請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93200
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳建彰 | zh_TW |
dc.contributor.advisor | Jian-Zhang Chen | en |
dc.contributor.author | 張恆閔 | zh_TW |
dc.contributor.author | Heng-Min Chang | en |
dc.date.accessioned | 2024-07-23T16:15:42Z | - |
dc.date.available | 2024-07-24 | - |
dc.date.copyright | 2024-07-23 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-17 | - |
dc.identifier.citation | 1. Raza, W., et al., Recent advancements in supercapacitor technology. Nano Energy, 2018. 52: p. 441-473.
2. Şahin, M.E., F. Blaabjerg, and A. Sangwongwanich, A comprehensive review on supercapacitor applications and developments. Energies, 2022. 15(3): p. 674. 3. Choudhary, N., et al., Asymmetric supercapacitor electrodes and devices. Advanced Materials, 2017. 29(21): p. 1605336. 4. Xie, J., Z. Zhou, and Y. Wang, Metal–CO2 batteries at the crossroad to practical energy storage and CO2 recycle. Advanced Functional Materials, 2020. 30(9): p. 1908285. 5. Ma, T., H. Yang, and L. Lu, Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems. Applied Energy, 2015. 153: p. 56-62. 6. Bittencourt, J.A., Fundamentals of plasma physics. 2013: Springer Science & Business Media. 7. Bonizzoni, G. and E. Vassallo, Plasma physics and technology; industrial applications. Vacuum, 2002. 64(3-4): p. 327-336. 8. Sundriyal, P., M. Pandey, and S. Bhattacharya, Plasma-assisted surface alteration of industrial polymers for improved adhesive bonding. International Journal of Adhesion and Adhesives, 2020. 101: p. 102626. 9. Barjasteh, A., et al., Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination. applied sciences, 2021. 11(8): p. 3372. 10. Fic, K., et al., Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy & Environmental Science, 2012. 5(2): p. 5842-5850. 11. Portet, C., G. Yushin, and Y. Gogotsi, Effect of carbon particle size on electrochemical performance of EDLC. Journal of the Electrochemical Society, 2008. 155(7): p. A531. 12. Chodankar, N.R., et al., True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small, 2020. 16(37): p. 2002806. 13. Yu, X., et al., Emergent pseudocapacitance of 2D nanomaterials. Advanced Energy Materials, 2018. 8(13): p. 1702930. 14. Kour, S., S. Tanwar, and A. Sharma, A review on challenges to remedies of MnO2 based transition-metal oxide, hydroxide, and layered double hydroxide composites for supercapacitor applications. Materials Today Communications, 2022: p. 104033. 15. Chien, H.-H., et al., Improved performance of polyaniline/reduced-graphene-oxide supercapacitor using atmospheric-pressure-plasma-jet surface treatment of carbon cloth. Electrochimica Acta, 2018. 260: p. 391-399. 16. Malak, A., et al., Hybrid materials for supercapacitor application. Journal of Solid State Electrochemistry, 2010. 14: p. 811-816. 17. Tseng, C.-H., et al., Dielectric-barrier-discharge jet treated flexible supercapacitors with carbon cloth current collectors of long-lasting hydrophilicity. Journal of The Electrochemical Society, 2020. 167(11): p. 116511. 18. Yi, T.-F., et al., A literature review and test: Structure and physicochemical properties of spinel LiMn2O4 synthesized by different temperatures for lithium ion battery. Synthetic Metals, 2009. 159(13): p. 1255-1260. 19. Demarconnay, L., E. Raymundo-Piñero, and F. Béguin, Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor. Journal of Power Sources, 2011. 196(1): p. 580-586. 20. Post, J.E., Manganese oxide minerals: Crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences, 1999. 96(7): p. 3447-3454. 21. Stobbe, E.d., B. De Boer, and J. Geus, The reduction and oxidation behaviour of manganese oxides. Catalysis Today, 1999. 47(1-4): p. 161-167. 22. Godlaveeti, S.K., et al., Different phase and morphology effect of manganese oxide on electrochemical performance for supercapacitor application. Journal of Cluster Science, 2021. 32: p. 703-710. 23. Singu, B.S., E.S. Goda, and K.R. Yoon, Carbon Nanotube–Manganese oxide nanorods hybrid composites for high-performance supercapacitor materials. Journal of Industrial and Engineering Chemistry, 2021. 97: p. 239-249. 24. Jiang, L., et al., Manganese oxides transformed from orthorhombic phase to birnessite with enhanced electrochemical performance as supercapacitor electrodes. Journal of materials chemistry A, 2020. 8(7): p. 3746-3753. 25. Chen, L., et al., Guest ions pre-intercalation strategy of manganese-oxides for supercapacitor and battery applications. Journal of Energy Chemistry, 2021. 60: p. 480-493. 26. Thackeray, M., M. Mansuetto, and J. Bates, Structural stability of LiMn2O4 electrodes for lithium batteries. Journal of power sources, 1997. 68(1): p. 153-158. 27. Brun, P., et al., Disinfection of ocular cells and tissues by atmospheric-pressure cold plasma. PloS one, 2012. 7(3): p. e33245. 28. Schutze, A., et al., The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE transactions on plasma science, 1998. 26(6): p. 1685-1694. 29. Tsai, J.-H., et al., Conversion of dense and continuous nickel oxide compound thin films using nitrogen DC-pulse atmospheric-pressure plasma jet. Ceramics International, 2019. 45(17): p. 22078-22084. 30. Giannakaris, N., et al., Optical emission spectroscopy of an industrial thermal atmospheric pressure plasma jet: Parametric study of electron temperature. Spectrochimica Acta Part B: Atomic Spectroscopy, 2023: p. 106736. 31. Jelínek, P., et al., Effects of additives on atmospheric pressure gliding arc applied to the modification of polypropylene. Surface and Coatings Technology, 2019. 372: p. 45-55. 32. Sarani, A., et al., Surface modification of polypropylene with an atmospheric pressure plasma jet sustained in argon and an argon/water vapour mixture. Applied Surface Science, 2011. 257(20): p. 8737-8741. 33. Park, S., A. Savvides, and M. Srivastava. Battery capacity measurement and analysis using lithium coin cell battery. in Proceedings of the 2001 international symposium on Low power electronics and design. 2001. 34. Rangani, D.G. and N.V. Tahilramani. Coin based mobile battery charger with high security. in 2017 3rd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT). 2017. IEEE. 35. Teli, A.M., et al., Bismuth manganese oxide based electrodes for asymmetric coin cell supercapacitor. Chemical Engineering Journal, 2022. 430: p. 133138. 36. Joo, H., H. Han, and S. Cho, Fabrication of poly (vinyl alcohol)-polyaniline nanofiber/graphene hydrogel for high-performance coin cell supercapacitor. Polymers, 2020. 12(4): p. 928. 37. Taer, E., et al., Solid coin-like design activated carbon nanospheres derived from shallot peel precursor for boosting supercapacitor performance. journal of materials research and technology, 2021. 15: p. 1732-1741. 38. Lai, J.-Y., et al., LiMn2O4 Li-ion hybrid supercapacitors processed by nitrogen atmospheric-pressure plasma jet. Ceramics International, 2023. 49(7): p. 11067-11075. 39. Lai, J.-Y., C.-C. Hsu, and J.-Z. Chen, Comparison between atmospheric-pressure-plasma-jet-processed and furnace-calcined rGO-MnOx nanocomposite electrodes for gel-electrolyte supercapacitors. Journal of Alloys and Compounds, 2022. 911: p. 165006. 