Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93237Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 葛宇甯 | zh_TW |
| dc.contributor.advisor | Louis Ge | en |
| dc.contributor.author | 楊世凡 | zh_TW |
| dc.contributor.author | Shr-Fan Yang | en |
| dc.date.accessioned | 2024-07-23T16:26:31Z | - |
| dc.date.available | 2024-07-24 | - |
| dc.date.copyright | 2024-07-23 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-17 | - |
| dc.identifier.citation | ALA. (2001). Guidelines for the design of buried steel pipe. Ameircan Society of Civil Engineering, Ameircan Lifeline Alliance (ALA).
ALA. (2005). Guidelines for the design of buried steel pipe. Ameircan Society of Civil Engineering, Ameircan Lifeline Alliance (ALA). Argyrou, C., O’Rourke, T. D., Stewart, H. E., & Wham, B. P. (2019). Large-Scale Fault Rupture Tests on Pipelines Reinforced with Cured-in-Place Linings. Journal of Geotechnical and Geoenvironmental Engineering, 145(3). https://doi.org/10.1061/(asce)gt.1943-5606.0002018 ASCE. (1984). Guidelines for the Seismic Design of Oil and Gas Pipeline Systems. Committee on Gas and Liquid Fuel Lifelines, American Society of Civil Engineers (ASCE). Banushi, G., Squeglia, N., & Thiele, K. (2018). Innovative analysis of a buried operating pipeline subjected to strike-slip fault movement. Soil Dynamics and Earthquake Engineering, 107, 234-249. https://doi.org/10.1016/j.soildyn.2018.01.015 Chen, Q., & Ni, P. (2023). Three-dimensional modeling of joint kinematic of ductile iron pipelines subjected to normal faulting. Tunnelling and Underground Space Technology, 132. https://doi.org/10.1016/j.tust.2022.104863 Cheng, X., Ma, C., Huang, R., Huang, S., & Yang, W. (2019). Failure mode analysis of X80 buried steel pipeline under oblique-reverse fault. Soil Dynamics and Earthquake Engineering, 125. https://doi.org/10.1016/j.soildyn.2019.105723 DEEPSOIL. (2024, V7.0). A nonlinear and Equivalent Linear Seismic Site Response of 1-D Soil Columns, User Manual. Board of Trustees of University of Illinois at Urbana-Champaign, Urbana, IL. El Hmadi, K. O. R., M.J. (1989). Seismic Wave Effects on Straight Jointed Buried Pipeline. Technical Report NCEER-89-0022. Erami, M. H., Miyajima, M., Kaneko, S., Toshima, T., & Kishi, S. (2015). Pipe-soil interaction for segmented buried pipelines subjected to dip faults. Earthquake Engineering & Structural Dynamics, 44(3), 403-417. https://doi.org/10.1002/eqe.2476 Eurocode 8, P. (2006). Eurocode 8, Design of Structures for Earthquake Resistance: Silos, tanks and pipelines. Part 4. British Standards Institution European Committee for Standardization. https://books.google.com.tw/books?id=xIn8PAAACAAJ Huang, J.-q., Du, X.-l., Zhao, M., & Zhao, X. (2017). Impact of incident angles of earthquake shear (S) waves on 3-D non-linear seismic responses of long lined tunnels. Engineering Geology, 222, 168-185. https://doi.org/10.1016/j.enggeo.2017.03.017 IITK-GSDMA. (2007). Guidelines for seismic design of buried pipelines. Indian Institute of Technology Kanpur, and Gujarat State Disaster Management Authority. Jalali, H. H., Rofooei, F. R., Attari, N. K. A., & Samadian, M. (2016). Experimental and finite element study of the reverse faulting effects on buried continuous steel gas pipelines. Soil Dynamics and Earthquake Engineering, 86, 1-14. https://doi.org/10.1016/j.soildyn.2016.04.006 JDPA. (2010). Design Manual for Joints of Ductile Iron Pipe Type NS, S II and S. Jefferies, M. (1993). Nor-Sand: a simle critical state model for sand. Géotechnique, 43, 91-103. https://doi.org/10.1680/geot.1993.43.1.91 Kung, C.-L., Wang, T.-T., Chen, C.-H., & Huang, T.-H. (2018). Response of a Circular Tunnel Through Rock to a Harmonic Rayleigh Wave. Rock Mechanics and Rock Engineering, 51(2), 547-559. https://doi.org/10.1007/s00603-017-1342-8 Liao, W. I., Yeh, C. S., & Teng, T. J. (2008). Scattering of elastic waves by a buried tunnel under obliquely incident waves using T matrix [Article]. Journal of Mechanics, 24(4), 405-418. https://doi.org/10.1017/S1727719100002525 Liu, H., Xiao, Y., Liu, K., Zhu, Y., & Zhang, P. (2022). Numerical Simulation on Backfilling of Buried Pipes Using Controlled Low Strength Materials. Applied Sciences, 12(14), 6901. https://www.mdpi.com/2076-3417/12/14/6901 Lu, C.-C., & Hwang, J.-H. (2019a). Nonlinear collapse simulation of Daikai Subway in the 1995 Kobe earthquake: Necessity of dynamic analysis for a shallow tunnel. Tunnelling and Underground Space Technology, 87, 78-90. https://doi.org/10.1016/j.tust.2019.02.007 Lu, C.-C., & Hwang, J.-H. (2019b). Safety assessment for a shield tunnel in a liquefiable deposit using a practical dynamic effective stress analysis. Engineering Failure Analysis, 102, 369-383. https://doi.org/10.1016/j.engfailanal.2019.04.045 Meyersohn, W. D. (1991). Analytical and design considerations for the seismic response of buried pipelines WorldCat. Mow, C. C., & Mente, L. J. (1963). Dynamic Stresses and Displacements Around Cylindrical Discontinuities Due to Plane Harmonic Shear Waves. Journal of Applied Mechanics, 30(4), 598-604. https://doi.org/10.1115/1.3636625 Ni, P., Moore, I. D., & Take, W. A. (2018). Numerical modeling of normal fault-pipeline interaction and comparison with centrifuge tests. Soil Dynamics and Earthquake Engineering, 105, 127-138. https://doi.org/10.1016/j.soildyn.2017.10.011 O'Rourke, M. J., & Liu, X. (2012). Seismic design of buried and offshore pipelines. Multidisciplinary Center for Earthquake Engineering Research,University at Buffalo. Pao, Y.-H. (1962). Dynamical Stress Concentration in an Elastic Plate. Journal of Applied Mechanics, 29(2), 299-305. https://doi.org/10.1115/1.3640545 PRCI. (2004). PRCI Guidelines for the Seismic Design and Assessment of Natural Gas and Liquid Hydrocarbon Pipelines. Pipeline Research Council International. Qin, X., & Ni, P. (2019). Kinematics of bell-spigot joints in vitrified clay pipelines under differential ground movement. Tunnelling and Underground Space Technology, 91. https://doi.org/10.1016/j.tust.2019.103005 Saiyar, M. (2011). Behaviour of Buried Pipelines Subject to Normal Faulting. Queen's University. https://books.google.com.tw/books?id=G279twEACAAJ Saiyar, M., Moore, I. D., & Take, W. A. (2015). Kinematics of jointed pipes and design estimates of joint rotation under differential ground movements. Canadian Geotechnical Journal, 52(11), 1714-1724. https://doi.org/10.1139/cgj-2014-0347 Smith, M. (2009). ABAQUS/Standard User's Manual, Version 6.9. Providence, RI. Somboonyanon, P., & Halmen, C. (2021). Seismic Behavior of Steel Pipeline Embedded in Controlled Low-Strength Material Subject to Reverse Slip Fault. Journal of Pipeline Systems Engineering and Practice, 12(3), 04021025. https://doi.org/doi:10.1061/(ASCE)PS.1949-1204.0000563 Sun, B., Zhang, S., Deng, M., & Wang, C. (2020). Nonlinear dynamic analysis and damage evaluation of hydraulic arched tunnels under mainshock–aftershock ground motion sequences. Tunnelling and Underground Space Technology, 98, 103321. https://doi.org/https://doi.org/10.1016/j.tust.2020.103321 Takou, M., Abolmaali, A., & Park, Y. (2017). Field Deflection-Measurement Techniques and Finite-Element Simulation for Large-Diameter Steel Pipes with Controlled Low-Strength Material. Journal of Pipeline Systems Engineering and Practice, 8(4), 04017010. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000262 Trautmann, C. H. (1983). Behavior of pipe in dry sand under lateral and uplift loading (Publication Number 8321909) [Ph.D., Cornell University]. ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global. United States -- New York. Vazouras, P., Dakoulas, P., & Karamanos, S. A. (2015). Pipe–soil interaction and pipeline performance under strike–slip fault movements. Soil Dynamics and Earthquake Engineering, 72, 48-65. https://doi.org/10.1016/j.soildyn.2015.01.014 Viktorov, I. A. (1967). Rayleigh and Lamb waves. Plenum Press. Wang, T.-T., Hsu, J.-T., Chen, C.-H., & Huang, T.-H. (2014). Response of a tunnel in double-layer rocks subjected to harmonic P- and S-waves. International Journal of Rock Mechanics and Mining Sciences, 70, 435-443. https://doi.org/https://doi.org/10.1016/j.ijrmms.2014.06.002 Yimsiri, S., Soga, K., Yoshizaki, K., Dasari, G. R., & O'Rourke, T. D. (2004). Lateral and upward soil-pipeline interactions in sand for deep embedment conditions [Article]. Journal of Geotechnical and Geoenvironmental Engineering, 130(8), 830-842. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(830) Yu, H., Chen, J., Bobet, A., & Yuan, Y. (2016). Damage observation and assessment of the Longxi tunnel during the Wenchuan earthquake. Tunnelling and Underground Space Technology, 54, 102-116. https://doi.org/https://doi.org/10.1016/j.tust.2016.02.008 Yue, F., Liu, B., Zhu, B., Jiang, X., Chen, L., & Liao, K. (2021). Shaking table test and numerical simulation on seismic performance of prefabricated corrugated steel utility tunnels on liquefiable ground. Soil Dynamics and Earthquake Engineering, 141. https://doi.org/10.1016/j.soildyn.2020.106527 Zou, Y., Zhang, Y. Q., Liu, H. Q., Liu, H. B., & Miao, Y. (2021). Performance-based seismic assessment of shield tunnels by incorporating a nonlinear pseudostatic analysis approach for the soil-tunnel interaction [Article]. Tunnelling and Underground Space Technology, 114, 17, Article 103981. https://doi.org/10.1016/j.tust.2021.103981 中華民國自來水協會 (2013)。自來水設施耐震設計及解說。 內政部 (2023)。建築物混凝土結構設計規範。 日本公益社團法人土木學會 (2007)。潛盾隧道的耐震檢討. 財團法人中興工程科技研究發展基金會。 日本水道協會 (1997)。水道施設耐震工法指針·解說。 日本水道協會 (2009)。水道設施耐震工法規範與解說,設計事例集。 行政院公共工程委員會 (2019)。控制性低強度回填材料。公共工程施工綱要規範第03377章, 第八版。 吳世紀. (2020)。自來水幹管潛盾工程設計施工。自來水會刊,第三十九卷(第一期)。 劉季宇、鍾立來、葉錦勳 (2014)。自來水延性鑄鐵管之耐震設計。 鍾立來、郭峻瑋、陳振豪、劉季宇、吳賴雲 (2012)。自來水管線力學試驗與非線性側推分析之研究。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93237 | - |
