Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93277Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 徐振哲 | zh_TW |
| dc.contributor.advisor | Cheng-Che Hsu | en |
| dc.contributor.author | 劉晏宏 | zh_TW |
| dc.contributor.author | Yen-Hung Liu | en |
| dc.date.accessioned | 2024-07-23T16:38:36Z | - |
| dc.date.available | 2024-07-24 | - |
| dc.date.copyright | 2024-07-23 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-18 | - |
| dc.identifier.citation | E. Leal-Quirós, "Plasma processing of municipal solid waste," Brazilian Journal of Physics, 34 (4B), 1587-1593 (2004).
D. Pappas, "Status and potential of atmospheric plasma processing of materials," Journal of Vacuum Science & Technology A, 29 (2)(2011). K. Tachibana, "Current status of microplasma research," Ieej Transactions on Electrical and Electronic Engineering, 1 (2), 145-155 (2006). Y. Y. Yan, N. Gao, and W. Barthlott, "Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces," Advances in Colloid and Interface Science, 169 (2), 80-105 (2011). E. Celia, T. Darmanin, E. T. de Givenchy, S. Amigoni, and F. Guittard, "Recent advances in designing superhydrophobic surfaces," Journal of Colloid and Interface Science, 402, 1-18 (2013). R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Industrial and Engineering Chemistry, 28, 988-994 (1936). A. B. D. Cassie, and S. Baxter, "Wettability of porous surfaces," Transactions of the Faraday Society, 40, 0546-0550 (1944). T. Huhtamäki, X. L. Tian, J. T. Korhonen, and R. H. A. Ras, "Surface-wetting characterization using contact-angle measurements (vol 13, pg 1521, 2018)," Nature Protocols, 14 (7), 2259-2259 (2019). M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, "Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces," Langmuir, 16 (13), 5754-5760 (2000). Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashimoto, "Effects of surface structure on the hydrophobicity and sliding behavior of water droplets," Langmuir, 18 (15), 5818-5822 (2002). S. H. Li, J. Y. Huang, Z. Chen, G. Q. Chen, and Y. K. Lai, "A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications," Journal of Materials Chemistry A, 5 (1), 31-55 (2017). S. T. Wang, K. S. Liu, X. Yao, and L. Jiang, "Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications," Chemical Reviews, 115 (16), 8230-8293 (2015). X. F. Gao, and L. Jiang, "Water-repellent legs of water striders," Nature, 432 (7013), 36-36 (2004). X. F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang, and L. Jiang, "The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography," Advanced Materials, 19 (17), 2213-+ (2007). P. Ball, "Engineering - Shark skin and other solutions," Nature, 400 (6744), 507-+ (1999). E. A. Vogler, "Structure and reactivity of water at biomaterial surfaces," Advances in Colloid and Interface Science, 74, 69-117 (1998). S. T. Wang, Y. L. Song, and L. Jiang, "Photoresponsive surfaces with controllable wettability," Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 8 (1), 18-29 (2007). J. M. Berg, L. G. T. Eriksson, P. M. Claesson, and K. G. N. Borve, "Three-component Langmuir-Blodgett-films with a controllable degree of polarity," Langmuir, 10 (4), 1225-1234 (1994). S. Wang, and L. Jiang, "Definition of superhydrophobic states," Advanced Materials, 19 (21), 3423-3424 (2007). K. Koch, B. Bhushan, Y. C. Jung, and W. Barthlott, "Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion," Soft