15(4). https://doi.org/10.3390/rs15040990
Zhong, W., Chu, T., Tissot, P., Wu, Z., Chen, J., & Zhang, H. (2022). Integrated coastal subsidence analysis using InSAR, LiDAR, and land cover data. Remote Sensing of Environment, 282. https://doi.org/10.1016/j.rse.2022.113297
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93285-
dc.description.abstract海岸地層下陷已被認定為全球主要環境問題之一,可能引發各種沿海災害,並伴隨大量社會經濟損失。在臺灣,由於都市快速發展和過度抽取地下水,西部沿海也經歷了嚴重的地層下陷;然而,區域尺度下沿海地層下陷隨時間和空間的變化仍較少被討論。因此,本研究旨在以量化方式重建臺灣西部海岸過去近三十年來的下陷歷史,並結合海平面上升推估進行沿海淹沒範圍模擬。為了獲取具有高空間解析度的地表變形時間序列與速度場,本研究利用多任務合成孔徑雷達影像,以小基線子集干涉合成孔徑雷達技術(SBAS-InSAR)進行地表變形的時間序列分析。研究中使用基於空間同調性的干涉圖網絡修改和相位解纏錯誤校正演算法來提高時間同調性,並評估了對流層校正和各種相位斜坡消除方法的有效性,最終將視衛星方向的速度場轉換為垂直方向。利用InSAR得出的垂直陸地運動模型,結合聯合國政府間氣候變遷專門委員會第六次評估報告中,以共享社會經濟路徑預測的海平面上升情境,以等速度與變速度垂直陸地運動對沿海潛在淹沒範圍進行了模擬。
結果顯示,沿海地層下陷主要出現在彰化縣和雲林縣,嘉義縣、臺南市北部和屏東縣也出現了明顯的沉降情形。在1995至1999年間,彰化縣大城鄉的沉降率最高,可達每年9.2公分,而雲林離島式基礎工業區北部的沉降率則為每年8.3公分;2006至2008年間,彰化的沉降中心向內陸移動,沿海沉降率減至每年3.6公分,同時雲林離島式基礎工業區的沉降中心南移,最大沉降速度為每年8.8公分,屏東和臺南北部的沉降速度在此期間趨緩;至於在2014至2023年的觀測期間內,儘管大多數沿海低海拔地區的沉降問題有所改善,但填海造陸區和屏東平原沿海地帶仍持續有相對高的沉降率。綜合考量地層下陷和海平面上升的影響,到了2150年時,在最悲觀的情境下,採用變速度和等速度方法模擬的淹沒面積為1479.88與1763.32平方公里。其中,等速度模型結果顯示,直到2150年,垂直陸地運動對沿海淹沒範圍的影響仍然顯著;而變速度模型結果顯示,2050年後海平面上升將成為控制沿海淹沒範圍的主要因素。
zh_TW
dc.description.abstractCoastal land subsidence has been identified as one of the major global environmental issues. In Taiwan, the western coast has also experienced severe land subsidence due to rapid development and excessive groundwater extraction. However, the spatiotemporal patterns of coastal subsidence at a regional scale remain less understood. Thus, this study utilized the small baseline subset interferometric SAR (SBAS-InSAR) technique with multi-mission datasets to reconstruct a quantitative history of coastal subsidence in western Taiwan over nearly the past three decades. Additionally, the potential inundation areas in the future were also modeled. Spatial coherence-based network modification and algorithms for unwrapping error correction were used to improve temporal coherence. The effectiveness of tropospheric corrections and various phase deramping methods were also assessed. Moreover, the original line-of-sight velocity fields were converted to the vertical direction. Combining InSAR-derived vertical land motion (VLM) data, uniform and varied velocity approaches of coastal inundation modeling were made using IPCC AR6 Shared Socioeconomic Pathway (SSP) sea level rise scenarios to identify potentially exposed inundated areas.
Results identify Changhua County and Yunlin County as the primary areas experiencing coastal subsidence, with significant subsidence also observed in Chiayi County, northern Tainan City, and Pingtung County. From 1995 to 1999, Dacheng Township in Changhua County exhibited the highest subsidence rate of 9.2 cm/yr, while the northern part of the Yunlin Offshore Industrial Park saw rates of 8.3 cm/yr. Between 2006 and 2008, the subsidence center in Changhua County shifted inland, reducing the coastal subsidence rate to approximately 3.6 cm/yr. Concurrently, the subsidence center in the Yunlin Offshore Industrial Park moved southward, reaching a maximum rate of 8.8 cm/yr. Deformation velocities in Pingtung and northern Tainan decreased during this period. In the most recent observation period, from 2014 to 2023, although subsidence rates in most low-elevation coastal zones have diminished, reclaimed lands and the coastal Pingtung Plain continue to experience relatively high subsidence rates. By 2150, considering the combined effects of land subsidence and sea-level rise, modeled inundation areas are 1479.88 km2 and 1763.32 km2 with varied and uniform velocity approaches under the most pessimistic scenario, indicating 4.1% and 4.9% of Taiwan Island could be potentially exposed to the threat of coastal inundation. Uniform velocity modeling results show that the effect of VLM remains significant up to 2150, whereas varied velocity modeling results reveal that sea-level rise will become the major factor controlling coastal inundation after 2050.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:40:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-23T16:40:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 iii
摘要 v
Abstract vii
Table of Contents ix
List of Figures xii
List of Tables xx
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Research gaps 8
1.3 Research purposes 9
Chapter 2 Literature review 11
2.1 Coastal land subsidence 11
2.2 Measurements of coastal land subsidence 12
2.3 Implementations of InSAR in coastal land subsidence monitoring 15
Chapter 3 Study area 19
3.1 Defining coastal zone 19
3.2 Geographic overview of coastal region in western Taiwan 21
3.3 Coastal land subsidence problems in western Taiwan 26
Chapter 4 Methods 29
4.1 Principles of SBAS-InSAR 29
4.1.1 Synthetic Aperture Radar (SAR) 29
4.1.2 Interferometric Synthetic Aperture Radar (InSAR) 33
4.1.3 Time series analysis of InSAR data 34
4.2 Research framework 37
4.2.1 Interferogram networks formation and modification 40
4.2.2 Reliable pixel criterion: temporal coherence 42
4.2.3 Unwrapping error correction 43
4.2.4 Tropospheric delay correction 43
4.2.5 Phase ramp removal 47
4.2.6 From line-of-sight to vertical 48
4.2.7 Inundation modeling 50
4.3 Datasets 53
4.3.1 SAR datasets 53
4.3.2 GNSS and leveling datasets 57
4.3.3 Topography and water level data 60
4.3.4 SLR scenarios from IPCC AR6 63
Chapter 5 Results 69
5.1 Interferogram networks 69
5.2 Assessment of the SBAS-InSAR processing 73
5.2.1 Temporal coherence threshold selection 73
5.2.2 Unwrapping error correction 73
5.2.3 Tropospheric delay correction 75
5.2.4 Phase deramping 83
5.3 Velocity fields (line-of-sight) 86
5.4 Validation with GNSS data 90
5.5 Vertical land motion 93
Chapter 6 Discussions 99
6.1 Subsidence time series 99
6.2 Severity of coastal subsidence 103
6.3 Inundation projection 107
6.3.1 Scenario 1: uniform velocity 107
6.3.2 Scenario 2: varied velocity 112
6.3.3 Comparison of scenarios 120
6.3.4 Uncertainties 123
6.3.5 Impacts and applications 124
Chapter 7 Conclusions 127
Reference 131
Appendix 151
Appendix A: Modified interferogram networks 151
Appendix B: Interferograms 155
B.1 ERS-1/2 (Frame 3123) 155
B.2 ERS-1/2 (Frame 3141) 158
B.3 ERS-1/2 (Frame 3159) 161
B.4 Envisat ASAR (Frame 3123) 163
B.5 Envisat ASAR (Frame 3141) 165
B.6 Envisat ASAR (Frame 3159) 167
B.7 Sentinel-1 (Path 105) 168
-
dc.language.isoen-
dc.subjectEnvisat ASARzh_TW
dc.subjectSentinel-1zh_TW
dc.subjectMintPyzh_TW
dc.subject氣候變遷zh_TW
dc.subject沉降zh_TW
dc.subjectERS-1/2zh_TW
dc.subjectERS-1/2en
dc.subjectsubsidenceen
dc.subjectclimate changeen
dc.subjectMintPyen
dc.subjectSentinel-1en
dc.subjectEnvisat ASARen
dc.title運用合成孔徑雷達干涉技術分析臺灣西部沿海年代際地層下陷及未來海岸淹沒情境zh_TW
dc.titleInSAR-based Multidecadal Coastal Land Subsidence Analysis and Future Inundation Scenarios in Western Taiwanen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林宗儀;景國恩;洪偉嘉;林玉儂zh_TW
dc.contributor.oralexamcommitteeTsung-Yi Lin;Kuo-En Ching;Wei-Chia Hung;Yunung Nina Linen
dc.subject.keyword沉降,ERS-1/2,Envisat ASAR,Sentinel-1,MintPy,氣候變遷,zh_TW
dc.subject.keywordsubsidence,ERS-1/2,Envisat ASAR,Sentinel-1,MintPy,climate change,en
dc.relation.page174-
dc.identifier.doi10.6342/NTU202401857-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-22-
dc.contributor.author-college理學院-
dc.contributor.author-dept地理環境資源學系-
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf67.23 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved