請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93250完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 程子翔 | zh_TW |
| dc.contributor.advisor | Kevin T. Chen | en |
| dc.contributor.author | 林雨農 | zh_TW |
| dc.contributor.author | Yu-Nong Lin | en |
| dc.date.accessioned | 2024-07-23T16:30:21Z | - |
| dc.date.available | 2024-07-24 | - |
| dc.date.copyright | 2024-07-23 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-19 | - |
| dc.identifier.citation | [1] S. R. Cherry and M. Dahlbom, PET: Physics, Instrumentation, and Scanners. New York, NY: Springer New York, 2006, pp. 1–117. [Online]. Available: https://doi.org/10.1007/0-387-34946-4_1 vii, 2, 4, 5
[2] L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE transactions on medical imaging, vol. 1, no. 2, pp. 113–122, 10 1982. [Online]. Available: https: //pubmed.ncbi.nlm.nih.gov/18238264/ 2 [3] H. Hudson and R. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE transactions on medical imaging, vol. 13, no. 4, pp. 601–609, 1 1994. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/18218538/ 2 [4] B. E. Hammer, N. L. Christensen, and B. G. Heil, “Use of a magnetic field to increase the spatial resolution of positron emission tomography,” Medical Physics, vol. 21, no. 12, pp. 1917–1920, 1994. [Online]. Available: https://aapm.onlinelibrary.wiley.com/doi/abs/10. 1118/1.597178 3 [5] R. Raylman, B. Hammer, and N. Christensen, “Combined mri-pet scan ner: a monte carlo evaluation of the improvements in pet resolution due to the effects of a static homogeneous magnetic field,” IEEE Transac tions on Nuclear Science, vol. 43, no. 4, pp. 2406–2412, 1996. 3 [6] A. Wirrwar, H. Vosberg, H. Herzog, H. Halling, S. Weber, and H.- W. Muller-Gartner, “4.5 tesla magnetic field reduces range of high energy positrons-potential implications for positron emission tomogra phy,” IEEE Transactions on Nuclear Science, vol. 44, no. 2, pp. 184– 189, 1997. 3 [7] J. Qi, R. M. Leahy, S. R. Cherry, A. Chatziioannou, and T. H. Farquhar, “High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner,” Physics in medicine and biology, vol. 43, no. 4, pp. 1001–1013, 4 1998. [Online]. Available: https://doi.org/10.1088/0031-9155/43/4/027 3, 13 [8] W. W. Moses, “Fundamental limits of spatial resolution in pet,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 44, no. 12, pp. 2105–2116, 8 2017. [Online]. Available: https://doi.org/10.1007/s00259-017-3775-4 3 [9] P. Colombino, B. Fiscella, and L. Trossi, “Study of positronium in water and ice from 22 to -144 °c by annihilation quanta measurements,” ffIl ffNuovo cimento, vol. 38, no. 2, pp. 707–723, 7 1965. [Online]. Available: https://doi.org/10.1007/bf02748591 3 [10] M. Namías, T. Bradshaw, V. O. Menezes, M. A. D. Machado, and R. Jeraj, “A novel approach for quantitative harmonization in pet,” Physics in Medicine and Biology, vol. 63, no. 9, p. 095019, 5 2018. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/29726406/ 4 [11] J.-S. Liow and S. C. Strother, “The convergence of object dependent resolution in maximum likelihood based tomographic image reconstruction,” Physics in Medicine and Biology, vol. 38, no. 1, pp. 6855–70, 1 1993. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/ 8426869/ 4 [12] B. M. Dale, M. A. Brown, and R. C. Semelka, MRI Basic principles and Applications, 8 2015. [Online]. Available: https: //doi.org/10.1002/9781119013068 vii, 6, 7 [13] J. A. Schneider, Z. Arvanitakis, S. E. Leurgans, and D. A. Bennett, “The neuropathology of probable Alzheimer disease and mild cognitive impairment,” Annals of neurology, vol. 66, no. 2, pp. 200–208, 8 2009. [Online]. Available: https://doi.org/10.1002/ana.21706 8 [14] H. Brodaty, M. M. B. Breteler, S. T. Dekosky, P. Dorenlot, L. Fratiglioni, C. Hock, P.-A. Kenigsberg, P. Scheltens, and B. De Strooper, “The World of Dementia Beyond 2020,” Journal of the American Geriatrics Society, vol. 59, no. 5, pp. 923–927, 4 2011. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/21488846/ 8 [15] A. Kapasi, C. DeCarli, and J. A. Schneider, “Impact of multiple pathologies on the threshold for clinically overt dementia,” Acta neuropathologica, vol. 134, no. 2, pp. 171–186, 5 2017. [Online]. Available: https://doi.org/10.1007/s00401-017-1717-7 8 [16] S. Karanth, P. T. Nelson, Y. Katsumata, R. J. Kryscio, F. A. Schmitt, D. W. Fardo, M. D. Cykowski, G. A. Jicha, L. J. Van Eldik, and E. L. Abner, “Prevalence and clinical phenotype of quadruple misfolded proteins in older adults,” JAMA neurology, vol. 77, no. 10, p. 1299, 10 2020. [Online]. Available: https://jamanetwork.com/ journals/jamaneurology/article-abstract/2767373 8 [17] “2023 alzheimer’s disease facts and figures,” Alzheimer’s and dementia, vol. 19, no. 4, pp. 1598–1695, 3 2023. [Online]. Available: https://doi.org/10.1002/alz.13016 8 [18] M. F. Folstein, S. E. Folstein, and P. R. McHugh, ““Mini-mental state”,” Journal of psychiatric research, vol. 12, no. 3, pp. 189–198, 11 1975. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/1202204/ 8 [19] J. C. Morris, “The Clinical Dementia Rating (CDR),” Neurology, vol. 43, no. 11, p. 2412, 11 1993. [Online]. Available: https: //pubmed.ncbi.nlm.nih.gov/8232972/ 8 [20] D. S. Knopman, H. Amieva, R. C. Petersen, G. Chételat, D. M. Holtzman, B. T. Hyman, R. A. Nixon, and D. T. Jones, “Alzheimer disease,” Nature reviews. Disease primers, vol. 7, no. 1, 5 2021. [Online]. Available: https://doi.org/10.1038/s41572-021-00269-y viii, 8, 10 [21] B. Dubois, C. A. F. Von Arnim, N. Burnie, S. Bozeat, and J. Cummings, “Biomarkers in alzheimer’s disease: role in early and differential diagnosis and recognition of atypical variants,” Alzheimer’s research and therapy, vol. 15, no. 1, 10 2023. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/37833762/ vii, 8, 9 [22] C. R. Jack, D. A. Bennett, K. Blennow, M. C. Carrillo, B. Dunn, S. B. Haeberlein, D. M. Holtzman, W. Jagust, F. Jessen, J. Karlawish, E. Liu, J. L. Molinuevo, T. Montine, C. Phelps, K. P. Rankin, C. C. Rowe, P. Scheltens, E. Siemers, H. M. Snyder, R. Sperling, C. Elliott, E. Masliah, L. Ryan, and N. Silverberg, “Nia‐aa research framework: Toward a biological definition of alzheimer’s disease,” Alzheimer’s and dementia, vol. 14, no. 4, pp. 535–562, 4 2018. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S1552526018300724/ 8, 10 [23] W. E. Klunk, H. Engler, A. Nordberg, Y. Wang, G. Blomqvist, D. P. Holt, M. Bergström, I. Savitcheva, G. Huang, S. Estrada, B. Ausén, M. L. Debnath, J. Barletta, J. C. Price, J. Sandell, B. J. Lopresti, A. Wall, P. Koivisto, G. Antoni, C. A. Mathis, and B. Långström, “Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound‐B,” Annals of neurology, vol. 55, no. 3, pp. 306–319, 1 2004. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/14991808/ 8 [24] A. M. Fagan, C. M. Roe, C. Xiong, M. A. Mintun, J. C. Morris, and D. M. Holtzman, “Cerebrospinal Fluid tau/ff-Amyloid42 Ratio as a Prediction of Cognitive Decline in Nondemented Older Adults,” Archives of neurology, vol. 64, no. 3, p. 343, 3 2007. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/17210801/ 8 [25] N. Mattsson, “CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment,” JAMA, vol. 302, no. 4, p. 385, 7 2009. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/ 19622817/ 8 [26] M. R. Brier, B. Gordon, K. Friedrichsen, J. McCarthy, A. Stern, J. Christensen, C. Owen, P. Aldea, Y. Su, J. Hassenstab, N. J. Cairns, D. M. Holtzman, A. M. Fagan, J. C. Morris, T. L. S. Benzinger, and B. M. Ances, “Tau and Aff imaging, CSF measures, and cognition in Alzheimer’s disease,” Science translational medicine, vol. 8, no. 338, 5 2016. [Online]. Available: https://doi.org/10.1126/scitranslmed.aaf2362 8 [27] K. Blennow, H. Hampel, M. Weiner, and H. Zetterberg, “Cerebrospinal fluid and plasma biomarkers in Alzheimer disease,” Nature reviews. Neurology, vol. 6, no. 3, pp. 131–144, 2 2010. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/20157306/ 9 [28] S. M. Landau, D. Harvey, C. M. Madison, R. A. Koeppe, E. M. Reiman, N. L. Foster, M. W. Weiner, and W. J. Jagust, “Associations between cognitive, functional, and FDG PET measures of decline in AD and MCI,” Neurobiology of aging, vol. 32, no. 7, pp. 1207–1218, 7 2011. [Online]. Available: https://doi.org/10.1016/j.neurobiolaging.2009.07.002 9 [29] B. C. Dickerson, A. Bakkour, D. H. Salat, E. Feczko, J. Pacheco, D. N. Greve, F. Grodstein, C. I. Wright, D. Blacker, H. D. Rosas, R. A. Sperling, A. Atri, J. H. Growdon, B. T. Hyman, J. C. Morris, B. Fischl, and R. L. Buckner, “The Cortical Signature of Alzheimer’s Disease: Regionally Specific Cortical Thinning Relates to Symptom Severity in Very Mild to Mild AD Dementia and is Detectable in Asymptomatic Amyloid-Positive Individuals,” Cerebral cortex, vol. 19, no. 3, pp. 497–510, 7 2008. [Online]. Available: https://doi.org/10.1093/cercor/bhn113 9 [30] B. J. Burkett, J. C. Babcock, V. J. Lowe, J. Graff-Radford, R. M. Subramaniam, and D. R. Johnson, “PET imaging of dementia,” Clinical nuclear medicine, vol. 47, no. 9, pp. 763–773, 5 2022. [Online]. Available: https://journals.lww.com/nuclearmed/pages/articleviewer. aspx?year=2022&issue=09000&article=00002&type=Fulltext viii, 9, 10, 11 [31] L. Iaccarino, A. Sala, D. Perani, and A. D. N. Initiative, “Predicting long‐term clinical stability in amyloid‐positive subjects by FDG‐PET,” Annals of clinical and translational neurology, vol. 6, no. 6, pp. 1113–1120, 5 2019. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/31211176/ 9 [32] A. Caroli, A. Prestia, S. Galluzzi, C. Ferrari, W. M. Van Der Flier, R. Ossenkoppele, . Van Berckel, and K. Spicer, “Mild cognitive impairment with suspected nonamyloid pathology (SNAP),” Neurology, vol. 84, no. 5, pp. 508–515, 2 2015. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/25568301/ 9 [33] L. Pini, M. Pievani, M. Bocchetta, D. Altomare, P. Bosco, E. Cavedo, S. Galluzzi, M. Marizzoni, and G. B. Frisoni, “Brain atrophy in alzheimer’s disease and aging,” Ageing Research Reviews, vol. 30, pp. 25–48, 2016, brain Imaging and Aging. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S1568163716300022 10 [34] M. E. Murray, N. R. Graff-Radford, O. A. Ross, R. C. Petersen, R. Duara, and D. W. Dickson, “Neuropathologically defined subtypes of alzheimer’s disease with distinct clinical characteristics: a retrospective study,” The Lancet Neurology, vol. 10, no. 9, pp. 785–796, 2011. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S1474442211701569 10 [35] A. Bakkour, J. C. Morris, D. A. Wolk, and B. C. Dickerson, “The effects of aging and alzheimer’s disease on cerebral cortical anatomy: Specificity and differential relationships with cognition,” NeuroImage, vol. 76, pp. 332–344, 2013. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S1053811913002140 10 [36] D. M. Sawyer and P. H. Kuo, “Top-Down Systematic Approach to Interpretation of FDG-PET for Dementia,” Clinical nuclear medicine, vol. 43, no. 6, pp. e212–e214, 6 2018. [Online]. Available: https://journals.lww.com/nuclearmed/fulltext/2018/06000/Top_ Down_Systematic_Approach_to_Interpretation_of.42.aspx viii, 11 [37] K. Ishii, “PET approaches for diagnosis of dementia,” American journal of neuroradiology, vol. 35, no. 11, pp. 2030–2038, 8 2013. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/23945233/ 10 73 [38] S. Minoshima, D. Cross, T. Thientunyakit, N. L. Foster, and A. Drzezga, “18F-FDG PET Imaging in Neurodegenerative Dementing Disorders: Insights into Subtype Classification, Emerging Disease Categories, and Mixed Dementia with Copathologies,” ffThe ffJournal of nuclear medicine, vol. 63, no. Supplement 1, pp. 2S–12S, 6 2022. [Online]. Available: https://jnm.snmjournals.org/content/63/ Supplement_1/2S.long 10 [39] Z. Yang, J. L. Cummings, J. W. Kinney, and D. Cordes, “Accelerated hypometabolism with disease progression associated with faster cognitive decline among amyloid positive patients,” Frontiers in neuroscience, vol. 17, 4 2023. [Online]. Available: https://doi.org/10.3389/fnins.2023.1151820 10 [40] Y. Yuan, Z.-X. Gu, and W. Wei, “Fluorodeoxyglucose–positron emission tomography, single-photon emission tomography, and structural mr imaging for prediction of rapid conversion to alzheimer disease in patients with mild cognitive impairment: A meta-analysis,” American Journal of Neuroradiology, vol. 30, no. 2, pp. 404–410, 11 2008. [Online]. Available: https://doi.org/10.3174/ajnr.a1357 10 [41] R. Armañanzas, M. Iglesias, D. A. Morales, and L. Alonso-Nanclares, “Voxel-based diagnosis of alzheimer’s disease using classifier ensembles,” IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 3, pp. 778–784, 2017. 10 [42] Y. Farouk, S. Rady, and H. Faheem, “Statistical features and voxel based morphometry for alzheimer’s disease classification,” in 2018 9th International Conference on Information and Communication Systems (ICICS), 2018, pp. 133–138. 10 [43] H.-P. Chan, R. K. Samala, L. M. Hadjiiski, and C. Zhou, Deep learning in medical image analysis, 1 2020. [Online]. Available: https://doi.org/10.1007/978-3-030-33128-3_1 12 [44] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel, “Handwritten digit recognition with a back-propagation network,” in Advances in Neural Information Processing Systems, D. Touretzky, Ed., vol. 2. Morgan-Kaufmann, 1989. [Online]. Available: https://proceedings.neurips.cc/paper_files/ paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf 12 [45] S.-C. B. Lo, J.-S. Lin, M. T. Freedman, and S. K. Mun, “Computer assisted diagnosis of lung nodule detection using artificial convoultion neural network,” Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE, 9 1993. [Online]. Available: https://doi.org/10.1117/12.154572 12 [46] O. Ronneberger, P. Fischer, and T. Brox, U-NET: Convolutional Networks for Biomedical Image Segmentation, 1 2015. [Online]. Available: https://doi.org/10.1007/978-3-319-24574-4_28 12 [47] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Neural Information Processing Systems, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:13756489 12, 29 [48] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” arXiv (Cornell University), 1 2020. [Online]. Available: https://arxiv.org/abs/2010. 