Matter, 5 (7), 1386-1393 (2009). Y. M. Zheng, X. F. Gao, and L. Jiang, "Directional adhesion of superhydrophobic butterfly wings," Soft Matter, 3 (2), 178-182 (2007). J. Y. Shiu, C. W. Kuo, and P. Chen, presented at the SPIE, Bellingham, WA (unpublished). H. Yabu, and M. Shimomura, "Single-step fabrication of transparent superhydrophobic porous polymer films," Chemistry of Materials, 17 (21), 5231-5234 (2005). M. H. Jin, X. J. Feng, J. M. Xi, J. Zhai, K. W. Cho, L. Feng, and L. Jiang, "Super-hydrophobic PDMS surface with ultra-low adhesive force," Macromolecular Rapid Communications, 26 (22), 1805-1809 (2005). R. Fürstner, W. Barthlott, C. Neinhuis, and P. Walzel, "Wetting and self-cleaning properties of artificial superhydrophobic surfaces," Langmuir, 21 (3), 956-961 (2005). E. Martines, K. Seunarine, H. Morgan, N. Gadegaard, C. D. W. Wilkinson, and M. O. Riehle, "Superhydrophobicity and superhydrophilicity of regular nanopatterns," Nano Letters, 5 (10), 2097-2103 (2005). X. Y. Song, J. Zhai, Y. L. Wang, and L. Jiang, "Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties," Journal of Physical Chemistry B, 109 (9), 4048-4052 (2005). K. Teshima, H. Sugimura, Y. Inoue, O. Takai, and A. Takano, "Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating," Applied Surface Science, 244 (1-4), 619-622 (2005). K. Teshima, H. Sugimura, A. Takano, Y. Inoue, and O. Takai, "Ultrahydrophobic/ultrahydrophilic micropatterning on a polymeric substrate," Chemical Vapor Deposition, 11 (8-9), 347-+ (2005). K. Teshima, H. Sugimura, Y. Inoue, O. Takai, and A. Takano, "Ultra-water-repellent poly(ethylene terephthalate) substrates," Langmuir, 19 (25), 10624-10627 (2003). B. T. Qian, and Z. Q. Shen, "Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates," Langmuir, 21 (20), 9007-9009 (2005). L. Huang, S. P. Lau, H. Y. Yang, E. S. P. Leong, S. F. Yu, and S. Prawer, "Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film," Journal of Physical Chemistry B, 109 (16), 7746-7748 (2005). X. Zhang, F. Shi, X. Yu, H. Liu, Y. Fu, Z. Q. Wang, L. Jiang, and X. Y. Li, "Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface," Journal of the American Chemical Society, 126 (10), 3064-3065 (2004). X. D. Wu, L. J. Zheng, and D. Wu, "Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route," Langmuir, 21 (7), 2665-2667 (2005). G. Zhang, D. Y. Wang, Z. Z. Gu, and H. Möhwald, "Fabrication of superhydrophobic surfaces from binary colloidal assembly," Langmuir, 21 (20), 9143-9148 (2005). W. Ming, D. Wu, R. van Benthem, and G. de With, "Superhydrophobic films from raspberry-like particles," Nano Letters, 5 (11), 2298-2301 (2005). J. D. Mendelsohn, C. J. Barrett, V. V. Chan, A. J. Pal, A. M. Mayes, and M. F. Rubner, "Fabrication of microporous thin films from polyelectrolyte multilayers," Langmuir, 16 (11), 5017-5023 (2000). R. M. Jisr, H. H. Rmaile, and J. B. Schlenoff, "Hydrophobic and ultrahydrophobic multilayer thin films from perfluorinated polyelectrolytes," Angewandte Chemie-International Edition, 44 (5), 782-785 (2005). L. Zhai, F. Cebeci, R. E. Cohen, and M. F. Rubner, "Stable superhydrophobic coatings from polyelectrolyte multilayers," Nano Letters, 4 (7), 1349-1353 (2004). N. J. Shirtcliffe, G. McHale, M. I. Newton, C. C. Perry, and P. Roach, "Porous materials show superhydrophobic to superhydrophilic switching," Chemical