Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93222Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 王建凱 | zh_TW |
| dc.contributor.advisor | Chien-Kai Wang | en |
| dc.contributor.author | 黃文峸 | zh_TW |
| dc.contributor.author | Wun-Cheng Huang | en |
| dc.date.accessioned | 2024-07-23T16:22:09Z | - |
| dc.date.available | 2024-07-24 | - |
| dc.date.copyright | 2024-07-23 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-17 | - |
| dc.identifier.citation | [1] Lane N. “The Unseen World: Reflections on Leeuwenhoek Concerning Little Animals”. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015. 370(1666): 20140344.
[2] Schermelleh L.,Carlton P.M.,Haase S., Shao L., et al.(2008).Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy. Science.320(5881): 1332–1336. [3] Betzig E., Patterson G.H., Sougrat R., Lindwasser O.W., et al.(2006).“Imaging Intracellular Fluorescent Proteins at Nanometer Resolution”. Science.313(5793): 1642–1645. [4] Manley S., Gillette J.M., Patterson G.H., Shroff H., et al.(2008).“High-Density Mapping of Single-Molecule Trajectories with Photoactivated Localization Microscopy”. Nat. Methods. 5: 155–157. [5] Huang B., Wang W., Bates M., Zhuang X. “Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy”. Science. 2008. 319(5864): 810–813. [6] Chen C-Y, Liu Y-T, Lu C-H, Lee P-Y, Tsai Y-C, Wu J-S, Chen P, Chen B-C. The Applications of Lattice Light-Sheet Microscopy for Functional Volumetric Imaging of Hippocampal Neurons in a Three-Dimensional Culture System. Micromachines. 2019; 10(9):599. https://doi.org/10.3390/mi10090599. [7] Chen B.C., Legant W.R., Wang K., Shao L., et al. “Lattice Light-Sheet Microscopy: Imaging Molecules to Embryos at High Spatiotemporal Resolution”. Science. 2014. 346(6208): 1257998. [8] Chatterjee K, Pratiwi FW, Wu FCM, Chen P, Chen B-C. Recent Progress in Light Sheet Microscopy for Biological Applications. Applied Spectroscopy. 2018 ; 72(8) : 1137-1169. [9] Siedentopf H., Zsigmondy R. “On the Visualization and Sizing of Ultramicroscopic Particles, with Particular Application to Gold Rubbing Glasses”. Ann. Phys. 1902. 315: 1–39. [10] Pittet M.J., Weissleder R. “Intravital Imaging”. Cell. 2011. 147: 983–991. [11] Botcherby E.J., Corbett A., Burton R.A.B., Smith C.W., et al. “Fast Measurement of Sarcomere Length and Cell Orientation in Langendorff-Perfused Hearts Using Remote Focusing Microscopy Novelty and Significance”. Circ. Res. 2013. 113(7): 863–870. [12] Huisken J., Swoger J., Del Bene F., Wittbrodt J., et al. “Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy”. Science. 2004. 305(5686): 1007–1009. [13] Keller P.J., Schmidt A.D., Wittbrodt J., Stelzer E.H. “Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy”. Science. 2008. 322(5904): 1065–1069. [14] Krzic U., Gunther S., Saunders T.E., Streichan S.J., et al. “Multiview Light-Sheet Microscope for Rapid In Toto Imaging”. Nat. Methods. 2012. 9: 730–733. [15] Planchon T.A., Gao L., Milkie D.E., Davidson M.W., et al. Rapid Three-Dimensional Isotropic Imaging of Living Cells Using Bessel Beam Plane Illumination”. Nat. Methods. 2011. 8: 417–423. [16] X., Zhang, M., and Lei, S. (December 14, 2017). "Multiphoton Polymerization Using Femtosecond Bessel Beam for Layerless Three-Dimensional Printing." ASME. J. Micro Nano-Manuf , 2018 ; 6(1):010901. [17] Betzig E. “Excitation Strategies for Optical Lattice Microscopy”. Opt. Express. 2005. 13(8): 3021–3036. [18] C. J. R. Sheppard and D. M. Shotton, Confocal Laser Scanning Microscopy, Springer, Oxon , 2 (1997). [19] D. Kromm, T. Thumberger, J. Wittbrodt. (2016). An eye on light-sheet microscopy. Methods in Cell Biology, vol. 133, 105-123 [20] Santi PA. (2011). Light Sheet Fluorescence Microscopy: A Review. Journal of Histochemistry & Cytochemistry. 59(2):129-138. [21] Pan, B. (2011). Recent Progress in Digital Image Correlation. Exp Mech 51, 1223–1235. https://doi.org/10.1007/s11340-010-9418-3 [22] Blaber, J., Adair, B. & Antoniou, A. (2015). Ncorr: Open-Source 2D Digital Image Correlation Matlab Software. Exp Mech 55, 1105–1122. [23] J. Blaber, “Ncorr Instruction Manual,” 0613 2017. [24] 蔡汶憲, "層膠材料於第一模式剝離內聚力強度之實驗量測和理論分析研究," 碩士論文, 國立臺灣大學機械工程學系, 2023. [25] M. Minsky, Memoir on Inventing the Confocal Scanning Microscope, Scanning, 10, 128 (1988). [26] R Harilal and M Ramji, "Adaptation of Open Source 2D DIC Software Ncorr for Solid Mechanics Applications," International Symposium on Advanced Science and Technology in Experimental Mechanics (2014). [27] Bi-Chang Chen, "Scanless lattice light sheet microscopy," Microscopy and Microanalysis, (2015). vol 21, Pages 715–716. [28] Greger K., Swoger J., Stelzer E.H.K. “Basic Building Units and Properties of a Fluorescence Single Plane Illumination Microscope”. Rev. Sci. Instrum. 2007. 78(2): 023705. [29] Christoph J. Engelbrecht, Klaus Greger, Emmanuel G. Reynaud, Uroš Kržic, Julien Colombelli, and Ernst H. K. Stelzer, "Three-dimensional laser microsurgery in light-sheet based microscopy (SPIM)," Opt. Express 15, 6420-6430 (2007). [30] Christoph J. Engelbrecht and Ernst H. Stelzer, "Resolution enhancement in a light-sheet-based microscope (SPIM)," Opt. Lett. 31, 1477-1479 (2006). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93222 | - |
| dc.description.abstract | 數位影像關聯法(Digital Image Correlation, DIC)為一種非接觸式的光學量測技術,可應用於跨尺度與跨領域的工程問題以及實驗力學研究上,其原理為透過數位影像分析,追蹤樣本影像表面特徵產生的變化,來取得樣本的位移場與應變場等物理量;於先進光學技術方面,層光顯微鏡具備高訊躁比、快速的影像採樣速率以及較低的生物光毒性與光損傷效應等特點,使其被廣泛運用在生物醫學領域,小至單細胞到大型生物器官都能夠進行觀測。本論文首先將介紹樂高層光顯微鏡的系統設計以及搭建步驟,並在樂高層光顯微鏡之載物台上將樣本進行平移與旋轉以及引致變形的操作,再以數位影像關聯法量測樣本的位移場,並將量測位移量與理論值對照是否相符,以此方法來驗證樂高層光顯微鏡系統的穩定度。
論文內容:第一章說明了本論文的研究動機與背景,並簡要介紹本研究開發的技術和相關應用的方法;第二章將介紹層光顯微技術的發展歷史以及層光顯微鏡運作的原理,並描述層光顯微鏡的特點,以及其適合觀察生物樣本的優勢;第三章將介紹數位影像關聯法數學理論,並說明如何在MATLAB中操作數位影像關聯法開源軟體NCORR;第四章為以樂高積木搭建層光顯微鏡的詳細說明,也會一併介紹顯微鏡各項元件與控制系統,並展示以樂高層光顯微鏡觀察樂高積木樣本的成果;第五章為以數位影像關聯法分析光學量測影像的結果;第六章為本論文結論與未來展望。 | zh_TW |
| dc.description.abstract | Digital Image Correlation (DIC) is a non-contact optical measurement technique that can be applied to cross-scale and cross-domain engineering problems as well as experimental mechanics research. The principle of DIC is to track the changes in the surface features of a sample through digital image analysis to obtain the physical quantities such as displacement field and strain field of the sample. Light sheet microscopy, characterized by high signal-to-noise ratio, rapid image sampling rates, and lower biological phototoxicity and photodamage effects, is widely used in the biomedical field, and enabling observation ranging from single cells to large biological organs. In this paper, we will firstly introduce the system and the construction steps of the LEGO light sheet microscope, then observe the sample on the microscope’s stage through translation, rotation, and deformation, and then measure whether the displacement field of the samples matches with the actual displacement by digital image correlation method, so that the stability of the LEGO light sheet microscope can be verified.
