請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9323完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊榮輝 | |
| dc.contributor.author | Ting-Fang Lo | en |
| dc.contributor.author | 羅庭芳 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:17:33Z | - |
| dc.date.available | 2011-07-14 | |
| dc.date.available | 2021-05-20T20:17:33Z | - |
| dc.date.copyright | 2009-07-14 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-01 | |
| dc.identifier.citation | 1. Lupiani, B. & Reddy, S.M. The history of avian influenza. Comp Immunol Microbiol Infect Dis (2008).
2. Webster, R.G., Bean, W.J., Gorman, O.T., Chambers, T.M. & Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol Rev 56, 152-79 (1992). 3. Alexander, D.J. Newcastle disease and other avian paramyxoviruses. Rev Sci Tech 19, 443-62 (2000). 4. Gendon Iu, Z. [Influenza pandemic: hypotheses and facts]. Zh Mikrobiol Epidemiol Immunobiol, 109-18 (2008). 5. Basler, C.F. & Aguilar, P.V. Progress in identifying virulence determinants of the 1918 H1N1 and the Southeast Asian H5N1 influenza A viruses. Antiviral Res 79, 166-78 (2008). 6. Kawaoka, Y., Krauss, S. & Webster, R.G. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol 63, 4603-8 (1989). 7. Perkins, L.E. & Swayne, D.E. Varied pathogenicity of a Hong Kong-origin H5N1 avian influenza virus in four passerine species and budgerigars. Vet Pathol 40, 14-24 (2003). 8. Perkins, L.E. & Swayne, D.E. Comparative susceptibility of selected avian and mammalian species to a Hong Kong-origin H5N1 high-pathogenicity avian influenza virus. Avian Dis 47, 956-67 (2003). 9. Kaiser, J. A one-size-fits-all flu vaccine? Science 312, 380-2 (2006). 10. Zebedee, S.L. & Lamb, R.A. Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J Virol 62, 2762-72 (1988). 11. Cornelia Schroeder1, H.H., Elisabeth Möncke-Buchner and Tse-I Lin. The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein European Biophysics Journal 34, 52-66 (2005). 12. Brown, E.G. Influenza virus genetics. Biomed Pharmacother 54, 196-209 (2000). 13. Naffakh, N., Tomoiu, A., Rameix-Welti, M.A. & van der Werf, S. Host restriction of avian influenza viruses at the level of the ribonucleoproteins. Annu Rev Microbiol 62, 403-24 (2008). 14. Sidorenko, Y. & Reichl, U. Structured model of influenza virus replication in MDCK cells. Biotechnol Bioeng 88, 1-14 (2004). 15. Chen, W. et al. A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7, 1306-12 (2001). 16. Portela, A., Zurcher, T., Nieto, A. & Ortin, J. Replication of orthomyxoviruses. Adv Virus Res 54, 319-48 (1999). 17. Mikulasova, A., Vareckova, E. & Fodor, E. Transcription and replication of the influenza a virus genome. Acta Virol 44, 273-82 (2000). 18. Bouvier, N.M. & Palese, P. The biology of influenza viruses. Vaccine 26 Suppl 4, D49-53 (2008). 19. Neumann, G., Hughes, M.T. & Kawaoka, Y. Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. Embo J 19, 6751-8 (2000). 20. Nayak, D.P., Hui, E.K. & Barman, S. Assembly and budding of influenza virus. Virus Res 106, 147-65 (2004). 21. Webster, R.G. & Rott, R. Influenza virus A pathogenicity: the pivotal role of hemagglutinin. Cell 50, 665-6 (1987). 22. Gong, J., Xu, W. & Zhang, J. Structure and functions of influenza virus neuraminidase. Curr Med Chem 14, 113-22 (2007). 23. Pinto, L.H. & Lamb, R.A. The M2 proton channels of influenza A and B viruses. J Biol Chem 281, 8997-9000 (2006). 24. Hale, B.G., Randall, R.E., Ortin, J. & Jackson, D. The multifunctional NS1 protein of influenza A viruses. J Gen Virol 89, 2359-76 (2008). 25. Boulo, S., Akarsu, H., Ruigrok, R.W. & Baudin, F. Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes. Virus Res 124, 12-21 (2007). 26. Couceiro, J.N., Paulson, J.C. & Baum, L.G. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res 29, 155-65 (1993). 27. Matrosovich, M.N., Matrosovich, T.Y., Gray, T., Roberts, N.A. & Klenk, H.D. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A 101, 4620-4 (2004). 28. Sieczkarski, S.B. & Whittaker, G.R. Dissecting virus entry via endocytosis. J Gen Virol 83, 1535-45 (2002). 29. Sieczkarski, S.B. & Whittaker, G.R. Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J Virol 76, 10455-64 (2002). 30. Cros, J.F. & Palese, P. Trafficking of viral genomic RNA into and out of the nucleus: influenza, Thogoto and Borna disease viruses. Virus Res 95, 3-12 (2003). 31. Li, X. & Palese, P. Characterization of the polyadenylation signal of influenza virus RNA. J Virol 68, 1245-9 (1994). 32. Luo, G.X., Luytjes, W., Enami, M. & Palese, P. The polyadenylation signal of influenza virus RNA involves a stretch of uridines followed by the RNA duplex of the panhandle structure. J Virol 65, 2861-7 (1991). 33. Robertson, J.S., Schubert, M. & Lazzarini, R.A. Polyadenylation sites for influenza virus mRNA. J Virol 38, 157-63 (1981). 34. Krug, R.M. Priming of influenza viral RNA transcription by capped heterologous RNAs. Curr Top Microbiol Immunol 93, 125-49 (1981). 35. Park, Y.W. & Katze, M.G. Translational control by influenza virus. Identification of cis-acting sequences and trans-acting factors which may regulate selective viral mRNA translation. J Biol Chem 270, 28433-9 (1995). 36. Portela, A. & Digard, P. The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. J Gen Virol 83, 723-34 (2002). 37. Subbarao, K. & Katz, J. Avian influenza viruses infecting humans. Cell Mol Life Sci 57, 1770-84 (2000). 38. Gamblin, S.J. et al. The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303, 1838-42 (2004). 39. Rogers, G.N. & D'Souza, B.L. Receptor binding properties of human and animal H1 influenza virus isolates. Virology 173, 317-22 (1989). 40. Connor, R.J., Kawaoka, Y., Webster, R.G. & Paulson, J.C. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205, 17-23 (1994). 41. Matrosovich, M., Zhou, N., Kawaoka, Y. & Webster, R. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 73, 1146-55 (1999). 42. Ito, T. et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72, 7367-73 (1998). 43. Bean, W.J. et al. Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts. J Virol 66, 1129-38 (1992). 44. Parrish, C.R. & Kawaoka, Y. The origins of new pandemic viruses: the acquisition of new host ranges by canine parvovirus and influenza A viruses. Annu Rev Microbiol 59, 553-86 (2005). 45. Recker, M., Pybus, O.G., Nee, S. & Gupta, S. The generation of influenza outbreaks by a network of host immune responses against a limited set of antigenic types. Proc Natl Acad Sci U S A 104, 7711-6 (2007). 46. Rott, R. The pathogenic determinant of influenza virus. Vet Microbiol 33, 303-10 (1992). 47. Horimoto, T. & Kawaoka, Y. Direct reverse transcriptase PCR to determine virulence potential of influenza A viruses in birds. J Clin Microbiol 33, 748-51 (1995). 48. Rohm, C., Zhou, N., Suss, J., Mackenzie, J. & Webster, R.G. Characterization of a novel influenza hemagglutinin, H15: criteria for determination of influenza A subtypes. Virology 217, 508-16 (1996). 49. Hebart, H. et al. CMV infection after allogeneic bone marrow transplantation is associated with the occurrence of various autoantibodies and monoclonal gammopathies. Br J Haematol 95, 138-44 (1996). 50. Keil, W., Niemann, H., Schwarz, R.T. & Klenk, H.D. Carbohydrates of influenza virus. V. Oligosaccharides attached to individual glycosylation sites of the hemagglutinin of fowl plague virus. Virology 133, 77-91 (1984). 51. Skehel, J.J. & Wiley, D.C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69, 531-69 (2000). 52. David J. Vigerust, a.V.L.S. Virus glycosylation: role in virulence and immune interactions Trends in Microbiology 15, 211-218 (2007). 53. Perdue, M.L. & Suarez, D.L. Structural features of the avian influenza virus hemagglutinin that influence virulence. Vet Microbiol 74, 77-86 (2000). 54. Baigent, S.J. & McCauley, J.W. Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture. Virus Res 79, 177-85 (2001). 55. Abe, Y. et al. Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin. J Virol 78, 9605-11 (2004). 56. Klenk, H.D., Wagner, R., Heuer, D. & Wolff, T. Importance of hemagglutinin glycosylation for the biological functions of influenza virus. Virus Res 82, 73-5 (2002). 57. Wagner, R., Wolff, T., Herwig, A., Pleschka, S. & Klenk, H.D. Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. J Virol 74, 6316-23 (2000). 58. Deshpande, K.L., Fried, V.A., Ando, M. & Webster, R.G. Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proc Natl Acad Sci U S A 84, 36-40 (1987). 59. Zambon, M.C. Epidemiology and pathogenesis of influenza. J Antimicrob Chemother 44 Suppl B, 3-9 (1999). 60. Sauter, N.K. et al. Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. Biochemistry 31, 9609-21 (1992). 61. Wang, C.W. & Wang, C.H. Experimental selection of virus derivatives with variations in virulence from a single low-pathogenicity H6N1 avian influenza virus field isolate. Avian Dis 47, 1416-22 (2003). 62. 何杰龍. 建立單株抗體庫以應用於臺灣家禽流行性感冒病毒之蛋白質體學研究. 國立台灣大學微生物與生物化學研究所博士班資格考論文 (2006). 63. Privalsky, M.L. & Penhoet, E.E. Influenza virus proteins: identity, synthesis, and modification analyzed by two-dimensional gel electrophoresis. Proc Natl Acad Sci U S A 75, 3625-9 (1978). 64. Hsu, C.N. & Wang, C.H. Sequence comparison between two quasi strains of H6N1 with different pathogenicity from a single parental isolate. J Microbiol Immunol Infect 39, 292-6 (2006). 65. Philpott, M., Hioe, C., Sheerar, M. & Hinshaw, V.S. Hemagglutinin mutations related to attenuation and altered cell tropism of a virulent avian influenza A virus. J Virol 64, 2941-7 (1990). 66. Bosch, F.X. Studies on the development of the charge heterogeneity of the influenza virus glycoproteins. Arch Virol 83, 311-7 (1985). 67. Horimoto, T. & Kawaoka, Y. Molecular changes in virulent mutants arising from avirulent avian influenza viruses during replication in 14-day-old embryonated eggs. Virology 206, 755-9 (1995). 68. Gendoo, D.M., El-Hefnawi, M.M., Werner, M. & Siam, R. Correlating novel variable and conserved motifs in the Hemagglutinin protein with significant biological functions. Virol J 5, 91 (2008). 69. Spiro, M.J. & Spiro, R.G. Sulfation of the N-linked oligosaccharides of influenza virus hemagglutinin: temporal relationships and localization of sulfotransferases. Glycobiology 10, 1235-42 (2000). 70. Lin, H.C. et al. Prediction of tyrosine sulfation sites in animal viruses. Biochem Biophys Res Commun 312, 1154-8 (2003). 71. Klenk, H.D., Caliguiri, L.A. & Choppin, P.W. The proteins of the parainfluenza virus SV5. II. The carbohydrate content and glycoproteins of the virion. Virology 42, 473-81 (1970). 72. Wei, C.J. et al. Comparative efficacy of neutralizing antibodies elicited by recombinant hemagglutinin proteins from avian H5N1 influenza virus. J Virol 82, 6200-8 (2008). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9323 | - |
| dc.description.abstract | 許多低病原性禽類流感病毒 (avian influenza viruses, AIV) 已於臺灣本土農場分離出來,然而這些病毒蛋白質體之改變與毒性之關係尚未被研究清楚。在本研究中,使用二次元電泳 (2-DE) 並配合專一性之凝集素 (specific lectins) 分析比較,來自同一 H6N1 族群,但卻表現不同毒性程度之兩株 AIV:非毒性病毒株 (2838N) 及毒性病毒株 (2838V)。比較兩病毒株之二次元蛋白質圖譜發現,血液凝集素 1 (hemagglutinin, HA) 為差異最大之蛋白質,且兩株 AIV 之 HA1 皆有分子量相近,但等電點迥異之 6 種異構物。本研究發現,HA1 這些異構物形成之原因,並非因於蛋白質磷酸化,亦非 HA1 醣質之唾液酸修飾 (sialylation)。另外,我們使用介質輔助雷射脫附離子化質譜儀 (MALDI MS and MS/MS) 建構 HA1 各異構物之醣質圖譜。比較 HA1 各異構物之醣質表現圖譜發現,等電點越低之 HA1 異構物其 m/z 1867 之 X-醣質比例越高。而血液凝集素主要功能為辨識並和宿主之唾液酸受體結合,因此 HA1 本身特別之醣基化可能會影響 AIV 之宿主辨識,亦可能和病毒之組織趨性及免疫逃脫有關。 | zh_TW |
| dc.description.abstract | Several low pathogenic avian influenza viruses (AIV) had been isolated in local farms. However, the relationship between the protein change and the virulence of these AIV was not clear. In this study, two variants from a single H6N1 population with different virulence levels, the non-virulent strain (2838N) and the virulent strain (2838V), were analyzed by two-dimensional electrophoresis (2-DE) and then identified with specific lectins. Comparisons of the 2-DE patterns of these two strains showed major difference in hemagglutinin 1 (HA1) which contained six isoforms with similar molecular mass but showing variant isoelectric points (pI). We found that the difference in pI values was not due to either of phosphorylation and sialylation on HA1. In addition, we performed MALDI mass spectrometry (MS and MS/MS)-based glycomic profile analyses for the N-glycans of the HA1 isoforms. The results showed that the isoform with lower pI contained more m/z 1867 X-glycan. One of the major functions for hemagglutinin is the recognition and binding of sialic acid-containing receptors on the target cell. It is possible that the special glycosylation of HA1 might have effects on host recognition, as well as tissue tropism or immune escape. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:17:33Z (GMT). No. of bitstreams: 1 ntu-98-R96b47204-1.pdf: 3462951 bytes, checksum: b0b728b85755bb5f20e04f096c604aca (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要………………………………………………………………………………iv