Communications, (25), 3135-3137 (2005). X. J. Feng, L. Feng, M. H. Jin, J. Zhai, L. Jiang, and D. B. Zhu, "Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films," Journal of the American Chemical Society, 126 (1), 62-63 (2004). M. Hikita, K. Tanaka, T. Nakamura, T. Kajiyama, and A. Takahara, "Super-liquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups," Langmuir, 21 (16), 7299-7302 (2005). W. L. Song, D. D. Veiga, C. A. Custódio, and J. F. Mano, "Bioinspired Degradable Substrates with Extreme Wettability Properties," Advanced Materials, 21 (18), 1830-+ (2009). M. L. Ma, Y. Mao, M. Gupta, K. K. Gleason, and G. C. Rutledge, "Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition," Macromolecules, 38 (23), 9742-9748 (2005). N. Zhao, Q. D. Xie, L. H. Weng, S. Q. Wang, X. Y. Zhang, and J. Xu, "Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution," Macromolecules, 38 (22), 8996-8999 (2005). M. H. Sun, C. X. Luo, L. P. Xu, H. Ji, O. Y. Qi, D. P. Yu, and Y. Chen, "Artificial lotus leaf by nanocasting," Langmuir, 21 (19), 8978-8981 (2005). J. Genzer, and A. Marmur, "Biological and synthetic self-cleaning surfaces," Mrs Bulletin, 33 (8), 742-746 (2008). I. P. Parkin, and R. G. Palgrave, "Self-cleaning coatings," Journal of Materials Chemistry, 15 (17), 1689-1695 (2005). K. S. Liu, and L. Jiang, "Metallic surfaces with special wettability," Nanoscale, 3 (3), 825-838 (2011). K. S. Liu, M. L. Zhang, J. Zhai, J. Wang, and L. Jiang, "Bioinspired construction of Mg-Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance," Applied Physics Letters, 92 (18)(2008). L. L. Cao, A. K. Jones, V. K. Sikka, J. Z. Wu, and D. Gao, "Anti-Icing Superhydrophobic Coatings," Langmuir, 25 (21), 12444-12448 (2009). P. Tourkine, M. Le Merrer, and D. Quéré, "Delayed Freezing on Water Repellent Materials," Langmuir, 25 (13), 7214-7216 (2009). A. J. Meuler, G. H. McKinley, and R. E. Cohen, "Exploiting Topographical Texture To Impart Icephobicity," Acs Nano, 4 (12), 7048-7052 (2010). R. Truesdell, A. Mammoli, P. Vorobieff, F. van Swol, and C. J. Brinker, "Drag reduction on a patterned superhydrophobic surface," Physical Review Letters, 97 (4)(2006). E. Bormashenko, and Y. Bormashenko, "Non-Stick Droplet Surgery with a Superhydrophobic Scalpel," Langmuir, 27 (7), 3266-3270 (2011). B. J. Privett, J. Youn, S. A. Hong, J. Lee, J. Han, J. H. Shin, and M. H. Schoenfisch, "Antibacterial Fluorinated Silica Colloid Superhydrophobic Surfaces," Langmuir, 27 (15), 9597-9601 (2011). F. Mumm, A. T. J. van Helvoort, and P. Sikorski, "Easy Route to Superhydrophobic Copper-Based Wire-Guided Droplet Microfluidic Systems," Acs Nano, 3 (9), 2647-2652 (2009). Y. B. Park, H. Im, M. Im, and Y. K. Choi, "Self-cleaning effect of highly water-repellent microshell structures for solar cell applications," Journal of Materials Chemistry, 21 (3), 633-636 (2011). W. Barthlott, and C. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces," Planta, 202 (1), 1-8 (1997). L. Feng, Y. A. Zhang, J. M. Xi, Y. Zhu, N. Wang, F. Xia, and L. Jiang, "Petal effect: A superhydrophobic state with high adhesive force," Langmuir, 24 (8), 4114-4119 (2008). R. Di Mundo, F. Palumbo, and R. d'Agostino, "Nanotexturing of polystyrene surface in fluorocarbon plasmas: From sticky to slippery superhydrophobicity," Langmuir, 24 (9), 5044-5051 (2008). J. Fresnais, J. P. Chapel, and F. Poncin-Epaillard, "Synthesis of transparent superhydrophobic polyethylene surfaces," Surface & Coatings Technology, 200 (18-19), 5296-5305 (2006). B. Bhushan, and E. K. Her, "Fabrication of Superhydrophobic Surfaces with High and Low Adhesion Inspired from Rose Petal," Langmuir, 26 (11), 8207-8217 (2010). R. Di Mundo, F. Palumbo, and R. d'Agostino, "Influence of Chemistry on Wetting Dynamics of Nanotextured Hydrophobic Surfaces," Langmuir, 26 (7), 5196-5201 (2010). R. d’Agostino, P. Favia, Y. Kawai, H. Ikegami, N. Sato, and F. Arefi-Khonsari, "Advanced Plasma Technology ", 1st ed, Wiley-VCH, Weinheim, (2008), pp. 175-195 J. W. Coburn, and H. F. Winters, "Plasma-etching - a discussion of mechanisms," Crc Critical Reviews in Solid State and Materials Sciences, 10 (2), 119-141 (1981). R. d'Agostino, F. Cramarossa, and F. Illuzzi, "Mechanisms of deposition and etching of thin films of plasma‐polymerized fluorinated monomers in radio frequency discharges fed with C2F6‐H2 and C2F6‐O2 mixtures," Journal of Applied Physics, 61 (8), 2754-2762 (1987). H. Yasuda, and C. R. Wang, "Plasma polymerization investigated by the substrate temperature dependence," Journal of Polymer Science Part a-Polymer Chemistry, 23 (1), 87-106 (1985). H. Yasuda, and T. Hirotsu, "Critical evaluation of conditions of plasma polymerization," Journal of Polymer Science Part a-Polymer Chemistry, 16 (4), 743-759 (1978). S. Tajima, and K. Komvopoulos, "Physicochemical properties and morphology of fluorocarbon films synthesized on crosslinked polyethylene by capacitively coupled octafluorocyclobutane plasma," Journal of Physical Chemistry C, 111 (11), 4358-4367 (2007). R. d'Agostino, P. Favia, F. Fracassi, and F. Illuzzi, "The effect of power on the plasma-assisted deposition of fluorinated monomers," Journal of Polymer Science Part a-Polymer Chemistry, 28 (12), 3387-3402 (1990). R. d’Agostino, "Plasma Deposition, Treatment and Etching of Polymers ", 1st ed, Academic Press, Cambridge, (1990), pp. 95-162 C. R. Savage, R. B. Timmons, and J. W. Lin, "Molecular control of surface film compositions via pulsed radio-frequency plasma deposition of perfluoropropylene oxide," Chemistry of Materials, 3 (4), 575-577 (1991). C. B. Labelle, S. M. Karecki, R. Reif, and K. K. Gleason, "Fourier transform infrared spectroscopy of effluents from pulsed plasmas of 1,1,2,2-tetrafluoroethane, hexafluoropropylene oxide, and difluoromethane," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 17 (6), 3419-3428 (1999). C. I. Butoi, N. M. Mackie, L. J. Gamble, D. G. Castner, J. Barnd, A. M. Miller, and E. R. Fisher, "Deposition of highly ordered CF2-rich films using continuous wave and pulsed hexafluoropropylene oxide plasmas," Chemistry of Materials, 12 (7), 2014-2024 (2000). B. A. Cruden, K. K. Gleason, and H. H. Sawin, "Time resolved ultraviolet absorption spectroscopy of pulsed fluorocarbon plasmas," Journal of Applied Physics, 89 (2), 915-922 (2001). S. H. Yang, C. H. Liu, W. T. Hsu, and H. Chen, "Preparation of super-hydrophobic films using pulsed hexafluorobenzene plasma," Surface & Coatings Technology, 203 (10-11), 1379-1383 (2009). A. Milella, F. Palumbo, P. Favia, G. Cicala, and R. d'Agostino, "Deposition mechanism of nanostructured thin films from tetrafluoroethylene glow discharges," Pure and Applied Chemistry, 77 (2), 399-414 (2005). G. Cicala, A. Milella, F. Palumbo, P. Rossini, P. Favia, and