Paper content: Chapter 1 provides a literature review on the development and background of the digital image correlation method and light sheet microscopy. Chapter 2 introduces the development history of light sheet microscopy technology, and the principle of operation of light sheet microscope, then compares the advantages and disadvantages of layered light microscopy. Also show the reasons why it is suitable for observing biological samples. Chapter 3 introduces the theory of digital image correlation and explains how to operate NCORR for digital image correlation in MATLAB. In Chapter 4, we will detail how to build a simple light sheet microscope using LEGO bricks, as well as introduce the microscope's control system and experimental procedures of digital image correlation measurements. Chapter 5 presents the measurement results of digital image correlation and compares them with experimental data for discussion. Chapter 6 concludes the paper and provides future prospects. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:22:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-23T16:22:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 iv 圖次 vi 表次 ix 第一章 緒論 1 1.1 研究動機 1 1.2 研究背景 2 1.3 研究方法 4 1.4 研究內容 4 第二章 先進層光顯微鏡原理與介紹 5 2.1 層光顯微鏡的發展與運作原理 5 2.2 虛擬層光技術介紹 8 2.3 層光顯微鏡與雷射掃描共軛焦顯微鏡之比較 10 2.3.1 成像速度 11 2.3.2 對生物樣本造成的傷害 11 2.4 層光顯微鏡的基本構造 12 第三章 數位影像關聯法應用原理與實作 13 3.1 數位影像關聯法介紹 13 3.2 數位影像關聯法原理 15 3.3 數位影像關聯法軟體Ncorr實作 19 第四章 樂高層光顯微鏡系統搭建與分析 25 4.1 搭建樂高層光顯微鏡系統之零件介紹 25 4.1.1 樂高顯微鏡支架與實驗載台 25 4.1.2 樂高顯微鏡支架與實驗載台 31 4.1.3 樂高層光顯微鏡光學成像與觀測系統 33 4.2 樂高層光顯微鏡的組裝流程 36 4.3 樂高層光顯微鏡的操作步驟與實驗流程 40 4.4 樂高層光顯微鏡觀測樂高積木樣本之成果與討論 45 4.4.1 透明方形樂高積木之觀測 45 4.4.2 透明橋形樂高積木之觀測 47 4.4.3 特殊形狀樂高積木之觀測 49 4.4.4 樂高積木在微觀尺度下之觀測 51 第五章 數位影像關聯法分析結果 54 5.1 數位影像關聯法實驗 54 5.2 巨觀尺度分析 54 5.2.1 平移剛體運動分析 54 5.2.2 旋轉剛體運動分析 57 5.2.3 壓印變形分析 59 5.3 微觀尺度分析 63 5.3.1 平移剛體運動分析 63 5.3.2 旋轉剛體運動分析 65 5.4 懸臂樑實驗分析 67 5.4.1 巨觀尺度下之懸臂樑實驗分析 67 5.4.2 微觀尺度下之懸臂樑實驗分析 69 第六章 結論與未來展望 71 6.1 結論 71 6.2 未來展望 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 層光顯微術 | zh_TW |
| dc.subject | 樂高 | zh_TW |
| dc.subject | 實驗力學 | zh_TW |
| dc.subject | 數位影像關聯法 | zh_TW |
| dc.subject | 微變形量測分析 | zh_TW |
| dc.subject | LEGO | en |
| dc.subject | Digital Image Correlation | en |
| dc.subject | Light Sheet Microscope | en |
| dc.subject | Micro-Deformation Measurement and Analysis | en |
| dc.title | 樂高層光顯微鏡研製於試件微變形量測與分析之應用 | zh_TW |
| dc.title | Development of LEGO-Based Light Sheet Microscope for Micro-Deformation Measurement and Analysis of Specimens | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳筱梅;董奕鍾;陳壁彰;廖國基 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiao-Mei Wu ;Yi-Chung Tung;Bi-Chang Chen;Kuo-Chi LIAO | en |
| dc.subject.keyword | 層光顯微術,樂高,實驗力學,數位影像關聯法,微變形量測分析, | zh_TW |
| dc.subject.keyword | Light Sheet Microscope,LEGO,Digital Image Correlation,Micro-Deformation Measurement and Analysis, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202401842 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-17 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf | 6.18 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