40. Jadhav, V.V., et al., Electrochemical supercapacitors: history, types, designing processes, operation mechanisms, and advantages and disadvantages. Bismuth-Ferrite-Based Electrochemical Supercapacitors, 2020: p. 11-36. 41. Oyedotun, K.O., et al., Advances in supercapacitor development: materials, processes, and applications. Journal of Electronic Materials, 2023. 52(1): p. 96-129. 42. Sharma, S. and P. Chand, Supercapacitor and electrochemical techniques: A brief review. Results in Chemistry, 2023. 5: p. 100885. 43. Saha, S., et al., A review on the heterostructure nanomaterials for supercapacitor application. Journal of Energy Storage, 2018. 17: p. 181-202. 44. Majumdar, D. and S. Ghosh, Recent advancements of copper oxide based nanomaterials for supercapacitor applications. Journal of Energy Storage, 2021. 34: p. 101995. 45. Lu, X., et al., Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance. Advanced Energy Materials, 2017. 7(2): p. 1601301. 46. Vitto, R.I.M., M.T. Natividad, and S.T. Palisoc, High-performance and low-cost coin-cell supercapacitors based on waste graphite from spent dry-cell batteries. Journal of Power Sources, 2023. 582: p. 233547. 47. Poochai, C., et al., High performance coin-cell and pouch-cell supercapacitors based on nitrogen-doped reduced graphene oxide electrodes with phenylenediamine-mediated organic electrolyte. Applied Surface Science, 2019. 489: p. 989-1001. 48. Uppugalla, S., et al., Nitrogen and sulfur co-doped activated carbon nanosheets for high-performance coin cell supercapacitor device with outstanding cycle stability. Emergent Materials, 2023. 6(4): p. 1167-1176. 49. Raut, A.S., C.B. Parker, and J.T. Glass, A method to obtain a Ragone plot for evaluation of carbon nanotube supercapacitor electrodes. Journal of Materials Research, 2010. 25(8): p. 1500-1506. 50. Dubal, D.P., et al., Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chemical Society Reviews, 2015. 44(7): p. 1777-1790. 51. Zuo, W., et al., Battery‐supercapacitor hybrid devices: recent progress and future prospects. Advanced science, 2017. 4(7): p. 1600539. 52. Liu, Y., et al., Supercapacitors: History, Theory, Emerging Technologies, and Applications. Advances in Sustainable Energy: Policy, Materials and Devices, 2021: p. 417-449. 53. Kour, S., S. Tanwar, and A. Sharma, A review on challenges to remedies of MnO2 based transition-metal oxide, hydroxide, and layered double hydroxide composites for supercapacitor applications. Materials Today Communications, 2022. 32: p. 104033. 54. Lv, S., et al., Recent design and control of carbon materials for supercapacitors. Journal of Materials Science, 2021. 56: p. 1919-1942. 55. Pilon, L., H. Wang, and A. d’Entremont, Recent advances in continuum modeling of interfacial and transport phenomena in electric double layer capacitors. Journal of the Electrochemical Society, 2015. 162(5): p. A5158. 56. Burt, R., G. Birkett, and X. Zhao, A review of molecular modelling of electric double layer capacitors. Physical Chemistry Chemical Physics, 2014. 16(14): p. 6519-6538. 57. Feng, L., et al., Recent progress in nickel based materials for high performance pseudocapacitor electrodes. Journal of Power Sources, 2014. 267: p. 430-444. 58. Costentin, C., T.R. Porter, and J.-M. Savéant, How do pseudocapacitors store energy? Theoretical analysis and experimental illustration. ACS applied materials & interfaces, 2017. 9(10): p. 8649-8658. 59. Gogotsi, Y. and R.M. Penner, Energy storage in nanomaterials–capacitive, pseudocapacitive, or battery-like? 2018, ACS Publications. p. 2081-2083. 60. Vijayan, B.L., et al., Dual Hybrid Energy Storage Device with a Battery–Electrochemical Capacitor Hybrid Cathode and a Battery-Type Anode. Energy & Fuels, 2021. 35(16): p. 13438-13448. 61. Pal, B., et al., Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances, 2019. 1(10): p. 3807-3835. 62. Bhat, T., P. Patil, and R. Rakhi, Recent trends in electrolytes for supercapacitors. Journal of Energy Storage, 2022. 50: p. 104222. 63. Sajjad, M., et al., A review on selection criteria of aqueous electrolytes performance evaluation for advanced asymmetric supercapacitors. Journal of Energy Storage, 2021. 40: p. 102729. 64. Deng, W., et al., Li/K mixed superconcentrated aqueous electrolyte enables high-performance hybrid aqueous supercapacitors. Energy Storage Materials, 2019. 20: p. 373-379. 65. Kovalska, E. and C. Kocabas, Organic electrolytes for graphene-based supercapacitor: Liquid, gel or solid. Materials Today Communications, 2016. 7: p. 155-160. 66. Liu, Z., et al., Graphene/V2O5 hybrid electrode for an asymmetric supercapacitor with high energy density in an organic electrolyte. Electrochimica Acta, 2018. 287: p. 149-157. 67. Wang, X., et al., Enhancing capacitance of supercapacitor with both organic electrolyte and ionic liquid electrolyte on a biomass-derived carbon. RSC advances, 2017. 7(38): p. 23859-23865. 68. Fu, C., et al., Supercapacitor based on graphene and ionic liquid electrolyte. Journal of Solid State Electrochemistry, 2011. 15: p. 2581-2585. 69. Sivaraman, P., et al., All-solid-supercapacitor based on polyaniline and sulfonated polymers. Synthetic Metals, 2006. 156(16-17): p. 1057-1064. 70. Zhou, M., et al., A flexible sandwich-structured supercapacitor with poly (vinyl alcohol)/H 3 PO 4-soaked cotton fabric as solid electrolyte, separator and supporting layer. Cellulose, 2018. 25: p. 3459-3469. 71. Wang, Y., et al., Enhanced specific capacitance by a new dual redox-active electrolyte in activated carbon-based supercapacitors. Carbon, 2019. 143: p. 300-308. 72. Roldan, S., et al., Mechanisms of energy storage in carbon-based supercapacitors modified with a quinoid redox-active electrolyte. The Journal of Physical Chemistry C, 2011. 115(35): p. 17606-17611. 73. Zhang, P., et al., Novel Electrode Materials and Redox‐Active Electrolyte for High‐Performance Supercapacitor. ChemElectroChem, 2022. 9(2): p. e202101646. 74. Nguyen, T. and M.d.F. Montemor, Metal oxide and hydroxide–based aqueous supercapacitors: from charge storage mechanisms and functional electrode engineering to need‐tailored devices. Advanced Science, 2019. 6(9): p. 1801797. 75. Wei, W., et al., Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chemical society reviews, 2011. 40(3): p. 1697-1721. 76. Mishra, A., et al., Carbon cloth‐based hybrid materials as flexible electrochemical supercapacitors. ChemElectroChem, 2019. 6(23): p. 5771-5786. 77. Liu, X., et al., Carbon cloth as an advanced electrode material for supercapacitors: progress and challenges. Journal of Materials Chemistry A, 2020. 8(35): p. 17938-17950. 78. Tsai, H.-Y., et al., Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. Journal of Power Sources, 2009. 194(1): p. 199-205. 79. Denes, F.S. and S. Manolache, Macromolecular plasma-chemistry: an emerging field of polymer science. Progress in polymer science, 2004. 29(8): p. 815-885. 80. Lieberman, M.A. and A.J. Lichtenberg, Principles of plasma discharges and materials processing. MRS Bulletin, 1994. 30(12): p. 899-901. 81. Winter, J., R. Brandenburg, and K.-D. Weltmann, Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Science and Technology, 2015. 24(6): p. 064001. 82. Jeong, J., et al., Etching materials with an atmospheric-pressure plasma jet. Plasma Sources Science and Technology, 1998. 