英文摘要…………………………………………………………………………………v 第一章 緒論………………………………………………………………………………1 1.1 簡介禽流感病毒…………………………………………………………………1 1.1.1 歷史背景……………………………1 1.1.2 流感病毒之構造與型態…………………2 1.1.3 流感病毒之基因體…………………4 1.1.4 流感病毒蛋白質功能簡介……………5 1.1.5 流感病毒生活史………………………6 1.2 血液凝集素 (hemagglutinin, HA)…………………………………………9 1.2.1 HA 之結構與功能…………………………9 1.2.2 HA 之受體結合區 (receptor binding sites)………………9 1.2.3 HA 與致病力之關係………..…………9 1.2.4 HA 之醣質與致病力之關係………………………………………10 1.3 研究動機與目的………………………………………………………………13 第二章 材料與方法……………………………………………………………………14 2.1 禽流感病毒樣本處理方法……………………………………………………14 2.1.1 病毒增殖……………………………………………………………14 2.1.2 濃縮與純化…………………………………………………………15 2.1.3 病毒蛋白質定量……………………………………………………16 2.2 一般電泳檢定法………………………………………………………………16 2.2.1 SDS 膠體電泳……………………………………………16 2.2.2 膠體染色法 - CBR 染色……………………………18 2.2.3 膠體染色法 - 銀染…………………………………………19 2.2.4 蛋白質電泳轉印法……………………………………20 2.2.5 轉印膜 Ponceau S 染色法………………………………………20 2.3 免疫染色法……………………………………………………………21 2.4 凝集素染色法 (lectin blot)……………………………………………………22 2.5 醣晶片…………………………………………………………………………23 2.6 二次元膠體電泳…………………………………………………24 2.6.1 脫鹽及溶解………………………………24 2.6.2 第一維等電點聚焦……………………………………24 2.6.3 第二維 15% SDS-PAGE 膠體電泳………………………25 2.7 酶切實驗………………………………………………………………………26 2.7.1 鹼性磷酸酶之去磷酸化…………………………………26 2.7.2 神經胺酸水解酶水解唾液酸………………………………26 2.8 使用高效能陰離子交換層析儀 (HPAEC) 配合脈衝式安培法偵測器 (PAD) 分析唾液酸……………………………………………………………………27 2.8.1 弱酸水解釋放唾液酸……………………………………27 2.8.2 使用 HPAEC-PAD 分析唾液酸亞型……………………27 2.9 蛋白質身份鑑定………………………………………………………………28 2.9.1 膠體內蛋白質水解……………………………………28 2.9.2 以質譜儀鑑定蛋白質點身分………………………………30 2.10高效能層析儀 (HPLC) 配合螢光偵測器分析 N-醣質……………………30 2.10.1 醣質之膠內蛋白質水解釋放及螢光標定………………30 2.10.2 使用 HPLC 分析 N-glycans………………….………31 2.11 質譜儀醣質定序………………………………………………………………31 2.11.1 從蛋白質上釋放並純化 N-glycans…………………31 2.11.2 N-glycans 之泛甲基化………………………………32 2.11.3 以質譜儀分析 N-glycans……………………………33 第三章 結果……………………………………………………………………………34 3.1 比較非毒性與毒性禽流感病毒株之間蛋白質體的差異……………………36 3.1.1 兩株 2838 禽流感病毒二次元圖譜之比較………………36 3.1.2 血液凝集素重鏈 (HA1) 為兩禽流感病毒株蛋白質圖譜上差異最大之蛋白質…………………………………………………………36 3.1.3 非毒性與毒性 AIV 之 HA1 皆有 6 種不同異構物…...…37 3.2 探究紅血球凝集素 1 (HA1) 有 6 種不同等電點異構物之原因………41 3.2.1 預測血液凝集素1 (HA1) 之蛋白質轉譯後修飾…………………41 3.2.2 實驗設計……………………………………………………………41 3.3 不同等電點異構物之紅血球凝集素 1 (HA1) 並非蛋白質磷酸化所造 成…44 3.3.1 以鹼性磷酸酶處理禽流感病毒株並進行二次元電泳………44 3.3.2 以抗磷酸抗體進行二次元電泳之免疫染色……………44 3.4 不同等電點異構物之紅血球凝集素 1 (HA1) 可能是由其醣質之唾液酸修飾所造成…………………………………………………………47 3.4.1 以神經胺酸水解酶處理禽流感病毒株並進行二次元電泳…47 3.4.2 以凝集素染色法 (lectin blot) 發現 HA1 之醣質可能有 alpha-2,3 鍵結之唾液酸…………………………………………………………47 3.4.3 以高效能高效能陰離子交換層析儀 (HPAEC) 配合脈衝氏安培法偵測器 (PAD) 分析 HA1 醣基之唾液酸………………………48 3.4.4 以凝集素染色法分析經唾液酸酶水解後之 HA1…………48 3.5 紅血球凝集素 (HA1) 之醣質表現圖譜………………………………………54 3.5.1 使用醣晶片分析 HA1 之醣質…………………………54 3.5.2 使用 HPLC 配合螢光偵測器分析HA1 之醣質…………54 3.5.3 以 MALDI-TOF/TOF MS 及 MS/MS 研究 HA1 之醣質表現圖譜………………54 第四章 討論………………………………………………………………………66 4.1 探討非毒性及毒性病毒株之間 HA1 等電點之差異,及其各自形成 6 種等電點異構物之生理意義……………………………………66 4.2 HA1 之醣基化位置與其功能探討….…………………………..……66 4.3除了醣基化外,蛋白質骨架本身及其它蛋白質轉譯後修飾亦可能造成 HA1 異構物……………………………………………67 4.4 m/z 1867 之 X-glycan 尚未被報導過………………………………………67 4.5 X-glycan 與 HA1 等電點異構物可能之兩種關係………………67 第五章 結論………………………………………………………………………70 第六章 參考文獻………………………………………………………………………71 | |
| dc.language.iso | zh-TW | |
| dc.title | 臺灣本土禽流感病毒株血液凝集素重鏈異構物分析及其醣質表現圖譜 | zh_TW |
| dc.title | Analysis on multiple isoforms and glycan profile of hemagglutinin 1 from avian influenza viruses isolated in Taiwan. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王金和 | |
| dc.contributor.oralexamcommittee | 陳水田,張世宗,楊健志 | |
| dc.subject.keyword | 禽流感,血液凝集素,醣質圖譜, | zh_TW |
| dc.subject.keyword | avian influenza viruses,hemagglutinin,glycan profile, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-07-02 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 微生物與生化學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 3.38 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
