Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93231
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王建凱zh_TW
dc.contributor.advisorChien-Kai Wangen
dc.contributor.author曾高捷zh_TW
dc.contributor.authorKao-Chieh Tsengen
dc.date.accessioned2024-07-23T16:24:46Z-
dc.date.available2024-07-24-
dc.date.copyright2024-07-23-
dc.date.issued2024-
dc.date.submitted2024-07-17-
dc.identifier.citation[1] Giannakopoulos, A. E., & Suresh, S. (1999). Determination of elastoplastic properties by instrumented sharp indentation. Scripta Materialia, 40(10), 1191-1198.
[2] Venkatesh, T. A., Van Vliet, K. J., Giannakopoulos, A. E., & Suresh, S. (2000). Determination of elasto-plastic properties by instrumented sharp indentation: guidelines for property extraction. Scripta Materialia, 42(9), 833-839.
[3] Bucaille, J. L., Stauss, S., Felder, E., & Michler, J. (2003). Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Materialia, 51(6), 1663-1678.
[4] Tho, K. K., Swaddiwudhipong, S., Liu, Z. S., & Zeng, K. (2005). Simulation of instrumented indentation and material characterization. Materials Science and Engineering: A, 390(1-2), 202-209.
[5] Ruan, H. H., Chen, A. Y., & Lu, J. (2010). Characterization of plastically graded nanostructured material: Part I. The theories and the inverse algorithm of nanoindentation. Mechanics of Materials, 42(5), 559-569.
[6] Moy, C. K., Bocciarelli, M., Ringer, S. P., & Ranzi, G. (2011). Identification of the material properties of Al 2024 alloy by means of inverse analysis and indentation tests. Materials Science and Engineering: A, 529, 119-130.
[7] Goto, K., Watanabe, I., & Ohmura, T. (2020). Inverse estimation approach for elastoplastic properties using the load-displacement curve and pile-up topography of a single Berkovich indentation. Materials & Design, 194, 108925.
[8] Ayyalasomayajula, V., Ervik, Ø., Sorger, H., & Skallerud, B. (2024). Macro-indentation testing of soft biological materials and assessment of hyper-elastic material models from inverse finite element analysis. Journal of the Mechanical Behavior of Biomedical Materials, 151, 106389.
[9] Isvilanonda, V., Li, E. Y., Williams, E. D., Cavanagh, P. R., Haynor, D. R., Chu, B., & Ledoux, W. R. (2024). Subject-specific material properties of the heel pad: An inverse finite element analysis. Journal of Biomechanics, 112016.
[10] Ghoreishy, M. H. R. (2012). Determination of the parameters of the Prony series in hyper-viscoelastic material models using the finite element method. Materials & Design, 35, 791-797.
[11] Hajhashemkhani, M., Hematiyan, M. R., & Goenezen, S. (2019). Identification of hyper-viscoelastic material parameters of a soft member connected to another unidentified member by applying a dynamic load. International Journal of Solids and Structures, 165, 50-62.
[12] El Awad, S., Stefaniuk, D., & Krakowiak, K. J. (2021). Determination of elastic and flexural strength properties of multi-scale materials via indentation assisted micro-bending experiment and inverse analysis. Mechanics of Materials, 158, 103889.
[13] Nakamura, T., & Gu, Y. (2007). Identification of elastic–plastic anisotropic parameters using instrumented indentation and inverse analysis. Mechanics of Materials, 39(4), 340-356.
[14] Abaqus, G. (2011). Abaqus 6.11. Dassault Systemes Simulia Corporation, Providence, RI, USA, 3.
[15] Lopes, R., Ramos, N. V., Cunha, R., Maia, R., Rodrigues, R., Parente, M. P. L., & Moreira, P. M. (2023). Coach crashworthiness and failure analysis during a frontal impact. Engineering Failure Analysis, 151, 107369.
[16] González, E. V., Maimí, P., Camanho, P. P., Turon, A., & Mayugo, J. A. (2012). Simulation of drop-weight impact and compression after impact tests on composite laminates. Composite Structures, 94(11), 3364-3378.
[17] Iqbal, M. A., Kumar, V., & Mittal, A. K. (2019). Experimental and numerical studies on the drop impact resistance of prestressed concrete plates. International Journal of Impact Engineering, 123, 98-117.
[18] Fras, T., Pawlowski, P., Li, W., & Wierzbicki, T. (2021). Performance of Li-ion pouch batteryunder a high-velocity impact: experiment and numerical simulation. International Journal of Impact Engineering, 155, 103915.
[19] Tahir, S. M. M., & Jali, N. M. (2024). An impact loading simulation of Rubber-Toughened Poly Methyl Methacrylate (RT-PMMA) using Abaqus Explicit. Ain Shams Engineering Journal, 15(2), 102392.
[20] Luo, L., & Zhao, M. (2011). The Secondary Development of ABAQUS by using Python and the Application of the Advanced GA. Physics Procedia, 22, 68-73.
[21] Fadeel, A., Abdulhadi, H., Srinivasan, R., & Mian, A. (2022). ABAQUS plug-in finite element tool for designing and analyzing lattice cell structures. Advances in Engineering Software, 169, 103139.
[22] Zhao, Y., Wang, Y., Hao, J., Wang, Y., Wang, K., & Tai, S. (2023). Study on mechanical properties of cellular structures with negative Poisson's ratio based on the development of Abaqus plug-in tool. Composite Structures, 322, 117348.
[23] Tang, X., & Wang, J. (2022). A general shakedown approach for geo-structures under cyclic loading using ABAQUS/Python. Acta Geotechnica, 17(12), 5773-5788.
[24] Kossa, A., & Horváth, A. L. (2021). Powerful calibration strategy for the two-layer viscoplastic model. Polymer Testing, 99, 107206.
[25] Isvilanonda, V., Iaquinto, J. M., Pai, S., Mackenzie-Helnwein, P., & Ledoux, W. R. (2016). Hyperelastic compressive mechanical properties of the subcalcaneal soft tissue: An inverse finite element analysis. Journal of Biomechanics, 49(7), 1186-1191.
[26] Mullen, R., & Belytschko, T. (1983). An analysis of an unconditionally stable explicit method. Computers & Structures, 16(6), 691-696.
[27] 黃仲偉, 吳泓錡, 張慰慈, 鄭翊良, 楊文嘉, 游濟華, & 陳俊杉. (2022). 實現自己的材料庫: Abaqus UMAT 於計算力學之應用. 國立臺灣大學出版中心.
[28] Treloar, L. R. G. (1943). The elasticity of a network of long-chain molecules—II. Transactions of the Faraday Society, 39, 241-246.
[29] Tapia-Romero, M. A., Dehonor-Gómez, M., & Lugo-Uribe, L. E. (2020). Prony series calculation for viscoelastic behavior modeling of structural adhesives from DMA data. Ingeniería, Investigación y Tecnología, 21(2).
[30] Brent, R. P. (2013). Algorithms for Minimization Without Derivatives. Courier Corporation.
[31] Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308-313.
[32] de Almeida Jr, A. K., Aljbaae, S., Vaillant, T., Piñeros, J. M., Coelho, B., Barbosa, D., ... & Correia, A. C. (2024). Theory of Functional Connections and Nelder–Mead optimization methods applied in satellite characterization. Acta Astronautica, 215, 548-559.
[33] Mathews, J. H., & Fink, K. D. (2004). Numerical Methods Using MATLAB (Vol. 4). Upper Saddle River, NJ: Pearson prentice hall.
[34] Singer, S., & Nelder, J. (2009). Nelder-mead algorithm. Scholarpedia, 4(7), 2928.
[35] Gao, F., & Han, L. (2012). Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Computational Optimization and Applications, 51(1), 259-277.
[36] Franck, A., & Germany, T. I. (1993). Viscoelasticity and dynamic mechanical testing. TA Instruments, New Castle, DE, USA AN004.
[37] Lekka, M. (2017). Cellular Analysis by Atomic Force Microscopy. Jenny Stanford Publishing.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93231-
dc.description.abstract本研究論文分別探討三個不同逆向工程實例:行動電子裝置落摔、高分子薄膜球擊和汽車殼體撞擊,旨在透過逆向工程方法校準出真實材料參數。首先,電子裝置落摔實例中,分析了壓敏膠(Pressure sensitive adhesive)的黏彈性行為和中框鋁材的塑性變形特性。其次,對於薄膜球擊實例,重點研究高分子薄膜的預拉力和線性彈性材料楊氏模數。再者,於汽車殼體撞擊實例中,主要探究殼體鋁材的楊氏模數和降伏應力。
在逆向工程實例操作中,本研究結合有限元素分析軟體Abaqus和自行開發Python程式進行自動化分析:模型透過Python進行自動化網格收斂性分析,以確保模型計算的可靠度;材料參數校準方面,使用均方根誤差定義目標函數,並進行參數域設定與參數敏感度測試,以確保校準結果的準確性;透過結合Python函式庫Brent與Nelder-Mead演算法,與Abaqus計算做整合,以完成材料參數評估逆向工程實作。最後經由掃描參數域中的所有可能值,繪製誤差強度等高線圖,驗證最佳材料參數之合適性。
研究證明,目標函數參數的敏感度測試於逆向工程操作具有重要意義,且誤差強度圖有助於理解尋找最適解的收斂狀況。在行動電子裝置落摔實驗中,成功擬合出三組模擬曲線和一組實驗曲線,並精確地求得合適的材料參數。此外,於高分子薄膜球擊和汽車殼體撞擊的模擬中,使用四個不同的初始猜測點進行參數搜尋測試,結果皆顯示與預設之模擬曲線相符的材料參數,證明本研究開發逆向工程方法的有效性與可靠性。
本論文之實例研究展示逆向工程技術在材料參數校準上的應用潛力,透過有限元素分析軟體Abaqus和自行開發Python程式的結合,實現系統關鍵元件材料參數校準逆向工程的自動化操作,使其未來能夠擴展出更多層面的開發,為未來相關先進工程設計與科學理論研究,以數據做為研究成果最為堅實的支持。
zh_TW
dc.description.abstractThis research paper explores three distinct reverse engineering cases: mobile electronic device drop, polymer film ball impact, and automotive shell impact, aiming to calibrate the real material parameters through reverse engineering methods. First, in the case of the electronic device drop, we analyzed the viscoelastic behavior of the pressure-sensitive adhesive (PSA) and the plastic deformation characteristics of the aluminum middle frame. Secondly, for the polymer film ball impact case, the focus was on the pre-tension and the Young's modulus of the linear elastic material of the polymer film. Lastly, in the automotive shell impact case, the primary investigation was on the Young's modulus and yield stress of the shell's aluminum material.
In these reverse engineering cases, this study combined the finite element analysis software Abaqus with self-developed Python programs for automated analysis: the model underwent automated mesh convergence analysis via Python to ensure the reliability of the calculations; for material parameter calibration, the root mean square error was used to define the objective function, and parameter domain settings and sensitivity tests were conducted to ensure the accuracy of the calibration results; by integrating the Python libraries Brent and the Nelder-Mead algorithm with Abaqus calculations, material parameter evaluation and reverse engineering implementation were achieved. Finally, by scanning all possible values within the parameter domain, error intensity contour plots were drawn to verify the suitability of the optimal material parameters.
The research demonstrated that sensitivity testing of the objective function parameters is significant in reverse engineering operations, and the error intensity plot aids in understanding the convergence of finding the optimal solution. In the mobile electronic device drop test, three sets of simulated experiment curves and one set of real experiment curves were successfully fitted, and appropriate material parameters were accurately obtained. Additionally, in the polymer film ball impact and automotive shell impact simulation experiments, parameter search tests using four different initial guess points showed material parameters consistent with the preset simulated experiment curves, proving the effectiveness and reliability of the reverse engineering method developed in this study.