7(3): p. 282. 83. Penkov, O.V., et al., A review of recent applications of atmospheric pressure plasma jets for materials processing. Journal of Coatings Technology and Research, 2015. 12: p. 225-235. 84. Fanelli, F. and F. Fracassi, Atmospheric pressure non-equilibrium plasma jet technology: general features, specificities and applications in surface processing of materials. Surface and Coatings Technology, 2017. 322: p. 174-201. 85. Kogelschatz, U., Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma chemistry and plasma processing, 2003. 23(1): p. 1-46. 86. Brandenburg, R., Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Science and Technology, 2017. 26(5): p. 053001. 87. Hong, R., et al., Effect of air dielectric barrier discharge plasma treatment on the adhesion property of sanded polyphenylene sulfide. High Performance Polymers, 2016. 28(6): p. 641-650. 88. Novák, I., V. Pollak, and I. Chodák, Study of surface properties of polyolefins modified by corona discharge plasma. Plasma Processes and Polymers, 2006. 3(4‐5): p. 355-364. 89. Chen, J. and J.H. Davidson, Ozone production in the positive DC corona discharge: Model and comparison to experiments. Plasma chemistry and plasma processing, 2002. 22: p. 495-522. 90. Subedi, D.P., U.M. Joshi, and C.S. Wong, Dielectric barrier discharge (DBD) plasmas and their applications. Plasma science and technology for emerging economies: an AAAPT experience, 2017: p. 693-737. 91. Grennan, K., A. J. Killard, and M. R. Smyth, Physical Characterizations of a Screen-Printed Electrode for Use in an Amperometric Biosensor System. Electroanalysis, 2001. 13(8-9): p. 745-750. 92. Arduini, F., et al., Carbon Black-Modified Screen-Printed Electrodes as Electroanalytical Tools. Electroanalysis, 2012. 24(4): p. 743-751. 93. Metters, J.P., R.O. Kadara, and C.E. Banks, New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst, 2011. 136(6): p. 1067-1076. 94. Kang, H.-J. and J.-H. Kim, Removal of residual toluene and methyl tertiary butyl ether from amorphous paclitaxel by simple rotary evaporation with alcohol pretreatment. Biotechnology and bioprocess engineering, 2020. 25: p. 86-93. 95. Lemaire, C., et al., Solid phase extraction—an alternative to the use of rotary evaporators for solvent removal in the rapid formulation of PET radiopharmaceuticals. Journal of Labelled Compounds and Radiopharmaceuticals: The Official Journal of the International Isotope Society, 1999. 42(1): p. 63-75. 96. Mahnaj, T., S.U. Ahmed, and F.M. Plakogiannis, Characterization of ethyl cellulose polymer. Pharmaceutical development and technology, 2013. 18(5): p. 982-989. 97. Maharaj, F.D., et al., Exploring Real-World Applications of Electrochemistry by Constructing a Rechargeable Lithium-Ion Battery. Journal of Chemical Education, 2019. 96(12): p. 3014-3017. 98. Song, J., et al., Two-and three-electrode impedance spectroscopy of lithium-ion batteries. Journal of Power Sources, 2002. 111(2): p. 255-267. 99. Mathis, T.S., et al., Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Advanced Energy Materials, 2019. 9(39): p. 1902007. 100. Kolthoff, I. and F. Thomas, Electrode Potentials in Acetonitrile. Estimation of the Liquid Junction Potential between Acetonitrile Solutions and the Aqueous Saturated Calomel Electrode1. The Journal of Physical Chemistry, 1965. 69(9): p. 3049-3058. 101. Kalambate, P.K., et al., High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy carbon electrode. Journal of Power Sources, 2015. 276: p. 262-270. 102. Hsia, B., Materials synthesis and characterization for micro-supercapacitor applications. 