11929 12 [49] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,” arXiv (Cornell University), 1 2021. [Online]. Available: https://arxiv.org/abs/2103.14030 12 [50] A. Gu and T. Dao, “Mamba: Linear-Time Sequence Modeling with Selective State Spaces,” 12 2023. [Online]. Available: https: //arxiv.org/abs/2312.00752 12 [51] F. Hashimoto, Y. Onishi, K. Ote, H. Tashima, A. J. Reader, and T. Yamaya, “Deep learning-based PET image denoising and reconstruction: a review,” Radiological physics and technology, 2 2024. [Online]. Available: https://doi.org/10.1007/s12194-024-00780-3 12 [52] K. T. Chen, E. Gong, F. B. De Carvalho Macruz, J. Xu, A. Boumis, M. Khalighi, K. L. Poston, S. J. Sha, M. D. Greicius, E. C. Mormino, J. M. Pauly, S. Srinivas, and G. Zaharchuk, “Ultra–low dose18f-florbetaben amyloid pet imaging using deep learning with multi-contrast mri inputs,” Radiology, vol. 290, no. 3, pp. 649–656, 3 2019. [Online]. Available: https://doi.org/10.1148/radiol.2018180940 12, 21 [53] K. T. Chen, O. Adeyeri, T. N. Toueg, M. Zeineh, E. C. Mormino, M. Khalighi, and G. Zaharchuk, “Investigating simultaneity for deep learning–enhanced actual ultra-low-dose amyloid pet/mr imaging,” American Journal of Neuroradiology, vol. 43, no. 3, pp. 354–360, 1 2022. [Online]. Available: https://doi.org/10.3174/ajnr.a7410 12, 21 [54] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, “Image reconstruction by domain-transform manifold learning,” Nature, vol. 555, no. 7697, pp. 487–492, 3 2018. [Online]. Available: https://doi.org/10.1038/nature25988 12 [55] I. Häggström, C. R. Schmidtlein, G. Campanella, and T. J. Fuchs, “DeepPET: A deep encoder–decoder network for directly solving the PET image reconstruction inverse problem,” Medical image analysis, vol. 54, pp. 253–262, 5 2019. [Online]. Available: https://doi.org/10.1016/j.media.2019.03.013 12 [56] J. Cui, P. Zeng, X. Zeng, P. Wang, X. Wu, J. Zhou, Y. Wang, and D. Shen, “TriDo-Former: A Triple-Domain Transformer for Direct PET Reconstruction from Low-Dose Sinograms,” 8 2023. [Online]. Available: https://arxiv.org/abs/2308.05365 12 [57] F. Hashimoto and K. Ote, “ReconU-Net: a direct PET image reconstruction using U-Net architecture with back projection-induced skip connection,” Physics in medicine and biology, 4 2024. [Online]. Available: https://arxiv.org/abs/2312.02494 12 [58] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” 6 2014. [Online]. Available: https://arxiv.org/abs/1406. 2661 12 [59] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” 6 2020. [Online]. Available: https://arxiv.org/abs/2006.11239 12 [60] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S0021999118307125 12 [61] S. Dayarathna, K. T. Islam, S. Uribe, G. Yang, M. Hayat, and Z. Chen, “Deep learning based synthesis of mri, ct and pet: Review and analysis,” Medical Image Analysis, vol. 92, p. 103046, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S1361841523003067 12 [62] J. Nuyts, K. Baete, D. Beque, and P. Dupont, “Comparison between map and postprocessed ml for image reconstruction in emission tomog raphy when anatomical knowledge is available,” IEEE Transactions on Medical Imaging, vol. 24, no. 5, pp. 667–675, 2005. 13 [63] A. Rahmim, J. Qi, and V. Sossi, “Resolution modeling in PET imaging: Theory, practice, benefits, and pitfalls,” Medical physics on CD-ROM/Medical physics, vol. 40, no. 6Part1, 5 2013. [Online]. Available: https://doi.org/10.1118/1.4800806 13, 14, 22 [64] A. Reader, P. Julyan, H. Williams, D. Hastings, and J. Zweit, “Em algorithm system modeling by image-space techniques for pet recon struction,” IEEE Transactions on Nuclear Science, vol. 50, no. 5, pp. 1392–1397, 2003. 13 [65] W. H. Richardson, “Bayesian-based iterative method of image restoration∗,” J. Opt. Soc. Am., vol. 62, no. 1, pp. 55–59, Jan 1972. [Online]. Available: https://opg.optica.org/abstract.cfm?URI= josa-62-1-55 14 [66] L. B. Lucy, “An iterative technique for the rectification of observed distributions,” ffThe ffAstronomical journal, vol. 79, p. 745, 6 1974. [Online]. Available: https://ui.adsabs.harvard.edu/abs/1974AJ.....79. .745L/abstract 14 [67] B. K. Teo, Y. Seo, S. L. Bacharach, J. A. Carrasquillo, S. K. Libutti, H. Shukla, B. H. Hasegawa, R. A. Hawkins, and B. L. Franc, “Partial-volume correction in pet: validation of an iterative postreconstruction method with phantom and patient data.” PubMed, vol. 48, no. 5, pp. 802–10, 5 2007. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/17475970/ 14 [68] B. A. Thomas, K. Erlandsson, M. Modat, L. Thurfjell, R. Van denberghe, S. Ourselin, and B. F. Hutton, “The importance of appropriate partial volume correction for pet quantification in alzheimer’s disease,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, no. 6, pp. 1104–1119, 2 2011. [Online]. Available: https://doi.org/10.1007/s00259-011-1745-9 14, 17 [69] N. J. Hoetjes, F. H. P. Van Velden, O. S. Hoekstra, C. J. Hoekstra, N. C. Krak, A. A. Lammertsma, and R. Boellaard, “Partial volume correction strategies for quantitative fdg pet in oncology,” European journal of nuclear medicine and molecular imaging, vol. 37, no. 9, pp. 1679–1687, 4 2010. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/20422184/ 14 [70] O. G. Rousset, Y. Ma, and A. C. Evans, “Correction for partial volume effects in pet: Principle and validation,” Journal of Nuclear Medicine, 5 1998. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/9591599/ 15 [71] K. Erlandsson, I. Buvat, P. H. Pretorius, B. A. Thomas, and B. F. Hutton, “A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology,” Physics in Medicine and Biology, vol. 57, no. 21, pp. R119–R159, 10 2012. [Online]. Available: https://doi.org/10.1088/0031-9155/57/21/r119 15, 17, 21, 37 [72] H. W. Müller-Gärtner, J. M. Links, J. L. Prince, R. N. Bryan, E. McVeigh, J. P. Leal, C. Davatzikos, and J. J. Frost, “Measurement of radiotracer concentration in brain gray matter using positron emission tomography: Mri-based correction for partial volume effects,” Journal of cerebral blood flow and metabolism, vol. 12, no. 4, pp. 571–583, 7 1992. [Online]. Available: https://doi.org/10.1038/jcbfm.1992.81 16 [73] J. Yang, S. Huang, M. Mega, K. Lin, A. Toga, G. Small, and M. Phelps, “Investigation of partial volume correction methods for brain fdg pet studies,” IEEE Transactions on Nuclear Science, vol. 43, no. 6, pp. 3322–3327, 1996. 16 [74] V. Bettinardi, I. Castiglioni, E. De Bernardi, and M. Gilardi, “Pet quantification: strategies for partial volume correction,” Clinical and Translational Imaging, vol. 2, no. 3, pp. 199–218, 6 2014. [Online]. Available: https://doi.org/10.1007/s40336-014-0066-y 17 [75] J. Yang, C. Hu, N. Guo, J. Dutta, L. M. Vaina, K. A. Johnson, J. Sepulcre, G. E. Fakhri, and Q. Li, “Partial volume correction for pet quantification and its impact on brain network in alzheimer’s disease,” Scientific Reports, vol. 7, no. 1, 10 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-13339-7 17 [76] M. Harri, M. Teras, H. Jussi, O. S. Nevalainen, and H. Jarmo, “Eval uation of partial volume effect correction methods for brain positron emission tomography: Quantification and reproducibility,” Journal of Medical Physics, 6 2007. 18 [77] D. N. Greve, D. H. Salat, S. P. Bowen, D. Izquierdo‐Garcia, A. P. Schultz, C. Catana, J. A. Becker, C. Svarer, G. M. Knudsen, R. A. Sperling, and K. A. Johnson, “Different partial volume correction methods lead to different conclusions: An 18f-fdg-pet study of aging,” NeuroImage, vol. 132, pp. 334–343, 5 2016. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2016.02.042 18 [78] C. M. Bauer, H. J. Cabral, D. N. Greve, and R. J. Killiany, “Differentiating between normal aging, mild cognitive impairment, and alzheimer’s disease with fdg-pet: Effects of normalization region and partial volume correction method,” Journal of Alzheimers Disease and Parkinsonism, vol. 3, pp. 1–9, 2013. [Online]. Available: https://api.semanticscholar.org/CorpusID:55532183 18 [79] K. Matsubara, M. Ibaraki, M. Shidahara, and T. Kinoshita, “Iterative framework for image registration and partial volume correction in brain positron emission tomography,” Radiological Physics and Technology, 10 2020. 18 [80] H. Zaidi, T. Ruest, F. Schoenahl, and M.-L. Montandon, “Comparative assessment of statistical brain mr image segmentation algorithms and their impact on partial volume correction in pet,” NeuroImage, vol. 32, no. 4, pp. 1591–1607, 2006. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S1053811906005799 18 [81] D. Gutierrez, M.-L. Montandon, F. Assal, M. Allaoua, O. Ratib, K.-O. Lövblad, and H. Zaidi, “Anatomically guided voxel-based partial volume effect correction in brain pet: Impact of mri segmentation,” Computerized Medical Imaging and Graphics, vol. 36, no. 8, pp. 610–619, 2012. [Online]. Available: https://www.sciencedirect.com/ science/article/pii/S0895611112001541 18 [82] B. Hutton, B. Thomas, K. Erlandsson, A. Bousse, A. Reilhac-Laborde, D. Kazantsev, S. Pedemonte, K. Vunckx, S. Arridge, and S. Ourselin, “What approach to brain partial volume correction is best for pet/mri?” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 702, pp. 29–33, 2013, pET/MR and SPECT/MR: New Paradigms for Combined Modalities in Molecular Imaging. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0168900212008558 18, 37 [83] B. A. Thomas, V. Cuplov, A. Bousse, A. Mendes, K. Thielemans, B. F. Hutton, and K. Erlandsson, “Petpvc: a toolbox for performing partial volume correction techniques in positron emission tomography,” Physics in Medicine and Biology, vol. 61, no. 22, pp. 7975–7993, 10 2016. [Online]. Available: https://doi.org/10.1088/0031-9155/61/22/7975 18, 37 [84] M. C. F. Cysouw, G. M. Kramer, L. J. Schoonmade, R. Boellaard, H. C. W. De Vet, and O. S. Hoekstra, “Impact of partial-volume correction in oncological pet studies: a systematic review and meta-analysis,” European journal of nuclear medicine and molecular imaging, vol. 44, no. 12, pp. 2105–2116, 8 2017. [Online]. Available: https://doi.org/10.1007/s00259-017-3775-4 18 [85] K. Matsubara, M. Ibaraki, and T. Kinoshita, “Deeppvc: prediction of a partial volume-corrected map for brain positron emission tomography studies via a deep convolutional neural network,” EJNMMI Physics, vol. 9, no. 1, 7 2022. [Online]. Available: https://doi.org/10.1186/s40658-022-00478-8 19 [86] A. Sanaat, H. Shooli, A. S. Böhringer, M. Sadeghi, I. Shiri, Y. Salimi, N. Ginovart, V. Garibotto, H. Arabi, and H. Zaidi, “A cycle-consistent adversarial network for brain pet partial volume correction without prior anatomical information,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 50, no. 7, pp. 1881–1896, 2 2023. [Online]. Available: https://doi.org/10.1007/s00259-023-06152-0 19 [87] M.-S. Azimi, A. Kamali‐Asl, M. Ay, N. Zeraatkar, and H. Arabi, “Deep learning-based partial volume correction in standard and low-dose pet-ct imaging,” arXiv (Cornell University), 7 2022. [Online]. Available: https://arxiv.org/abs/2207.02553 19 [88] M.-S. Azimi, A. Kamali‐Asl, M. Ay, N. Zeraatkar, M. Hosseini, A. Sanaat, and H. Arabi, “Attention-based deep neural network for partial volume correction in brain 18f-fdg pet imaging,” Physica Medica, vol. 119, p. 103315, 3 2024. [Online]. Available: https://doi.org/10.1016/j.ejmp.2024.103315 19 [89] M. Haribabu, V. Guruviah, and P. Yogarajah, “Recent ad vancements in multimodal medical image fusion techniques for better diagnosis: an overview,” Current Medical Imag ing Reviews, vol. 19, no. 7, 6 2023. [Online]. Available: https://doi.org/10.2174/1573405618666220606161137 19 [90] H. Zhang, H. Xu, X. Tian, J. Jiang, and J. Ma, “Image fusion meets deep learning: A survey and perspective,” Information Fusion, vol. 76, pp. 323–336, 12 2021. [Online]. Available: https://doi.org/10.1016/j.inffus.2021.06.008 19 [91] Y. Liu, X. Chen, J. Cheng, and H. Peng, “A medical image fusion method based on convolutional neural networks,” in 2017 20th Inter national Conference on Information Fusion (Fusion), 2017, pp. 1–7. 19 [92] Y. Zhang, Y. Liu, P. Sun, Y. Han, X. Zhao, and L. Zhang, “Ifcnn: A general image fusion framework based on convolutional neural network,” Information Fusion, vol. 54, pp. 99–118, 2 2020. [Online]. Available: https://doi.org/10.1016/j.inffus.2019.07.011 19 [93] H. Li and X. Wu, “Densefuse: a fusion approach to infrared and visible images,” IEEE transactions on image processing, vol. 28, no. 5, pp. 2614–2623, 5 2019. [Online]. Available: https://doi.org/10.1109/tip.2018.2887342 20 [94] H. Li, X. Wu, and T. Durrani, “Nestfuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 12, pp. 9645–9656, 12 2020. [Online]. Available: https://doi.org/10.1109/tim.2020.3005230 xi, 20, 26, 27, 37, 45, 56 [95] Y. Wang, L. Zhou, B. Yu, L. Wang, C. Zu, D. S. Lalush, W. Lin, X. Wu, J. Zhou, and D. Shen, “3d auto-context-based locality adaptive multi-modality gans for pet synthesis,” IEEE Transactions on Medical Imaging, vol. 38, no. 6, pp. 1328–1339, 6 2019. [Online]. Available: https://doi.org/10.1109/tmi.2018.2884053 21 [96] K. T. Chen, S. Salcedo, K. Gong, D. B. Chonde, D. Izquierdo-García, A. Drzezga, B. R. Rosen, J. Qi, B. C. Dickerson, and C. Catana, “An efficient approach to perform mr-assisted pet data optimization in simultaneous pet/mr neuroimaging studies,” The Journal of Nuclear Medicine, vol. 60, no. 2, pp. 272–278, 6 2018. [Online]. Available: https://jnm.snmjournals.org/content/60/2/272.long 21 [97] S. Balsis, J. F. Benge, D. A. Lowe, L. Geraci, and R. S. Doody, “How do scores on the ADAS-COG, MMSE, and CDR SOB correspond?” ffThe ffclinical neuropsychologist/Neuropsychology, development, and cognition. Section D, The clinical neuropsychologist, vol. 29, no. 7, pp. 1002–1009, 10 2015. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/26617181/ 23 [98] G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price, and E. M. Stadlan, “Clinical diagnosis of Alzheimer’s disease,” Neurology, vol. 34, no. 7, p. 939, 7 1984. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/6610841/ 23 [99] A. Evans, L. Collins, S. Mills, E. Brown, R. Kelly, and T. Peters, “3d statistical neuroanatomical models from 305 mri volumes,” vol. 1813– 1817, 01 1993, pp. 1813 – 1817 vol.3. 24 [100] Z. Wang, E. Simoncelli, and A. Bovik, “Multiscale structural similarity for image quality assessment,” vol. 2, 12 2003, pp. 1398 – 1402 Vol.2. 33 [101] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess ment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004. 33 [102] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Sto ica, “Tune: A research platform for distributed model selection and training,” arXiv preprint arXiv:1807.05118, 2018. 35 [103] B. Fischl, “Freesurfer,” Neuroimage, vol. 62, no. 2, pp. 774–781, 2012. 35 [104] E. Hoffman, P. Cutler, W. Digby, and J. Mazziotta, “3-d phantom to simulate cerebral blood flow and metabolic images for pet,” IEEE Transactions on Nuclear Science, vol. 37, no. 2, pp. 616–620, 1990. 35 [105] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” 11 2017. [Online]. Available: https://arxiv.org/abs/1711.05101v3 36 [106] O. Rainio, J. Teuho, and ff. ffffffff, “Evaluation metrics and statistical tests for machine learning,” Scientific reports, vol. 14, no. 1, 3 2024. [Online]. Available: https://www.nature.com/articles/s41598-024-56706-x 38, 40 [107] L. Mosconi, “Brain glucose metabolism in the early and specific diagnosis of alzheimer’s disease,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 4, pp. 486–510, 3 2005. [Online]. Available: https://doi.org/10.1007/s00259-005-1762-7 38 [108] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society. Series B (Methodological), vol. 58, no. 1, pp. 267–288, 1996. [Online]. Available: http: //www.jstor.org/stable/2346178 40 [109] V. Fonti and E. Belitser, “Paper in Business An alytics Feature Selection using LASSO,” 2017. [On line]. Available: https://www.semanticscholar.org/paper/ Paper-in-Business-Analytics-Feature-Selection-using-Fonti-Belitser/ 24acd159910658223209433cf4cbe3414264de39 40 [110] L. W., G. M. Gregoire, R. A., and M. S., “Characterisation of partial volume effect and region-based correction in small animal positron emission tomography (pet) of the rat brain,” 2012. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/22387126/ 62 [111] J. Leube, J. Gustafsson, M. Lassmann, M. Salas-Ramirez, and J. Tran-Gia, “A Deep-Learning–Based Partial-Volume Correction Method for Quantitative177LU SPECT/CT Imaging,” Journal of Nuclear Medicine, p. jnumed.123.266889, 4 2024. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/38637141/ 62 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93250 | - |
| dc.description.abstract | 正子斷層掃描(positron emission tomography,PET)结合〔18F〕—氟代去氧葡萄糖(fludeoxyglucose,FDG)可以視覺化與神經退化性疾病相關的葡萄糖低代謝之腦區空間分布。起因於PET掃描儀導致的部分體積效應(partial volume effect,PVE)造成PET影像之空間解析度和影像品質下降,本研究旨在利用高空間解析度的解剖性影像,如磁振造影(magnetic resonance imaging,MRI)所提供之組織邊界資訊,開發出完全基於深度學習(deep learning,DL)的部分體積效應校正方法(partial volume correction,PVC),並省去在過去研究中被視為必要的針對PET掃描儀之點擴散函數的假設。
受到現有的深度學習框架用於影像融合(image fusion)的啟發,本研究提出以此技術將解剖資訊融入功能性影像並使其結構細節增強的MRI-styled PET模態。所提出模型的組成包含:一個有雙解碼器(dual encoder)的影像融合之主要網路,用來融合MRI和PET的影像資訊並生成MRI-styled PET;另外,還有兩個用來促進資訊保存的模態轉換之輔助網路,各以MRI-styled PET當作輸入並試圖還原MRI和PET。此外,本研究也提出了數個模組,用於改良基準模型(Baseline)使其更適用於校正部分體積效應,其中包含:為了有效地校正灰質活性低估和白質活性高的誤差,針對解剖資訊來源的調控模組;為了同時增強局部和全面組織對比度的原創損失函數(custom loss function);能夠進行跨模態資訊交換且利用可訓練參數進行特徵提取和融合的交叉注意力(cross-attention)融合策略。 而因為理論上不存在校正後的影像作為校正基準,本研究也提出了一系列客觀評估的流程,將MRI-styled PET與使用其他校正方法處理後的影像(PVC-PET)或是其他模態如MRI和PET進行不同尺度的比較。分析結果顯示MRI-styled PET的結構相似性(SSIM)和峰值信噪比(PSNR)都有相對Baseline的顯著提升(p < .001),展現了所提出模組對校正的正向增益。更重要的,在阿茲海默症(Alzheimer’s disease,AD)病變相關的腦區中,MRI-styled PET展現出無論疾病階段如何,其部分體積校正程度都相較Baseline和PVC-PET更加穩定的特性。 總結,本研究的價值在於展現了基於深度學習進行部分體積校正的可能性,本方法無須針對PET掃描儀之系統參數或是受試者之疾病狀態進行任何假設,因此可以在只能取得影像資料的使用情境下進行校正。不只如此,如能取得不同腦區對於示蹤劑吸收量的比例,本研究也是一個理論上能應用於其他放射性示蹤劑影像的校正方法。為了更嚴謹的評估MRI-styled PET的校正準確度,本研究的下一步即是透過數位模擬進行體積像素(voxel)精度的驗證。 | zh_TW |
| dc.description.abstract | Positron emission tomography (PET) with [18F]-fludeoxyglucose (FDG) can visualize the spatial pattern of glucose hypometabolism related to neurodegeneration in brain imaging. In PET imaging, the partial volume effect often degrades image quality due to the limited spatial resolution of PET scanners. With access only to image space data, this study aims to develop a fully deep-learning (DL)-based partial volume correction (PVC) method, eliminating the need to assume the system point spread function during correction. Inspired by the existing framework of the DL-based image fusion model, we propose a novel imaging modality, MRI-styled PET, leveraging anatomical information from T1-weighted magnetic resonance imaging (T1-MRI) to enhance structural details in FDG-PET.