R. d'Agostino, "Nanostructure and composition control of fluorocarbon films from modulated tetrafluoroethylene plasmas," Macromolecules, 35 (24), 8920-8922 (2002). G. Cicala, A. Milella, E. Palumbo, P. Favia, and R. d'Agostino, "Morphological and structural study of plasma deposited fluorocarbon films at different thicknesses," Diamond and Related Materials, 12 (10-11), 2020-2025 (2003). P. Favia, G. Cicala, A. Milella, F. Palumbo, R. Rossini, and R. d'Agostino, "Deposition of super-hydrophobic fluorocarbon coatings in modulated RF glow discharges," Surface & Coatings Technology, 169, 609-612 (2003). F. Intranuovo, E. Sardella, P. Rossini, R. d'Agostino, and P. Favia, "PECVD of Fluorocarbon Coatings from Hexafluoropropylene Oxide: Glow vs. Afterglow," Chemical Vapor Deposition, 15 (4-6), 95-100 (2009). H. B. Zhao, J. H. Kwak, Z. C. Zhang, H. M. Brown, B. W. Arey, and J. E. Holladay, "Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis," Carbohydrate Polymers, 68 (2), 235-241 (2007). B. Balu, V. Breedveld, and D. W. Hess, "Fabrication of "roll-off" and "sticky" superhydrophobic cellulose surfaces via plasma processing," Langmuir, 24 (9), 4785-4790 (2008). M. Schwanninger, J. C. Rodrigues, H. Pereira, and B. Hinterstoisser, "Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose," Vibrational Spectroscopy, 36 (1), 23-40 (2004). H. M. Powell, and J. J. Lannutti, "Nanofibrillar surfaces via reactive ion etching," Langmuir, 19 (21), 9071-9078 (2003). Y. X. Da, H. J. Griesser, A. W. H. Mau, R. Schmidt, and J. Liesegang, "Surface modification of poly(tetrafluoroethylene) by gas plasma treatment," Polymer, 32 (6), 1126-1130 (1991). A. Vesel, D. Lojen, R. Zaplotnik, G. Primc, M. Mozetic, J. Ekar, J. Kovac, M. Gorjanc, M. Kurecic, and K. Stana-Kleinschek, "Defluorination of Polytetrafluoroethylene Surface by Hydrogen Plasma," Polymers, 12 (12)(2020). M. E. Ryan, and J. P. S. Badyal, "Surface texturing of PTFE film using nonequilibrium plasmas," Macromolecules, 28 (5), 1377-1382 (1995). H. Schonhorn, and R. H. Hansen, "Surface treatment of polymers for adhesive bonding," Journal of Applied Polymer Science, 11 (8), 1461-+ (1967). Y. Ohkubo, K. Ishihara, H. Sato, M. Shibahara, A. Nagatani, K. Honda, K. Endo, and Y. Yamamura, "Adhesive-free adhesion between polytetrafluoroethylene (PTFE) and isobutylene-isoprene rubber (IIR) via heat-assisted plasma treatment," Rsc Advances, 7 (11), 6432-6438 (2017). S. Zanini, R. Barni, R. Della Pergola, and C. Riccardi, "Modification of the PTFE wettability by oxygen plasma treatments: influence of the operating parameters and investigation of the ageing behaviour," Journal of Physics D-Applied Physics, 47 (32)(2014). J. Ryu, K. Kim, J. Park, B. G. Hwang, Y. Ko, H. Kim, J. Han, E. Seo, Y. Park, and S. J. Lee, "Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment," Scientific Reports, 7(2017). H. C. Barshilia, and N. Gupta, "Superhydrophobic polytetrafluoroethylene surfaces with leaf-like micro-protrusions through Ar + O2 plasma etching process," Vacuum, 99, 42-48 (2014). V. Pachchigar, M. Ranjan, and S. Mukherjee, "Role of Hierarchical Protrusions in Water Repellent Superhydrophobic PTFE Surface Produced by Low Energy Ion Beam Irradiation," Scientific Reports, 9(2019). V. Pachchigar, M. Ranjan, K. P. Sooraj, S. Augustine, D. Kumawat, K. Tahiliani, and S. Mukherjee, "Self-cleaning and bouncing behaviour of ion irradiation produced nanostructured superhydrophobic PTFE surfaces," Surface & Coatings Technology, 420(2021). V. Pachchigar, U. K. Gaur, T. V. Amrutha, K. P. Sooraj, S. Hans, S. K. Srivastava, and M. Ranjan, "Hydrophobic to superhydrophobic and hydrophilic transitions of Ar plasma-nanostructured PTFE surfaces," Plasma Processes and Polymers, 19 (9)(2022). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93277 | - |