2013: University of California, Berkeley. 103. Tseng, C.-H., et al., Electropolymerized poly (3, 4-ethylenedioxythiophene)/screen-printed reduced graphene oxide–chitosan bilayer electrodes for flexible supercapacitors. ACS omega, 2021. 6(25): p. 16455-16464. 104. Christen, T. and M.W. Carlen, Theory of Ragone plots. Journal of power sources, 2000. 91(2): p. 210-216. 105. Gao, L. and T.J. McCarthy, Contact angle hysteresis explained. Langmuir, 2006. 22(14): p. 6234-6237. 106. Butt, H.-J., et al., Contact angle hysteresis. Current Opinion in Colloid & Interface Science, 2022. 59: p. 101574. 107. Brodusch, N., H. Demers, and R. Gauvin, Field emission scanning electron microscopy: New perspectives for materials characterization. 2018: Springer. 108. Mohammed, A. and A. Abdullah. Scanning electron microscopy (SEM): A review. in Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania. 2018. 109. Noll, B.C., Bragg’s Law. 110. Whittig, L. and W. Allardice, X‐ray diffraction techniques. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 1986. 5: p. 331-362. 111. Aggarwal, S. and G. Tilley, Determination of crystallinity in polyethylene by X‐ray diffractometer. Journal of polymer Science, 1955. 18(87): p. 17-26. 112. Wang, X., et al., Structure, photoluminescence and abnormal thermal quenching behavior of Eu 2+-doped Na 3 Sc 2 (PO 4) 3: a novel blue-emitting phosphor for n-UV LEDs. Journal of Materials Chemistry C, 2016. 4(37): p. 8795-8801. 113. Huo, H., et al., In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries. Nano Energy, 2019. 61: p. 119-125. 114. Genetu Teggen, L., Material identification using X-ray diffraction. 2019. 115. Shard, A.G., X-ray photoelectron spectroscopy, in Characterization of Nanoparticles. 2020, Elsevier. p. 349-371. 116. Wu, M., et al., Redox deposition of manganese oxide on graphite for supercapacitors. Electrochemistry Communications, 2004. 6(5): p. 499-504. 117. Afif, A., et al., Advanced materials and technologies for hybrid supercapacitors for energy storage–A review. Journal of Energy Storage, 2019. 25: p. 100852. 118. Gopi, C.V.M., R. Ramesh, and H.-J. Kim, Designing nanosheet manganese cobaltate@ manganese cobaltate nanosheet arrays as a battery-type electrode material towards high-performance supercapacitors. Journal of Energy Storage, 2022. 47: p. 103603. 119. Aderyani, S., et al., Simulation of cyclic voltammetry in structural supercapacitors with pseudocapacitance behavior. Electrochimica Acta, 2021. 390: p. 138822. 120. Davoglio, R.A., et al., Synthesis and characterization of α-MnO2 nanoneedles for electrochemical supercapacitors. Electrochimica Acta, 2018. 261: p. 428-435. 121. He, S. and W. Chen, Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors. Journal of power sources, 2015. 294: p. 150-158. 122. Guo, Y., et al., Facile preparation of high-performance cobalt–manganese layered double hydroxide/polypyrrole composite for battery-type asymmetric supercapacitors. Journal of Alloys and Compounds, 2020. 832: p. 154899. 123. Elkholy, A.E., F.E.-T. Heakal, and N.K. Allam, Nanostructured spinel manganese cobalt ferrite for high-performance supercapacitors. RSC advances, 2017. 7(82): p. 51888-51895. 124. Sharma, P. and V. Kumar, Investigation of the behaviour of supercapacitors using theoretical models. Physica B: Condensed Matter, 2021. 619: p. 413212. 125. Javed, M.S., et al., Design and fabrication of bimetallic oxide nanonest-like structure/carbon cloth composite electrode for supercapacitors. Ceramics International, 2021. 47(21): p. 30747-30755. 126. Sun, D., et al., Efficient utilization of oxygen-vacancies-enabled NiCo2O4 electrode for high-performance asymmetric supercapacitor. Electrochimica Acta, 2018. 279: p. 269-278. 127. Lin, J., et al., Effect of carbon paper substrate of the gas diffusion layer on the performance of proton exchange membrane fuel cell. Electrochimica acta, 2010. 55(8): p. 2746-2751. 128. Levi, E., et al., In situ XRD study of Li deintercalation from two different types of LiMn2O4 spinel. Solid State Ionics, 1999. 126(1-2): p. 109-119. 129. Matei Ghimbeu, C., et al., Template-derived high surface area λ-MnO 2 for supercapacitor applications. Journal of Applied Electrochemistry, 2014. 44: p. 123-132. 130. Şahan, H., et al., Effect of the Cr2O3 coating on electrochemical properties of spinel LiMn2O4 as a cathode material for lithium battery applications. Solid State Ionics, 2010. 181(31-32): p. 1437-1444. 131. Augustyn, V., P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 2014. 7(5): p. 1597-1614. 132. Du, W., et al., Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochimica Acta, 2019. 296: p. 907-915. 133. Zhao, C., et al., Solar-assisting pyrolytically reclaimed carbon fiber and their hybrids of MnO2/RCF for supercapacitor electrodes. Carbon, 2017. 114: p. 230-241. 134. Ilton, E.S., et al., XPS determination of Mn oxidation states in Mn (hydr) oxides. Applied Surface Science, 2016. 366: p. 475-485. 135. Murray, J.W., et al., Oxidation of Mn (II): Initial mineralogy, oxidation state and ageing. Geochimica et Cosmochimica Acta, 1985. 49(2): p. 463-470. 136. Biesinger, M.C., et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 2011. 257(7): p. 2717-2730. 137. Mariappan, C., et al., Synthesis and electrochemical properties of rGO/polypyrrole/ferrites nanocomposites obtained via a hydrothermal route for hybrid aqueous supercapacitors. Journal of Electroanalytical Chemistry, 2019. 845: p. 72-83. 138. Priyadharsini, N., et al., Sol-gel synthesis, structural refinement, and electrochemical properties of potassium manganese phosphate for supercapacitors. Ionics, 2018. 24: p. 2073-2082. 139. Ray, A., et al., Study on charge storage mechanism in working electrodes fabricated by sol-gel derived spinel NiMn2O4 nanoparticles for supercapacitor application. Applied Surface Science, 2019. 463: p. 513-525. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93200 | - |
dc.description.abstract | 本研究利用網印機將氯化鋰-硝酸錳漿料作為活性電極材料網印至由碳布作為電極的基材上,並使用常壓噴射式電漿(Atmospheric Pressure Plasma Jet, APPJ)將漿料燒結至碳布纖維上,以作為超級電容的工作電極,並以銀/氯化銀電極(Ag/AgCl)作為參考電極和使用白金作為對電極,且使用了硫酸鋰(Li2SO4)溶液作為電解液進行三電極系統電化學分析。其中,與利用以相同製程溫度、時間參數的爐管作為熱製程燒結之超級電容進行比較。
為了評估比較鋰錳氧化物超級電容器的性能,運用了循環伏安法(CV)和恆電流充放電法(GCD)等多種方法進行性能量測。電化學實驗结果表明,使用APPJ製程的鋰錳氧化物超級電容器表現出相似於擬電容(PC)效應,而使用爐管製程的超級電容器則較為類似於battery-type的超級電容,其電化學行為更類似於電池。在材料分析方面,從XRD測試中,經APPJ燒結的Li-Mn氧化物結晶度較低,而經爐管處理的Li-Mn氧化物則是較為類似於LiMn2O4結晶相。在SEM中也能發現在碳布基材上,氧化物型態的明顯不同,這可能是導致電化學上的差異的主要原因。 此外,使用APPJ燒結之鋰錳氧化物超級電容電極用於製造鈕扣電池型超級電容器,並使用雙電極系統進行電化學分析,其電解質則是使用1-M Li2SO4凝膠電解質,經測試,使用APPJ燒結之鋰錳氧化物鈕扣電池式超級電容器最大的面積電容量為89.3mF/cm2。 | zh_TW |
dc.description.abstract | This study utilizes a screen printing process to deposit lithium chloride-manganese nitrate paste as the active electrode material onto a carbon cloth substrate, and employs Atmospheric Pressure Plasma Jet (APPJ) to sinter the paste onto the carbon cloth fibers, serving as the working electrode for a supercapacitor. Ag/AgCl are used as reference electrodes, and Pt is used as the counter electrode. Lithium sulfate (Li2SO4) solution is utilized as the liquid electrolyte for electrochemical analysis in a three-electrode system. A comparison is made with supercapacitors processed the same temperature and time parameters in a tube furnace.
To assess the performance of the lithium manganese oxide supercapacitors, various methods such as cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) are employed for performance measurements. Electrochemical experiments indicate that the lithium manganese oxide supercapacitors fabricated using the APPJ process exhibit a behavior similar to pseudocapacitance (PC), whereas those fabricated using the tube furnace process resemble more of a battery-type supercapacitor, with electrochemical behavior resembling that of a battery. Material analysis reveals differences in crystallinity from XRD testing, with lower crystallinity observed in Li-Mn oxides processed by APPJ compared to those treated in a tube furnace, which exhibit crystalline phases of LiMn2O4. SEM images also show distinct oxide morphologies on the carbon cloth substrate, potentially the primary cause for the observed electrochemical differences. Furthermore, the lithium manganese oxide supercapacitor electrodes processed by APPJ are utilized in the fabrication of coin-battery type supercapacitors, and electrochemical analysis is conducted using a dual-electrode system with a 1-M Li2SO4 gel electrolyte. The result reveals a maximum areal capacitance of 89.3 mF/cm2 for the button-type supercapacitors sintered using APPJ. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:15:41Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-23T16:15:42Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 ii
摘要 iii Abstract iv 目次 vi 圖次 ix 表次 xi 1 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文大綱 4 2 第二章 理論與文獻回顧 5 2.1 超級電容器 5 2.1.1 超級電容器之發展 5 2.1.2 超級電容器之儲能機制原理 7 2.1.3 超級電容器之電解質 11 2.1.4 二氧化錳 14 2.1.5 碳纖維布 15 2.2 常壓電漿 16 2.2.1 電漿原理及介紹 16 2.2.2 常壓電漿之原理及應用 19 3 第三章 實驗流程與各項儀器 22 3.1 實驗藥品與儀器 22 3.2 製程儀器 25 3.2.1 氣壓式網版印刷機 25 3.2.2 迴旋濃縮儀 26 3.2.3 液壓鈕扣電池封口機 27 3.3 實驗流程 28 3.3.1 調配硝酸錳-氯化鋰-乙基纖維素之混和漿料 28 3.3.2 鋰錳氧化物超級電容之電極製備 29 3.3.3 鋰錳氧化物鈕扣電池式超級電容製備 31 3.4 分析儀器 32 3.4.1 電化學工作站 32 3.4.2 水接觸角量測儀 37 3.4.3 場發射鎗掃描式電子顯微鏡 38 3.4.4 X射線繞射儀 39 3.4.5 X射線光電子能譜儀 41 4 第四章 結果與討論 43 4.1 鋰錳氧化物電極之電化學分析 43 4.1.1 循環伏安法分析 43 4.1.2 恆電流充放電分析 46 4.2 鋰錳氧化物電極之穩定性量測 50 4.3 鋰錳氧化物電極之親水性分析 51 4.4 鋰錳氧化物電極之表面型態 53 4.5 鋰錳氧化物電極之結晶性分析 56 4.6 鋰錳氧化物電極之表面化學型態量測 57 4.7 鋰錳氧化物鈕扣式超級電容之電化學分析 63 4.7.1 循環伏安法分析 63 4.7.2 恆電流充放電分析 66 4.8 鋰錳氧化物鈕扣式超級電容之穩定性量測 68 5 第五章 結論 69 6 參考文獻 71 | - |
dc.language.iso | zh_TW | - |
dc.title | 常壓噴射電漿製備鋰錳氧化物鈕扣式電池超級電容 | zh_TW |
dc.title | Atmospheric pressure plasma jet processed LiMnOx coin-battery type supercapacitors | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳奕君;羅世強;王孟菊 | zh_TW |
dc.contributor.oralexamcommittee | I-Chun Cheng;Shyh-Chyang Luo;Meng-Jiy Wang | en |
dc.subject.keyword | 超級電容器,鋰錳氧化物超級電容器,鈕扣電池式超級電容,常壓噴射式電漿(APPJ), | zh_TW |
dc.subject.keyword | supercapacitor,Li-ion manganese oxide supercapacitors,coin-battery type supercapacitors,Atmospheric Pressure Plasma Jet (APPJ), | en |
dc.relation.page | 81 | - |
dc.identifier.doi | 10.6342/NTU202401808 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-07-18 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 5.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。