The proposed framework consists of a baseline encoder-decoder image fusion model with dual encoder branches and two auxiliary modality conversion networks; additionally, it includes a series of task-specific modules designed to facilitate the transition from image fusion to anatomy-guided DL-based PVC. First, substituting the anatomical input source, T1-MRI, with ideal tracer maps resulted in effective correction in the underestimation of gray matter and the underestimation of white matter. Subsequently, two novel loss functions were introduced to enhance local and global tissue contrast: the adaptive multi-scale structural similarity loss and tissue-aware boundary loss. In addition, the proposed cross-attention fusion strategy outperformed other fusion strategies by incorporating cross-modality information exchange and utilizing trainable parameters for feature extraction and fusion. Compared to a reference anatomy-guided post-reconstruction PVC-PET method, MRI-styled PET demonstrated significantly higher structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) than the baseline image fusion model (Baseline), showcasing the effectiveness of the proposed task-specific modules. In several Alzheimer's Disease-related brain regions, MRI-styled PET exhibited consistent increases and reduced noise-amplification in corrective effects regardless of disease stage, compared to Baseline and PVC-PET. This study represents an initial exploration of a fully DL-based PVC method without prior knowledge regarding the PVC-PET method or the underlying radiotracer uptake and without assumptions about the system point-spread function. Despite being a universal PVC pipeline, MRI-styled PET is currently applicable only to FDG-PET imaging due to the need for general agreement on the ratio of regional tracer uptake. Further investigations into the pixel-wise correction accuracy are planned to understand the MRI-styled PET's effectiveness fully. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:30:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-23T16:30:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgment i
Abstract iii List of Figures xi List of Tables xv List of Abbreviations xix 1 Introduction 1 1.1 Positron emission tomography . . . . . . . . . . . . . . . . . . 1 1.2 Magnetic resonance imaging . . . . . . . . . . . . . . . . . . . 5 1.3 Neurodegenerative disease and Alzheimer’s Disease . . . . . . 8 1.4 Deep learning applications on medical imaging . . . . . . . . . 12 2 Related Work 13 2.1 Partial volume correction . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Iterative deconvolution approach . . . . . . . . . . . . 14 2.1.2 Anatomy-based approach . . . . . . . . . . . . . . . . 15 2.1.3 Deep-learning-guided PVC . . . . . . . . . . . . . . . . 17 2.2 Multimodal medical image fusion . . . . . . . . . . . . . . . . 19 3 Materials and Methods 21 3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . 23 3.2.2 Data preprocessing . . . . . . . . . . . . . . . . . . . . 24 3.3 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . 25 3.3.1 Dual-encoder Fusion Model . . . . . . . . . . . . . . . 26 3.3.2 Multi-scale Fusion Networks . . . . . . . . . . . . . . . 26 3.3.3 Modality Conversion Networks . . . . . . . . . . . . . 30 3.3.4 Loss Function . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.5 Anatomical input . . . . . . . . . . . . . . . . . . . . . 35 3.4 Experimental details and model selection . . . . . . . . . . . . 35 3.5 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5.1 Image-level analysis . . . . . . . . . . . . . . . . . . . 37 3.5.2 Regional-level analysis . . . . . . . . . . . . . . . . . . 38 3.5.3 Ablation study . . . . . . . . . . . . . . . . . . . . . . 39 3.5.4 Staging classification task . . . . . . . . . . . . . . . . 39 4 Results 41 4.1 Image-level analysis . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Regional-level analysis . . . . . . . . . . . . . . . . . . . . . . 42 4.3 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.4 Staging classification task . . . . . . . . . . . . . . . . . . . . 44 5 Discussion 59 5.1 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 Image-level analysis . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3 Regional-level analysis . . . . . . . . . . . . . . . . . . . . . . 60 5.4 Staging classification task . . . . . . . . . . . . . . . . . . . . 61 5.5 Summary and limitations . . . . . . . . . . . . . . . . . . . . 62 6 Conclusion 65 Reference 67 Appendix 87 | - |
| dc.language.iso | en | - |
| dc.subject | 多尺度結構相似度 | zh_TW |
| dc.subject | 解剖影像輔助 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 部分體積效應校正 | zh_TW |
| dc.subject | 氟化去氧葡萄糖正子造影 | zh_TW |
| dc.subject | 影像融合 | zh_TW |
| dc.subject | multi-scale SSIM | en |
| dc.subject | FDG-PET | en |
| dc.subject | partial volume correction | en |
| dc.subject | image fusion | en |
| dc.subject | anatomy guided | en |
| dc.subject | deep learning | en |
| dc.title | 雙模態影像融合用於正子斷層造影之影像增強 | zh_TW |
| dc.title | A Dual Modality Image Fusion Approach to Positron Emission Tomography Partial Volume Correction | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳中明;蕭穎聰 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Ming Chen;Ing-Tsung Hsiao | en |
| dc.subject.keyword | 氟化去氧葡萄糖正子造影,部分體積效應校正,影像融合,解剖影像輔助,深度學習,多尺度結構相似度, | zh_TW |
| dc.subject.keyword | FDG-PET,partial volume correction,image fusion,anatomy guided,deep learning,multi-scale SSIM, | en |
| dc.relation.page | 96 | - |
| dc.identifier.doi | 10.6342/NTU202401806 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-19 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | 2029-07-15 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 28.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
