請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93254完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃彥婷 | zh_TW |
| dc.contributor.advisor | Yen-Ting Hwang | en |
| dc.contributor.author | 蘇弘煜 | zh_TW |
| dc.contributor.author | Hong-Yu Su | en |
| dc.date.accessioned | 2024-07-23T16:31:32Z | - |
| dc.date.available | 2024-07-24 | - |
| dc.date.copyright | 2024-07-23 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-19 | - |
| dc.identifier.citation | Bellomo, K., Clement, A., Mauritsen, T., Rädel, G., & Stevens, B. (2014). Simulating the role of subtropical stratocumulus clouds in driving Pacific climate variability. Journal of Climate, 27(13), 5119-5131.
Bishop, C. M. (2006). Pattern recognition and machine learning. Springer google schola, 2, 1122-1128. Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., & Lohmann, U. (2013). Clouds and aerosols. In Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (pp. 571-657). Cambridge University Press. Burgman, R. J., Kirtman, B. P., Clement, A. C., & Vazquez, H. (2017). Model evidence for low‐level cloud feedback driving persistent changes in atmospheric circulation and regional hydroclimate. Geophysical Research Letters, 44(1), 428-437. Burls, N., & Fedorov, A. (2014). What controls the mean east–west sea surface temperature gradient in the equatorial Pacific: The role of cloud albedo. Journal of Climate, 27(7), 2757-2778. Ceppi, P., & Gregory, J. M. (2019). A refined model for the Earth’s global energy balance. Climate Dynamics, 53(7), 4781-4797. Ceppi, P., & Nowack, P. (2021). Observational evidence that cloud feedback amplifies global warming. Proceedings of the National Academy of Sciences, 118(30), e2026290118. Chalmers, J., Kay, J. E., Middlemas, E. A., Maroon, E. A., & DiNezio, P. (2022). Does disabling cloud radiative feedbacks change spatial patterns of surface greenhouse warming and cooling? Journal of Climate, 35(6), 1787-1807. Clement, A. C., Burgman, R., & Norris, J. R. (2009). Observational and model evidence for positive low-level cloud feedback. Science, 325(5939), 460-464. Clement, A. C., Seager, R., Cane, M. A., & Zebiak, S. E. (1996). An ocean dynamical thermostat. Journal of Climate, 9(9), 2190-2196. Coats, S., & Karnauskas, K. (2017). Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophysical Research Letters, 44(19), 9928-9937. Dong, L., Leung, L. R., Lu, J., & Gao, Y. (2019). Contributions of extreme and non‐extreme precipitation to California precipitation seasonality changes under warming. Geophysical Research Letters, 46(22), 13470-13478. Erfani, E., & Burls, N. J. (2019). The strength of low-cloud feedbacks and tropical climate: A CESM sensitivity study. Journal of Climate, 32(9), 2497-2516. Fu, M., & Fedorov, A. (2023). The role of Bjerknes and shortwave feedbacks in the tropical Pacific SST response to global warming. Geophysical Research Letters, 50(19), e2023GL105061. Gregory, J. M., Ingram, W. J., Palmer, M., Jones, G. S., Stott, P., Thorpe, R., Lowe, J. A., Johns, T., & Williams, K. (2004). A new method for diagnosing radiative forcing and climate sensitivity. Geophysical Research Letters, 31(3). Hartmann, D. L., Ockert-Bell, M. E., & Michelsen, M. L. (1992). The effect of cloud type on Earth's energy balance: Global analysis. Journal of Climate, 5(11), 1281-1304. Heede, U. K., & Fedorov, A. V. (2021). Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase. Nature Climate Change, 11(8), 696-703. https://doi.org/10.1038/s41558-021-01101-x Heede, U. K., & Fedorov, A. V. (2023). Colder eastern equatorial Pacific and stronger walker circulation in the early 21st century: Separating the forced response to global warming from natural variability. Geophysical Research Letters, 50(3), e2022GL101020. Heede, U. K., Fedorov, A. V., & Burls, N. J. (2020). Time scales and mechanisms for the tropical Pacific response to global warming: A tug of war between the ocean thermostat and weaker Walker. Journal of Climate, 33(14), 6101-6118. Held, I. M., & Soden, B. J. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19(21), 5686-5699. Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67. Hsiao, W. T., Hwang, Y. T., Chen, Y. J., & Kang, S. M. (2022). The role of clouds in shaping tropical Pacific response pattern to extratropical thermal forcing. Geophysical Research Letters, 49(11), e2022GL098023. Kim, H., Kang, S. M., Kay, J. E., & Xie, S.-P. (2022). Subtropical clouds key to Southern Ocean teleconnections to the tropical Pacific. Proceedings of the National Academy of Sciences, 119(34), e2200514119. Klein, S. A., Hall, A., Norris, J. R., & Pincus, R. (2018). Low-cloud feedbacks from cloud-controlling factors: A review. Shallow clouds, water vapor, circulation, and climate sensitivity, 135-157. Knutson, T. R., & Manabe, S. (1995). Time-mean response over the tropical Pacific to increased C02 in a coupled ocean-atmosphere model. Journal of Climate, 8(9), 2181-2199. Kociuba, G., & Power, S. B. (2015). Inability of CMIP5 models to simulate recent strengthening of the Walker circulation: Implications for projections. Journal of Climate, 28(1), 20-35. Li, G., Xie, S.-P., Du, Y., & Luo, Y. (2016). Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: The warming pattern in CMIP5 multi-model ensemble. Climate Dynamics, 47, 3817-3831. Lin, Y. J., Hwang, Y. T., Lu, J., Liu, F., & Rose, B. E. (2021). The dominant contribution of Southern Ocean heat uptake to time‐evolving radiative feedback in CESM. Geophysical Research Letters, 48(9), e2021GL093302. Liu, F., Lu, J., Garuba, O., Leung, L. R., Luo, Y., & Wan, X. (2018). Sensitivity of surface temperature to oceanic forcing via q-flux Green’s function experiments. Part I: Linear response function. Journal of Climate, 31(9), 3625-3641. Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G., Liang, L., Mitrescu, C., Rose, F. G., & Kato, S. (2018). Clouds and the earth’s radiant energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. Journal of Climate, 31(2), 895-918. Luo, Y., Lu, J., Liu, F., & Garuba, O. (2017). The role of ocean dynamical thermostat in delaying the El Niño–like response over the equatorial Pacific to climate warming. Journal of Climate, 30(8), 2811-2827. Ma, C.-C., Mechoso, C. R., Robertson, A. W., & Arakawa, A. (1996). Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean-atmosphere GCM study. Journal of Climate, 9(7), 1635-1645. Mauritsen, T. (2016). Clouds cooled the Earth. Nature Geoscience, 9(12), 865-867. Myers, T. A., & Norris, J. R. (2016). Reducing the uncertainty in subtropical cloud feedback. Geophysical Research Letters, 43(5), 2144-2148. Pendergrass, A. G., Conley, A., & Vitt, F. M. (2018). Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5. Earth System Science Data, 10(1), 317-324. Plesca, E., Grützun, V., & Buehler, S. A. (2018). How robust is the weakening of the Pacific Walker circulation in CMIP5 idealized transient climate simulations? Journal of Climate, 31(1), 81-97. Qu, X., Hall, A., Klein, S. A., & DeAngelis, A. M. (2015). Positive tropical marine low‐cloud cover feedback inferred from cloud‐controlling factors. Geophysical Research Letters, 42(18), 7767-7775. Seager, R., Cane, M., Henderson, N., Lee, D.-E., Abernathey, R., & Zhang, H. (2019). Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nature Climate Change, 9(7), 517-522. Stevens, B., Sherwood, S. C., Bony, S., & Webb, M. J. (2016). Prospects for narrowing bounds on Earth's equilibrium climate sensitivity. Earth's Future, 4(11), 512-522. Sun, D.-Z., & Liu, Z. (1996). Dynamic ocean-atmosphere coupling: A thermostat for the tropics. Science, 272(5265), 1148-1150. Vecchi, G. A., & Soden, B. J. (2007). Global warming and the weakening of the tropical circulation. Journal of Climate, 20(17), 4316-4340. Watanabe, M., Kang, S. M., Collins, M., Hwang, Y.-T., McGregor, S., & Stuecker, M. F. (2024). Possible shift in controls of the tropical Pacific surface warming pattern. Nature, 630(8016), 315-324. Wills, R. C., Dong, Y., Proistosecu, C., Armour, K. C., & Battisti, D. S. (2022). Systematic climate model biases in the large‐scale patterns of recent sea‐surface temperature and sea‐level pressure change. Geophysical Research Letters, 49(17), e2022GL100011. Wood, R., & Bretherton, C. S. (2006). On the relationship between stratiform low cloud cover and lower-tropospheric stability. Journal of Climate, 19(24), 6425-6432. Xie, S.-P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., & Wittenberg, A. T. (2010). Global warming pattern formation: Sea surface temperature and rainfall. Journal of Climate, 23(4), 966-986. Zhang, Q., Liu, B., Li, S., & Zhou, T. (2023). Understanding models' global sea surface temperature bias in mean state: from CMIP5 to CMIP6. Geophysical Research Letters, 50(4), e2022GL100888. Zhou, C., Zelinka, M. D., & Klein, S. A. (2017). Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green's function approach. Journal of Advances in Modeling Earth Systems, 9(5), 2174-2189. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93254 | - |
| dc.description.abstract | 熱帶太平洋海表溫度分布在調節全球能量平衡中起著至關重要的作用。這種現象被稱為海溫分布效應(pattern effect),主要是透過短波雲反饋達成。我們藉由分析耦合模式比較計畫第六階段(Coupled Model Intercomparison Project Phase 6, CMIP6)的四倍二氧化碳模擬中,海表溫度和雲在模擬的頭25年反應來研究雲—海表溫度耦合。此外,我們使用社群地球系統模式(Community Earth System Model, CESM)第1版及第2版進行「鎖雲」實驗,以檢視在暖化情境下東南太平洋的低雲對赤道太平洋海表溫度之緯向梯度的影響。
首先,根據文獻,在赤道太平洋海表溫度梯度的前25年反應中,我們區分出了兩類氣候模式。赤道緯向海表溫度梯度在7個模型中增加,在10個模型中減少。如同海溫分布效應提出的機制所預期,兩組模式在副熱帶東南太平洋地區(雲反饋最大模式間差異的區域)表現出相反的雲反饋。具有增強的緯向海表溫度梯度和暖池區域變暖較多的模式,表現出負的雲反饋和增加的東南太平洋低雲。這很可能是由於暖池海表溫度變暖所引起的自由大氣增暖,在東南太平洋上空增強了邊界層穩定性。與之相對的,具有減弱的緯向海表溫度梯度和暖池區域變暖較少的模式則呈現相反情況:由海表溫度變暖所引起的東南太平洋邊界層穩定性下降,並未被與暖池相關的高空變暖所補償,導致這些模式中的東南太平洋低雲減少。 除了上述海表溫度分布對雲的影響外,我們假設了東南太平洋的雲反饋有助於兩組模式在赤道緯向海表溫度梯度反應中的差異。為了闡明東南太平洋雲對熱帶海表溫度分布的影響,我們使用兩個在四倍二氧化碳模擬初期階段表現出相反的赤道緯向海表溫度梯度和東南太平洋雲反饋之反應的模式進行鎖雲實驗。結果支持了我們的假設:在全球暖化的情況下,東南太平洋雲反饋將通過由一連串低雲—風—海表溫度反饋形成的遙相關途徑強化赤道海表溫度梯度之反應。定量來說,東南太平洋的雲反饋解釋了兩個模式中約30%的赤道東西向海表溫度梯度變化。 | zh_TW |
| dc.description.abstract | The tropical Pacific sea surface temperature (SST) pattern plays a crucial role in modulating the global energy budget. This phenomenon, primarily led by the shortwave cloud feedback, is known as the "pattern effect." With the goal of investigating cloud-SST coupling, we examine the first 25-year responses of SST and cloud in the abrupt-4xCO2 experiments of Coupled Model Intercomparison Project Phase 6 (CMIP6). Additionally, we conduct "cloud-locking" experiments with the Community Earth System Model version 1 (CESM1) and version 2 (CESM2) to examine the impact of low clouds in the southeastern Pacific on equatorial Pacific SST zonal gradient under a warming scenario.
First, consistent with the literature, two categories of CMIP6 models based on the responses in the equatorial Pacific SST gradient during the first 25 years are identified. The equatorial zonal SST gradient increases in 7 models and decreases in 10 models. As expected from the mechanisms put forward by the "pattern effect," the two groups exhibit opposite cloud feedbacks in subtropical southeastern Pacific, the region with the largest inter-model spread of cloud feedback. Models with intensified zonal SST gradient and stronger warming over the warm pool exhibit negative cloud feedback and increasing low clouds over the southeastern Pacific. This is likely due to the strong warming in the free atmosphere induced by SST warming over the convective warm pool, which enhances the boundary layer stability over the southeastern Pacific. In contrast, models with reduced zonal SST gradient and less warming over the warm pool project the opposite: the decreased boundary layer stability induced by SST warming over the southeastern Pacific is not compensated by warming aloft linked to the warm pool, leading to a decrease in low clouds over the southeastern Pacific in these models. In addition to the aforementioned SST pattern’s influence on clouds, we hypothesize that the cloud feedbacks in the southeastern Pacific contribute to the diverse responses in the equatorial zonal SST gradient in the two groups. To clarify the impact of southeastern Pacific clouds on tropical SST pattern, we conducted cloud-locking experiments using the two models that exhibit opposite equatorial zonal SST gradient and southeastern Pacific cloud feedback responses in the initial stage of the abrupt 4xCO2 experiments: CESM1 and CESM2 models. The results support our hypothesis: under global warming, southeastern Pacific cloud feedback will reinforce the equatorial SST gradient responses via a teleconnection pathway shaped by a chain of low cloud-wind-SST feedback. Overall, cloud feedback in southeastern Pacific explains about 30% of the equatorial zonal SST gradient changes in both models. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:31:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-23T16:31:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
摘要 ii Abstract iv Contents vi List of Figures viii List of Tables xiii Chapter 1 Introduction 1 1.1 Model-observation Discrepancy of SST Pattern Trends 1 1.2 Uncertainty of SST Pattern Response in Abrupt-4xCO2 Experiment among Climate Models 2 1.3 Relationship between SST and Cloud 3 Chapter 2 Data & Methods 6 2.1 CMIP Data 6 2.2 CESM1, CESM2 Cloud Locking Experiment 6 2.3 Definition of OT-EP index 8 2.4 Cloud Radiative Adjustment 8 2.5 Cloud-controlling Factors: Predicting Shortwave Cloud Feedback 10 Chapter 3 SST Pattern and Shortwave Cloud Feedback 15 3.1 SST and Shortwave Cloud Responses under Global Warming 15 3.2 Attribution of the Cloud Feedbacks 19 3.3 The Relationship between SST and Cloud 22 Chapter 4 Cloud Locking Experiment 24 4.1 Abrupt-4xCO2 Warming Pattern 25 4.2 Cloud Impacts on Warming Patterns 26 Chapter 5 Conclusion and Discussion 31 5.1 The SEP Cloud Impact on Tropical SST 31 5.2 Discussions 32 References 35 Figures 42 Tables 57 Appendix 63 A.1 More Information on Cloud-Controlling Factors: Details and Comparison with Observations 63 A.2 Green's Function Approach: Understanding Environmental Response Effects via Surface Fluxes 65 Appendix and Supplementary Figures 72 | - |
| dc.language.iso | en | - |
| dc.subject | 全球暖化 | zh_TW |
| dc.subject | 氣候反饋 | zh_TW |
| dc.subject | 雲輻射效應 | zh_TW |
| dc.subject | 海溫分布效應 | zh_TW |
| dc.subject | 鎖雲實驗 | zh_TW |
| dc.subject | cloud radiative effect | en |
| dc.subject | global warming | en |
| dc.subject | climate feedback | en |
| dc.subject | cloud-locking experiment | en |
| dc.subject | pattern effect | en |
| dc.title | 全球暖化下東南太平洋低雲對熱帶海溫分布之影響 | zh_TW |
| dc.title | Impacts of Southeastern Pacific Low Cloud on Tropical Sea Surface Temperature Pattern under Global Warming | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳健銘;羅敏輝;曾于恒 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Ming Wu;Min-Hui Lo;Yu-Heng Tseng | en |
| dc.subject.keyword | 全球暖化,氣候反饋,雲輻射效應,海溫分布效應,鎖雲實驗, | zh_TW |
| dc.subject.keyword | global warming,climate feedback,cloud radiative effect,pattern effect,cloud-locking experiment, | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202401796 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-07-20 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 大氣科學系 | - |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 46.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