| dc.description.abstract | 本研究利用電漿製程來製備超疏水表面,處理了濾紙、聚對苯二甲酸乙二酯(PET)、玻璃三種表面。首先利用氧氣電漿蝕刻濾紙表面來產生奈米尺度之粗糙度,並成功製備出含有微、奈米結構的階層式結構後,再利用氟碳電漿沉積低表面能的氟碳薄膜至階層式結構上,透過提升氧氣電漿之射頻功率或在低射頻功率下提升處理時間,皆能製備超疏水濾紙且表面非常滑,其水接觸角為170°、滑落角為0°;另外,實驗結果也顯示若沒有利用氧氣電漿蝕刻濾紙表面,僅利用氟碳電漿沉積氟碳薄膜於濾紙表面上,提升電漿處理時間,能製備出超疏水濾紙且表面非常黏,其水接觸角為155°、滑落角為90°,最後藉由掃描式電子顯微鏡(SEM)與傅立葉轉換紅外線光譜儀(FTIR)的分析來進一步確認濾紙表面之微結構以及表面之化學組成。
接著為PET表面改質,利用氬氣電漿蝕刻PET表面來產生奈米尺度之粗糙度,再利用氟碳電漿沉積低表面能的氟碳薄膜至奈米結構上,當提升氬氣電漿之射頻功率時,可以發現表面之水接觸角逐漸上升,且滑落角也逐漸下降,並藉由SEM來觀察PET表面微結構的變化。 最後本研究提出了三步驟電漿處理來製造超疏水玻璃表面,第一步利用氟碳電漿沉積足夠厚的氟碳薄膜於玻璃表面,第二步利用氬氣或氬氣/氧氣電漿蝕刻此氟碳薄膜來嘗試產生粗糙度,再於第三步利用氟碳電漿沉積一層較薄的氟碳薄膜來預防第二步蝕刻所造成的化學鍵結破壞,三步驟電漿處理後之水接觸角皆位於105~115°、滑落角位於40~60°,並藉由SEM的輔助分析,可推論第二步之電漿蝕刻未使得氟碳薄膜的表面產生粗糙度,反而是破壞了表面之化學鍵結。本研究也嘗試利用脈衝模式氟碳電漿來製備超疏水玻璃表面,先利用電漿光譜分析來計算沉積性自由基(CFx)之衰退速率常數,接著再分別調整了脈衝時間(on-time)、脈衝間隔時間(off-time)、射頻功率,其表面之水接觸角位於105~115°、滑落角位於40~60°,並藉由SEM來觀察氟碳薄膜表面微結構的變化。 | zh_TW |
| dc.description.abstract | This study utilizes plasma processing to fabricate superhydrophobic surfaces, focusing on three substrates: filter paper, polyethylene terephthalate(PET), and glass. Initially, oxygen plasma is used to generate nanoscale roughness on the filter paper surface, successfully creating hierarchical structures with micro- and nanostructures. Subsequently, a fluorocarbon plasma is used to deposit a low surface energy fluorocarbon film onto the hierarchical structures. By either increasing the RF power of the oxygen plasma or extending the treatment time at low RF power of the oxygen plasma, superhydrophobic filter paper with extremely slippery surfaces can be fabricated, exhibiting a water contact angle of 170° and a sliding angle of 0°.
Additionally, the experimental results show that if the filter paper surface is not etched with oxygen plasma and only a fluorocarbon film is deposited using fluorocarbon plasma, extending the plasma treatment time can produce superhydrophobic filter paper with very sticky surfaces, exhibiting a water contact angle of 155° and a sliding angle of 90°. Finally, the surface structure and chemical composition of the filter paper surface are further confirmed through analysis using Scanning Electron Microscopy(SEM) and Fourier-Transform Infrared Spectroscopy(FTIR). Subsequently, for the surface modification of PET, argon plasma is used to create nanoscale roughness on the PET surface. And, a low surface energy fluorocarbon film is deposited onto the nanostructures using fluorocarbon plasma. Increasing the RF power of the argon plasma leads to a gradual increase in the water contact angle and a corresponding decrease in the sliding angle on the surface. Finally, changes in the surface structure of PET are observed by SEM analysis. Lastly, this study proposes a three-step plasma treatment to fabricate superhydrophobic glass surfaces. In the first step, a sufficiently thick fluorocarbon film is deposited onto the glass surface using fluorocarbon plasma. In the second step, argon or argon/oxygen plasma is used to attempt to create roughness on the fluorocarbon film. In the final step, a thinner fluorocarbon film is deposited using fluorocarbon plasma to prevent the chemical bond damage caused by the second step of etching. After the three-step plasma treatment, the water contact angles range from 105° to 115°, and the sliding angles range from 40° to 60°. By SEM analysis, we conclude that the second step of plasma etching does not create roughness on the surface of fluorocarbon film but rather damages the chemical bonds. This study also attempts to use pulsed mode fluorocarbon plasma to fabricate superhydrophobic glass surfaces. First, optical emission spectroscopy is used to calculate the decay time constant of the depositing radicals(CFx). Then, the on-time, off-time, and RF power are adjusted accordingly. The modified surfaces have water contact angles between 105° and 115°, and sliding angles between 40° and 60°. Finally, SEM images are used to observe the changes in the surface structure of fluorocarbon film. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:38:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-23T16:38:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 iv ABSTRACT v 目 次 vii 圖 次 x 表 次 xx 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目標 2 1.3 論文總覽 2 第2章 文獻回顧 3 2.1 電漿簡介 3 2.1.1 電漿產生與常見重要機制 3 2.1.2 崩潰電壓之介紹 5 2.1.3 壓力對電漿系統的影響 6 2.2 超疏水表面 7 2.2.1 接觸角與仿生表面 7 2.2.2 超疏水表面處理技術及其應用 14 2.2.3 超疏水表面之黏滑調控 24 2.3 利用低壓氟碳電漿製備疏水表面 33 2.3.1 電漿沉積氟碳薄膜的原理 33 2.3.2 脈衝及餘暉氟碳電漿製備超疏水表面 38 第3章 實驗設備與架構 49 3.1 低壓電漿系統 49 3.2 水接觸角與滑落角檢測平台 51 3.3 基材之準備 54 3.4 薄膜分析檢測儀器 54 第4章 實驗結果與討論 55 4.1 利用氟碳電漿製備超疏水濾紙表面 55 4.1.1 製備超疏水濾紙表面之調控策略 55 4.1.2 電漿處理對濾紙表面水接觸角與滑落角之影響 57 4.1.3 濾紙表面經過電漿處理後之微結構分析 64 4.1.4 濾紙表面經過電漿處理後之組成性質 68 4.2 利用氟碳電漿製備超疏水PET表面 71 4.2.1 製備超疏水PET表面之調控策略 71 4.2.2 兩步驟電漿處理對PET表面水接觸角與滑落角之影響 72 4.2.3 PET表面經過電漿處理後之微結構分析 75 4.3 利用氟碳電漿製備疏水玻璃表面 78 4.3.1 製備疏水玻璃表面之調控策略 78 4.3.2 多步驟電漿處理對玻璃表面水接觸角與滑落角之影響 80 4.3.3 玻璃表面經過多步驟電漿處理後之微結構分析 84 4.3.4 脈衝模式電漿處理 86 第5章 結論與未來展望 96 第6章 參考文獻 99 第7章 附錄 110 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 超疏水聚對苯二甲酸乙二酯表面 | zh_TW |
| dc.subject | 超疏水濾紙表面 | zh_TW |
| dc.subject | 電漿放射光譜 | zh_TW |
| dc.subject | 氟碳薄膜 | zh_TW |
| dc.subject | 連續及脈衝膜式射頻電漿 | zh_TW |
| dc.subject | Continuous and pulsed RF plasma | en |
| dc.subject | Fluorocarbon films | en |
| dc.subject | Optical emission spectroscopy | en |
| dc.subject | Superhydrophobic polyethylene terephthalate | en |
| dc.subject | Superhydrophobic filter paper | en |
| dc.title | 利用連續及脈衝模式之八氟環丁烷電容耦合電漿製備疏水表面之研究 | zh_TW |
| dc.title | Creating Hydrophobic Surfaces using Continuous and Pulsed RF Power c-C4F8 Capacitively Coupled Plasma | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳建彰;陳奕君 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Zhang Chen;I-Chun Cheng | en |
| dc.subject.keyword | 超疏水濾紙表面,超疏水聚對苯二甲酸乙二酯表面,連續及脈衝膜式射頻電漿,氟碳薄膜,電漿放射光譜, | zh_TW |
| dc.subject.keyword | Superhydrophobic filter paper,Superhydrophobic polyethylene terephthalate,Continuous and pulsed RF plasma,Fluorocarbon films,Optical emission spectroscopy, | en |
| dc.relation.page | 116 | - |
| dc.identifier.doi | 10.6342/NTU202401851 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-07-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| Appears in Collections: | 化學工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Restricted Access | 9.76 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