| dc.description.abstract | 隧道配管工法常用在安裝新設之大口徑輸水管線於高灘地及過河段,該工法具體施作方式以潛盾工法完成隧道後佈設新管,並於隧道襯砌與管線間之空隙完整填充控制性低強度材料以固定管線。然而臺灣地震頻發,受震時隧道內固定管線所使用之填充方案於管線之影響仍不得仍知。本研究以有限元素法軟體ABAQUS進行二維動態分析及三維擬靜態分析,探討填充材料之強度與澆灌量對管線之影響。另外,在三維分析中,用勁度折減之方式以模擬管線間之接頭,以簡化模擬完整之分段管線,進行合理性驗證,驗證結果顯示簡化模型與分段管線之變位及轉角行為相似。
本研究以10 kgf/cm2、40 kgf/cm2及140 kgf/cm2三種填充材料強度及滿灌、3/4滿灌、半滿灌、1/4滿灌等四種澆灌量之組合。分析結果顯示滿灌澆灌量下,管線呈現較大之應變及管線間相對轉角,而半滿灌則為本研究較合適之澆灌情境。在填充材料強度方面,呈現材料強度越強管線應變越小之趨勢,故本研究接著探討彈塑性填充材料於及澆灌量對於管線之影響。 相較於彈性模型,使用彈塑性填充材料模型中,管線上之應變及相對轉角較大且材料強度於管線之影響較為明顯。同時,材料強度越強,管線應變則有越小之趨勢,半滿灌及滿灌澆灌量中,管線之應變分布趨勢相似,其中半滿灌澆灌量情境具較小之管線應變及管線間相對轉角。綜上所述,本研究在所有考量之填充情境組合中建議使用於管線影響最小之半滿灌澆灌量及140 kgf/cm2之材料強度作為填充情境組合。 | zh_TW |
| dc.description.abstract | Shield tunneling method is often used to install new pipelines in areas with high ground water levels or river crossings. The method involves laying underground pipes after completing the tunnel and filling the annular gap between the pipeline and the lining segments with backfill. Conventionally, the backfill uses controlled low-strength material (CLSM) and the gap is often filled entirely to secure the pipeline. However, due to the frequent earthquakes in Taiwan, the impact of the conventional filling schemes used for securing pipelines within tunnels during seismic events remains unknown. The main purpose of this study is to investigate the impact of filling scenarios on pipelines, 2D dynamic analysis and 3D pseudo-static analysis are conducted in ABAQUS. In the 3D model a simplified model of a continuous pipeline with stiffness reduction at the joints is used to simulate segmented pipeline. To validate the simplified model, a full-scale segmented pipeline test is construct as simplified model in ABAQUS to validate the use of the simplified method. The validation results indicate that the simplified model exhibits similar displacement and angular behavior to the segmented pipeline.
In the parameter study, elastic material models were first established to investigate the impact of the filling scenarios including combinations of three filling material strengths which is 10 kgf/cm2, 40 kgf/cm2, and 140 kgf/cm2 and four filling scenarios including fully filled, 3/4 filled, half filled, and 1/4 filled on the pipeline. The analysis results of different filling scenarios show that the fully filled scenario results in the highest strain and relative rotational angle changes more drastically between pipeline segments, making it the least suitable filling scenario. On the other hand, the half filled scenario is the most suitable condition among the non-full filled scenarios. Additionally, the impact of filling material strength on the pipeline is relatively small, showing a trend where the stronger the material, the smaller the pipeline strain. Therefore, elastoplastic models with different material strengths were established for half filled and the fully filled scenarios to explore the impact of material strength and filling scenarios on the pipeline. Compared to the elastic model, the elastoplastic model shows greater strain and greater relative rotational angle on the pipeline, with the influence of material strength being more apparent, similarly showing a trend where stronger material results in smaller pipeline strain. The strain distribution trend in the half filled and fully filled scenarios is similar, with the half filled scenario showing smaller pipeline strain and smaller relative rotational angle between pipeline segments. In summary, among all the considered filling scenario combinations, this study recommends using the half filled scenario with a material strength of 140 kgf/cm2 as the filling scenario combination that minimizes the impact on the pipeline. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:26:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-23T16:26:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iii 圖次 viii 表次 xvi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與流程 2 1.3 論文架構及主要內容 3 第二章 文獻回顧 4 2.1 管線破壞介紹 4 2.1.1 發生機制 4 2.1.2 破壞模式 5 2.2 隧道配管耐震設計 8 2.2.1 反應變位法 10 2.2.2 潛盾隧道數值分析 18 2.2.2.1 二維分析 18 2.2.2.2 三維分析 23 2.3 地下埋設管線 26 2.3.1 地下埋設管線於地盤變位中之安全性檢核 26 2.3.2 地下埋設管線全尺寸試驗 28 2.3.2.1 分段管線全尺寸試驗 28 2.3.2.2 連續管線全尺寸試驗 30 2.3.3 地下埋設管線數值模擬 32 2.3.3.1 二維分析 32 2.3.3.2 三維擬靜態分析 33 2.4 文獻綜述與結論 39 第三章 研究方法 41 3.1 有限元素軟體-ABAQUS概述 41 3.2 材料基本性質 41 3.3 分段管線之簡化模型 46 3.4 二維模型-動態分析 49 3.4.1 邊界條件 49 3.4.2 數值模型尺寸 50 3.4.3 模型驗證 52 3.4.3.1 一維地盤反應解析 52 3.4.3.2 反應變位法 57 3.4.4 填充材料情境假設 60 3.4.4.1 加速度歷時 60 3.4.4.2 填充材料之澆灌量 61 3.4.4.3 填充材料之材料強度 63 3.5 三維模型-擬靜態分析 64 3.5.1 邊界條件 64 3.5.2 數值模型尺寸 65 3.5.3 模型驗證 66 3.5.3.1 簡化模型驗證 66 3.5.3.2 分段管線簡化模型之橫向地盤位移行為驗證 71 3.5.4 填充材料情境假設 73 3.5.4.1 填充材料之澆灌量 73 3.5.4.2 填充材料之材料強度 73 第四章 彈性模型分析結果 74 4.1 二維動態分析 74 4.1.1 填充材料強度 76 4.1.2 填充材料澆灌量 90 4.1.3 地震歷時 94 4.1.4 管線斷面 107 4.2 三維擬靜態分析 120 4.2.1 填充材料強度 122 4.2.2 填充材料澆灌量 139 4.3 彈性模型分析綜述 144 第五章 彈塑性模型分析 146 5.1 二維動態分析 146 5.1.1 彈性模型與彈塑性模型比較 147 5.1.2 填充材料強度 154 5.1.3 填充材料澆灌量 157 5.2 三維擬靜態分析 161 5.2.1 彈性模型與彈塑性模型比較 162 5.2.2 填充材料強度 175 5.2.3 填充材料澆灌量 180 5.3 彈塑性模型分析綜述 187 第六章 結論與建議 189 6.1 結論 189 6.1.1 填充材料強度 189 6.1.2 填充材料澆灌量 189 6.2 建議 190 參考文獻 192 附錄 A. 反應變位法計算書 195 附錄 B. 二維動態分析填充澆灌量於管線之影響 199 附錄 C. 三維擬靜態分析填充澆灌量於管線之影響 205 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 動態分析 | zh_TW |
| dc.subject | 擬靜態分析 | zh_TW |
| dc.subject | 填充材料 | zh_TW |
| dc.subject | 大口徑輸水管線 | zh_TW |
| dc.subject | 潛盾工法 | zh_TW |
| dc.subject | Filling Material | en |
| dc.subject | Large Diameter Water Pipeline | en |
| dc.subject | Dynamic Analysis | en |
| dc.subject | Pseudo-Static Analysis | en |
| dc.subject | Shield Tunneling Method | en |
| dc.title | 潛盾隧道中填充材料於大口徑輸水管線受震時之互制行為探討 | zh_TW |
| dc.title | Seismic response of buried pipeline inside a shield tunnel considering the effect of backfill materials | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭世豪;黃郁惟;葉馥瑄;朱民虔 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Hao Cheng;Yu-Wei Hwang;Fu-Hsuan Yeh;Min-Chien Chu | en |
| dc.subject.keyword | 潛盾工法,填充材料,大口徑輸水管線,動態分析,擬靜態分析, | zh_TW |
| dc.subject.keyword | Shield Tunneling Method,Filling Material,Large Diameter Water Pipeline,Dynamic Analysis,Pseudo-Static Analysis, | en |
| dc.relation.page | 212 | - |
| dc.identifier.doi | 10.6342/NTU202401733 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-17 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| Appears in Collections: | 土木工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf | 20.14 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