The case studies in this paper showcase the potential applications of reverse engineering techniques in material parameter calibration. By combining the finite element analysis software Abaqus with self-developed Python programs, the automation of reverse engineering for key component material parameter calibration is realized, enabling future expansion into more areas of development. This provides solid data support for future advanced engineering design and scientific theoretical research.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:24:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-23T16:24:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
目次 iv
圖次 viii
表次 xii
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 1
1.3 研究方法 3
1.4 研究內容 4
第二章 Abaqus之理論基礎與材料設定 5
2.1 有限元素商業套裝軟體 Abaqus介紹 5
2.2 顯式動力學理論 6
2.3 時間增量與網格尺寸 7
2.4 材料模型 9
2.4.1 線性彈性 9
2.4.2 超彈性 10
2.4.3 黏彈性 11
2.4.4 塑性 18
第三章 透過Python進行最佳化材料校準 21
3.1 透過Python控制Abaqus 21
3.1.1 確認Abaqus與Python版本 22
3.1.2 執行Python的方法 24
3.2 自動化網格收斂性分析程式架構 27
3.3 最佳化函式介紹 28
3.3.1 Brent演算法 28
3.3.2 Nelder-Mead演算法 31
3.4 材料校準程式與方法 36
3.4.1 目標函數與均方根誤差 36
3.4.2 材料參數域與敏感度 37
3.4.3 多項式擬合與決定係數 38
3.4.4 誤差強度等高線圖 40
3.4.5 正規化目標函數 42
3.4.6 材料校準流程圖 42
第四章 電子裝置落摔 44
4.1 電子裝置落摔模擬設計介紹 44
4.2 有限元素電子裝置落摔模型設定 45
4.2.1 部件與材料 45
4.2.2 裝配設定 48
4.2.3 參考點特徵 49
4.2.4 邊界條件 49
4.2.5 後處理之動畫參考圖 50
4.3 網格收斂分析 52
4.3.1 壓敏膠 52
4.3.2 中框 53
4.3.3 其餘部件 55
4.4 參數空間分析 56
4.4.1 目標函數 57
4.4.2 參數敏感度 58
4.4.3 模擬曲線擬合 58
4.5 分析與結果 60
4.5.1 誤差強度 60
4.5.2 收斂過程 60
4.5.3 極小值搜尋結果 61
4.6 實驗曲線分析 63
4.6.1 目標函數 64
4.6.2 未知參數域 65
4.6.3 參數敏感度 65
4.6.4 實驗曲線擬合 67
4.6.5 誤差強度等高線圖與路徑 68
4.6.6 分析結果 71
第五章 高分子薄膜球擊模擬 75
5.1 高分子薄膜球擊模擬設計介紹 75
5.2 有限元素球擊模型設定 76
5.2.1 部件與材料 76
5.2.2 邊界條件 77
5.2.3 後處理之動畫參考圖 79
5.3 網格收斂性分析 81
5.4 參數空間分析 82
5.4.1 目標函數 82
5.4.2 未知參數域 83
5.4.3 參數敏感度 83
5.4.4 模擬曲線擬合 84
5.5 分析與結果 86
5.5.1 誤差強度等高線圖 86
5.5.2 極小值搜尋路徑 87
5.5.3 小結 89
第六章 汽車殼體撞擊模擬 92
6.1 汽車殼體撞擊模擬設計介紹 92
6.2 有限元素汽車殼體模型設定 93
6.2.1 部件與材料 93
6.2.2 邊界條件 94
6.2.3 後處理之動畫參考圖 95
6.3 網格收斂分析 97
6.4 參數空間分析 98
6.4.1 目標函數 98
6.4.2 未知參數域 98
6.4.3 參數敏感度 99
6.4.4 模擬曲線擬合 100
6.5 分析與結果 102
6.5.1 誤差強度等高線圖 102
6.5.2 極小值搜尋路徑 103
6.5.3 小結 105
第七章 結論與未來展望 108
7.1 結論 108
7.2 未來展望 108
參考文獻 109
-
dc.language.isozh_TW-
dc.subject逆向工程zh_TW
dc.subject非線性材料zh_TW
dc.subject有限元素法zh_TW
dc.subject參數校準zh_TW
dc.subject顯式動力學分析zh_TW
dc.subjectparameter calibrationen
dc.subjectreverse engineeringen
dc.subjectfinite element methoden
dc.subjectexplicit dynamic analysisen
dc.subjectnonlinear materialsen
dc.title應用有限元素法於材料強度校準之逆向工程研究zh_TW
dc.titleReverse Engineering Study of Material Strength Calibration Using Finite Element Methoden
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃育熙;莊嘉揚;廖國基;吳筱梅zh_TW
dc.contributor.oralexamcommitteeYu-Hsi Huang;Jia-Yang Juang;Kuo-Chi LIAO;Hsiao-Mei Wuen
dc.subject.keyword逆向工程,非線性材料,有限元素法,參數校準,顯式動力學分析,zh_TW
dc.subject.keywordreverse engineering,nonlinear materials,parameter calibration,explicit dynamic analysis,finite element method,en
dc.relation.page112-
dc.identifier.doi10.6342/NTU202401484-
dc.rights.note未授權-
dc.date.accepted2024-07-17-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
9.36 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved