Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93195
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡豐羽zh_TW
dc.contributor.advisorFeng-Yu Tsaien
dc.contributor.author鄭喬宇zh_TW
dc.contributor.authorChiao-Yu Chengen
dc.date.accessioned2024-07-23T16:14:12Z-
dc.date.available2024-09-24-
dc.date.copyright2024-07-23-
dc.date.issued2023-
dc.date.submitted2024-05-13-
dc.identifier.citation1. de Levie, R., The electrolysis of water. Journal of electroanalytical chemistry (1992) 1999, 476 (1), 92-93.
2. Li, Y.; Zhou, L.; Guo, S., Noble metal-free electrocatalytic materials for water splitting in alkaline electrolyte. EnergyChem 2021, 3 (2), 100053.
3. Sheng, W.; Myint, M.; Chen, J. G.; Yan, Y., Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy & Environmental Science 2013, 6 (5), 1509-1512.
4. Wang, R.; Chen, Z.; Hu, N.; Xu, C.; Shen, Z.; Liu, J., Nanocarbon‐based electrocatalysts for rechargeable aqueous Li/Zn‐air batteries. ChemElectroChem 2018, 5 (14), 1745-1763.
5. Li, J.; Bhatt, P. M.; Li, J.; Eddaoudi, M.; Liu, Y., Recent progress on microfine design of metal–organic frameworks: structure regulation and gas sorption and separation. Advanced Materials 2020, 32 (44), 2002563.
6. Li, A.-L.; Gao, Q.; Xu, J.; Bu, X.-H., Proton-conductive metal-organic frameworks: Recent advances and perspectives. Coordination Chemistry Reviews 2017, 344, 54-82.
7. Kaneti, Y. V.; Tang, J.; Salunkhe, R. R.; Jiang, X.; Yu, A.; Wu, K. C. W.; Yamauchi, Y., Nanoarchitectured design of porous materials and nanocomposites from metal‐organic frameworks. Advanced materials 2017, 29 (12), 1604898.
8. Kim, H.; Hong, C. S., MOF-74-type frameworks: Tunable pore environment and functionality through metal and ligand modification. CrystEngComm 2021, 23 (6), 1377-1387.
9. Xing, J.; Guo, K.; Zou, Z.; Cai, M.; Du, J.; Xu, C., In situ growth of well-ordered NiFe-MOF-74 on Ni foam by Fe 2+ induction as an efficient and stable electrocatalyst for water oxidation. Chemical Communications 2018, 54 (51), 7046-7049.
10. Lim, K. S.; Lee, W. R.; Lee, H. G.; Kang, D. W.; Song, J. H.; Hilgar, J.; Rinehart, J. D.; Moon, D.; Hong, C. S., Control of Interchain Antiferromagnetic Coupling in Porous Co (II)-Based Metal–Organic Frameworks by Tuning the Aromatic Linker Length: How Far Does Magnetic Interaction Propagate? Inorganic Chemistry 2017, 56 (13), 7443-7448.
11. Sladekova, K.; Campbell, C.; Grant, C.; Fletcher, A. J.; Gomes, J. R.; Jorge, M., The effect of atomic point charges on adsorption isotherms of CO 2 and water in metal organic frameworks. Adsorption 2020, 26, 663-685.
12. Zhang, M.; Xu, W.; Li, T.; Zhu, H.; Zheng, Y., In situ growth of tetrametallic FeCoMnNi-MOF-74 on nickel foam as efficient bifunctional electrocatalysts for the evolution reaction of oxygen and hydrogen. Inorganic Chemistry 2020, 59 (20), 15467-15477.
13. Wang, X.; Xiao, H.; Li, A.; Li, Z.; Liu, S.; Zhang, Q.; Gong, Y.; Zheng, L.; Zhu, Y.; Chen, C., Constructing NiCo/Fe3O4 heteroparticles within MOF-74 for efficient oxygen evolution reactions. Journal of the American Chemical Society 2018, 140 (45), 15336-15341.
14. Zhang, H.; Maijenburg, A. W.; Li, X.; Schweizer, S. L.; Wehrspohn, R. B., Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Advanced Functional Materials 2020, 30 (34), 2003261.
15. Li, Y.; Li, R.; Wang, D.; Xu, H.; Meng, F.; Dong, D.; Jiang, J.; Zhang, J.; An, M.; Yang, P., A review: Target-oriented transition metal phosphide design and synthesis for water splitting. International Journal of Hydrogen Energy 2021, 46 (7), 5131-5149.
16. Kang, Q.; Li, M.; Shi, J.; Lu, Q.; Gao, F., A universal strategy for carbon-supported transition metal phosphides as high-performance bifunctional electrocatalysts towards efficient overall water splitting. ACS applied materials & interfaces 2020, 12 (17), 19447-19456.
17. Beltrán-Suito, R.; Menezes, P. W.; Driess, M., Amorphous outperforms crystalline nanomaterials: surface modifications of molecularly derived CoP electro (pre) catalysts for efficient water-splitting. Journal of Materials Chemistry A 2019, 7 (26), 15749-15756.
18. Sial, M. A. Z. G.; Lin, H.; Wang, X., Microporous 2D NiCoFe phosphate nanosheets supported on Ni foam for efficient overall water splitting in alkaline media. Nanoscale 2018, 10 (27), 12975-12980.
19. Meng, C.; Gao, Y.-F.; Chen, X.-M.; Li, Y.-X.; Lin, M.-C.; Zhou, Y., Activating inert ZnO by surface cobalt doping for efficient water oxidation in neutral media. ACS Sustainable Chemistry & Engineering 2019, 7 (21), 18055-18060.
20. García‐Mota, M.; Vojvodic, A.; Metiu, H.; Man, I. C.; Su, H. Y.; Rossmeisl, J.; Nørskov, J. K., Tailoring the Activity for Oxygen Evolution Electrocatalysis on Rutile TiO2 (110) by Transition‐Metal Substitution. ChemCatChem 2011, 3 (10), 1607-1611.
21. Liang, X.; Zheng, B.; Chen, L.; Zhang, J.; Zhuang, Z.; Chen, B., MOF-derived formation of Ni2P–CoP bimetallic phosphides with strong interfacial effect toward electrocatalytic water splitting. ACS applied materials & interfaces 2017, 9 (27), 23222-23229.
22. Bae, S. H.; Kim, J. E.; Randriamahazaka, H.; Moon, S. Y.; Park, J. Y.; Oh, I. K., Seamlessly conductive 3D nanoarchitecture of core–shell Ni‐Co nanowire network for highly efficient oxygen evolution. Advanced Energy Materials 2017, 7 (1), 1601492.
23. Wan, C.; Jin, J.; Wei, X.; Chen, S.; Zhang, Y.; Zhu, T.; Qu, H., Inducing the SnO2-based electron transport layer into NiFe LDH/NF as efficient catalyst for OER and methanol oxidation reaction. Journal of Materials Science & Technology 2022, 124, 102-108.
24. Zhang, L.; Li, H.; Yang, B.; Han, N.; Wang, Y.; Zhang, Z.; Zhou, Y.; Chen, D.; Gao, Y., Promote the electrocatalysis activity of amorphous FeOOH to oxygen evolution reaction by coupling with ZnO nanorod array. Journal of Solid State Electrochemistry 2020, 24, 905-914.
25. Lv, D.; Su, S.; Zhang, S.; Cai, D., Heterostructured ultrafine metal oxides nanoparticles anchored on Co-MOF nanosheets obtained by partial pyrolysis for promoted oxygen evolution reaction. Journal of Alloys and Compounds 2022, 912, 165143.
26. Ogundipe, T. O.; Shen, L.; Shi, Y.; Lu, Z.; Wang, Z.; Tan, H.; Yan, C., Nickel-cobalt phosphide terephthalic acid nano-heterojunction as excellent bifunctional electrocatalyst for overall water splitting. Electrochimica Acta 2022, 421, 140484.
27. Li, L.; Li, X.; Ai, L.; Jiang, J., MOF-derived nanostructured cobalt phosphide assemblies for efficient hydrogen evolution reaction. RSC advances 2015, 5 (110), 90265-90271.
28. Lei, H.; Liang, Y.; Cen, G.; Liu, B.-t.; Tan, S.; Wang, Z.; Mai, W., Atomic layer deposited Al 2 O 3 layer confinement: an efficient strategy to synthesize durable MOF-derived catalysts toward the oxygen evolution reaction. Inorganic Chemistry Frontiers 2021, 8 (6), 1432-1438.
29. Zhang, D.; Liang, W.; Sharma, A.; Butson, J. D.; Saraswathyvilasam, A. G.; Beck, F. J.; Catchpole, K. R.; Karuturi, S., Ultrathin HfO2 passivated silicon photocathodes for efficient alkaline water splitting. Applied Physics Letters 2021, 119 (19), 193901.
30. Reed, P. J.; Mehrabi, H.; Schichtl, Z. G.; Coridan, R. H., Enhanced electrochemical stability of TiO2-protected, Al-doped ZnO transparent conducting oxide synthesized by atomic layer deposition. ACS applied materials & interfaces 2018, 10 (50), 43691-43698.
31. Zhu, S.; Liu, J.; Sun, J., Growth of ultrathin SnO2 on carbon nanotubes by atomic layer deposition and their application in lithium ion battery anodes. Applied Surface Science 2019, 484, 600-609.
32. Zhang, Y.; Jia, G.; Wang, H.; Ouyang, B.; Rawat, R. S.; Fan, H. J., Ultrathin CNTs@ FeOOH nanoflake core/shell networks as efficient electrocatalysts for the oxygen evolution reaction. Materials Chemistry Frontiers 2017, 1 (4), 709-715.
33. Si, Y.; Wang, W.; El-Sayed, E.-S. M.; Yuan, D., Use of breakthrough experiment to evaluate the performance of hydrogen isotope separation for metal-organic frameworks M-MOF-74 (M= Co, Ni, Mg, Zn). Science China Chemistry 2020, 63, 881-889.
34. Xiao, T.; Liu, D., The most advanced synthesis and a wide range of applications of MOF-74 and its derivatives. Microporous and Mesoporous Materials 2019, 283, 88-103.
35. Diaz-Garcia, M.; Mayoral, A.; Diaz, I.; Sanchez-Sanchez, M., Nanoscaled M-MOF-74 materials prepared at room temperature. Crystal growth & design 2014, 14 (5), 2479-2487.
36. Li, F. L.; Wang, P.; Huang, X.; Young, D. J.; Wang, H. F.; Braunstein, P.; Lang, J. P., Large‐scale, bottom‐up synthesis of binary metal–organic framework nanosheets for efficient water oxidation. Angewandte Chemie 2019, 131 (21), 7125-7130.
37. Jodłowski, P.; Kurowski, G.; Dymek, K.; Jędrzejczyk, R.; Jeleń, P.; Gancarczyk, A.; Węgrzynowicz, A.; Sawoszczuk, T.; Sitarz, M., In situ deposition of M (M= Zn; Ni; Co)-MOF-74 over structured carriers for cyclohexene oxidation-Spectroscopic and microscopic characterisation. Microporous and Mesoporous Materials 2020, 303, 110249.
38. Nijem, N.; Canepa, P.; Kong, L.; Wu, H.; Li, J.; Thonhauser, T.; Chabal, Y. J., Spectroscopic characterization of van der Waals interactions in a metal organic framework with unsaturated metal centers: MOF-74–Mg. Journal of Physics: Condensed Matter 2012, 24 (42), 424203.
39. Yang, J.; Guo, D.; Zhao, S.; Lin, Y.; Yang, R.; Xu, D.; Shi, N.; Zhang, X.; Lu, L.; Lan, Y. Q., Cobalt phosphides nanocrystals encapsulated by P‐doped carbon and married with P‐doped graphene for overall water splitting. Small 2019, 15 (10), 1804546.
40. Li, G.; Chen, H.; Zhang, B.; Guo, H.; Chen, S.; Chang, X.; Wu, X.; Zheng, J.; Li, X., Interfacial covalent bonding enables transition metal phosphide superior lithium storage performance. Applied Surface Science 2022, 582, 152404.
41. Ramana, C.; Ait-Salah, A.; Utsunomiya, S.; Becker, U.; Mauger, A.; Gendron, F.; Julien, C., Structural characteristics of lithium nickel phosphate studied using analytical electron microscopy and Raman spectroscopy. Chemistry of materials 2006, 18 (16), 3788-3794.
42. Saadi, F. H.; Carim, A. I.; Verlage, E.; Hemminger, J. C.; Lewis, N. S.; Soriaga, M. P., CoP as an acid-stable active electrocatalyst for the hydrogen-evolution reaction: electrochemical synthesis, interfacial characterization and performance evaluation. The Journal of Physical Chemistry C 2014, 118 (50), 29294-29300.
43. Chen, B.; Kim, D.; Zhang, Z.; Lee, M.; Yong, K., MOF-derived NiCoZnP nanoclusters anchored on hierarchical N-doped carbon nanosheets array as bifunctional electrocatalysts for overall water splitting. Chemical Engineering Journal 2021, 422, 130533.
44. Wang, D.; Zhang, Y.; Fei, T.; Mao, C.; Song, Y.; Zhou, Y.; Dong, G., NiCoP/NF 1D/2D biomimetic architecture for markedly enhanced overall water splitting. ChemElectroChem 2021, 8 (16), 3064-3072.
45. Yan, L.; Cao, L.; Dai, P.; Gu, X.; Liu, D.; Li, L.; Wang, Y.; Zhao, X., Metal‐organic frameworks derived nanotube of nickel–cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting. Advanced Functional Materials 2017, 27 (40), 1703455.
46. Wang, T.; Zhou, Q.; Wang, X.; Zheng, J.; Li, X., MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A 2015, 3 (32), 16435-16439.
47. Li, C.; Li, X.-J.; Zhao, Z.-Y.; Li, F.-L.; Xue, J.-Y.; Niu, Z.; Gu, H.-W.; Braunstein, P.; Lang, J.-P., Iron-doped NiCo-MOF hollow nanospheres for enhanced electrocatalytic oxygen evolution. Nanoscale 2020, 12 (26), 14004-14010.
48. Wang, M.; Weng, G.-M.; Yasin, G.; Kumar, M.; Zhao, W., A high-performance tin phosphide/carbon composite anode for lithium-ion batteries. Dalton Transactions 2020, 49 (46), 17026-17032.
49. Shifa, T. A.; Yusupov, K.; Solomon, G.; Gradone, A.; Mazzaro, R.; Cattaruzza, E.; Vomiero, A., In situ-generated oxide in Sn-doped nickel phosphide enables ultrafast oxygen evolution. ACS Catalysis 2021, 11 (8), 4520-4529.
50. Chen, M.; Shao, L.-L.; Wang, X.-Q.; Qian, X.; Yuan, Z.-Y.; Fang, L.-X.; Ding, A.-X.; Lv, X.-W.; Wang, Y.-N., Controlled synthesis of highly active nonstoichiometric tin phosphide/carbon composites for electrocatalysis and electrochemical energy storage applications. ACS Sustainable Chemistry & Engineering 2022, 10 (4), 1482-1498.
51. Jamesh, M.-I.; Sun, X., Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting–A review. Journal of Power Sources 2018, 400, 31-68.
52. Cardoso, J.; Šljukić, B.; Kayhan, E.; Sequeira, C.; Santos, D., Palladium-nickel on tin oxide-carbon composite supports for electrocatalytic hydrogen evolution. Catalysis Today 2020, 357, 302-310.
53. Lu, X.; Yu, T.; Wang, H.; Luo, R.; Liu, P.; Yuan, S.; Qian, L., Self-Supported Nanoporous Gold with Gradient Tin Oxide for Sustainable and Efficient Hydrogen Evolution in Neutral Media. Journal of Renewable Materials 2020, 8 (2), 133.
54. Dung, D. T.; Roh, E.; Ji, S.; Yuk, J. M.; Kim, J.-H.; Kim, H.; Lee, S.-M., Ni/Co/Co 3 O 4@ C nanorods derived from a MOF@ MOF hybrid for efficient overall water splitting. Nanoscale 2023.
55. Gong, M.; Zhou, W.; Tsai, M.-C.; Zhou, J.; Guan, M.; Lin, M.-C.; Zhang, B.; Hu, Y.; Wang, D.-Y.; Yang, J., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature communications 2014, 5 (1), 4695.
56. Zhang, C.; Xiao, J.; Lv, X.; Qian, L.; Yuan, S.; Wang, S.; Lei, P., Hierarchically porous Co 3 O 4/C nanowire arrays derived from a metal–organic framework for high performance supercapacitors and the oxygen evolution reaction. Journal of Materials Chemistry A 2016, 4 (42), 16516-16523.
57. Duan, J.; Chen, S.; Vasileff, A.; Qiao, S. Z., Anion and cation modulation in metal compounds for bifunctional overall water splitting. ACS nano 2016, 10 (9), 8738-8745.
58. Guan, C.; Xiao, W.; Wu, H.; Liu, X.; Zang, W.; Zhang, H.; Ding, J.; Feng, Y. P.; Pennycook, S. J.; Wang, J., Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 2018, 48, 73-80.
59. Yang, L.; Liu, R.; Jiao, L., Electronic redistribution: construction and modulation of interface engineering on CoP for enhancing overall water splitting. Advanced Functional Materials 2020, 30 (14), 1909618.
60. Yu, F.; Zhou, H.; Huang, Y.; Sun, J.; Qin, F.; Bao, J.; Goddard III, W. A.; Chen, S.; Ren, Z., High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nature communications 2018, 9 (1), 2551.
61. Sun, X.; Wei, P.; He, Z.; Cheng, F.; Tang, L.; Li, Q.; Han, J.; He, J., Novel transition-metal phosphides@ N, P-codoped carbon electrocatalysts synthesized via a universal strategy for overall water splitting. Journal of Alloys and Compounds 2023, 932, 167253.
62. Zhang, Y.; Liu, H.; Ge, R.; Yang, J.; Li, S.; Liu, Y.; Feng, L.; Li, Y.; Zhu, M.; Li, W., Mo-induced in-situ architecture of NixCoyP/Co2P heterostructure nano-networks on nickel foam as bifunctional electrocatalysts for overall water splitting. Sustainable Materials and Technologies 2022, 33, e00461.
63. Sun, Y.; Liu, T.; Li, Z.; Meng, A.; Li, G.; Wang, L.; Li, S., Morphology and interfacial charge regulation strategies constructing 3D flower-like Co@ CoP2 heterostructure electrocatalyst for efficient overall water splitting. Chemical Engineering Journal 2022, 433, 133684.
64. Chen, N.; Che, S.; Yuan, Y.; Liu, H.; Ta, N.; Li, G.; Chen, F. J.; Ma, G.; Jiang, B.; Wu, N., Self-supporting electrocatalyst constructed from in-situ transformation of Co (OH) 2 to metal-organic framework to Co/CoP/NC nanosheets for high-current-density water splitting. Journal of Colloid and Interface Science 2023, 645, 513-524.
65. Du, C.; Yang, L.; Yang, F.; Cheng, G.; Luo, W., Nest-like NiCoP for highly efficient overall water splitting. Acs Catalysis 2017, 7 (6), 4131-4137.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93195-
dc.description.abstract近年來,金屬有機骨架材料(MOFs)因其卓越的孔隙性能和極高的表面積,在水分解領域受到廣泛關注,常被用作水分解電極的材料或電極前驅物。本研究針對此課題,運用原子層沉積技術(ALD)成功沉積氧化錫層於改善三元金屬鎳鈷鐵MOF-74的水解性能。經實驗驗證,我們觀察到經ALD處理的MOFP/SnO2/NF樣品表現出優異的電化學性能,其析氧反應(OER)的過電位僅為243 mV,同時具有卓越的析氫反應(HER)活性,其過電位僅為80 mV。這優越的OER表現歸因於ALD沉積的氧化錫層的影響。X射線光電子能譜(XPS)分析結果表明,氧化錫層的引入可調節MOF中金屬的電子環境,提高金屬的價數,從而改善OER反應的效能。此外,在HER方面,ALD氧化錫層為反應提供更多的水分子吸附位置。因而提升水分解效率。為了實現ALD製程的最佳化與時間節省,我們通過調整ALD週期數量,控制了氧化錫層的厚度。研究結果表明,在進行了15個ALD循環後,僅需10分鐘的ALD處理,即可達到最佳的改善水分解反應效果。zh_TW
dc.description.abstractMetal oxide-modified metal-organic frameworks (MOFs) have recently garnered attention as versatile precursors for fabrication of functional MOF derivatives for use as electrocatalysts for water electrolysis. In this study, we employed atomic layer deposition (ALD) to modify the surface of electrocatalysts based on phosphorized NiCoFe-MOF-74 and nickel foam (NF) with SnO2. The resulting MOF/SnO2/NF composite electrocatalysts exhibited exceptional performance in both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) of alkaline water electrolysis, with low overpotentials of 243 mV and 80 mV at 10 mA/cm2, respectively, and 318 and 162 at 100 mA/cm2, respectively. The remarkable OER performance was attributed to the SnO2 modification layer regulating the electro-chemical environment of MOF. X-ray photoelectron spectroscopy (XPS) analysis provided evidence of electron transfer from MOF to the SnO2 modification. On the other hand, the enhanced HER performance was attributed to the synergistic effects of the SnO2 modification and the metal sites of the MOF, which facilitated the adsorption of water species on the catalyst's surface. By examining SnO2 modification layers deposited with various numbers of ALD cycles, we found that 15 cycles yielded the lowest overpotentials while also allowing for relatively short processing time. The findings of this work provide valuable insights for the development of high-performance MOF-based electrocatalysts.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:14:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-23T16:14:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
原創性分析聲明書 ii
致謝 iv
摘要 v
Abstract vi
Contents vii
List of Figures ix
List of table xi
Chapter 1 Introduction 1
1.1 Metal-organic framework-based electrocatalysts for water splitting 1
1.1.1 Fundamental mechanism of water splitting reaction 3
1.1.2 Transition metal-organic framework-based electrocatalysts 6
1.1.3 Transition metal phosphides for water splitting 9
1.2 Surface modification on MOF-based electrocatalyst 11
1.2.1 Fundamental mechanism of atomic layer deposition 13
1.2.2 Application of ALD technology on MOF 17
1.3 Motivation and objective statement 19
Chapter 2 Experimental Section 20
2.1 Materials 20
2.2 Synthesis route of MOFP/SnO2/NF 20
2.2.1 Preparation of ALD SnO2/NF 21
2.2.2 Preparation of MOFP/SnO2/NF 21
2.3 Material characteristic analysis 22
2.4 Measurement of electrochemical properties 23
Chapter 3 Results and Discussions 24
3.1 Characteristics of ALD SnO2 thin films for surface-modification of NF substrates 24
3.2 Morphological and compositional characterizations of MOF/NF 26
3.3 Effects of ALD modification on the electrocatalytic properties of MOF/NF 31
3.3.1 HER and OER characteristics of ALD-SnO2-modified MOFP/NF 31
3.3.2 Effects of ALD SnO2 modification on HER and OER performances of MOF/NF electrodes 34
3.3.3 Mechanisms of HER and OER enhancements by ALD SnO2 modification 38
3.3.4 ALD SnO2 modification of MOF’s containing various metal combinations 44
Chapter 4 Conclusion 47
Reference 48
-
dc.language.isoen-
dc.title利用原子沉積技術表面改質金屬有機物框架之衍生物用於水分解反應zh_TW
dc.titleSurface Modification by Atomic Layer Deposition on Metal- Organic Framework-Derived Electrochemical Catalysts for Alkaline Water Splittingen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭錦龍;何國川zh_TW
dc.contributor.oralexamcommitteeChin-Lung Kuo;Kuo-Chuan Hoen
dc.subject.keyword金屬有機框架,原子沉積技術,二氧化錫,析氧反應,析氫反應,zh_TW
dc.subject.keywordmetal organic framework,atomic layer deposition,tin oxide,hydrogen evolution reaction,oxygen evolution reaction,en
dc.relation.page52-
dc.identifier.doi10.6342/NTU202400812-
dc.rights.note未授權-
dc.date.accepted2024-05-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved