請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93182
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉力瑜 | zh_TW |
dc.contributor.advisor | Li-Yu Liu | en |
dc.contributor.author | 李昇峰 | zh_TW |
dc.contributor.author | Sheng-Feng Li | en |
dc.date.accessioned | 2024-07-23T16:10:18Z | - |
dc.date.available | 2024-07-24 | - |
dc.date.copyright | 2024-07-23 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-22 | - |
dc.identifier.citation | Agricultural Insurance Act, (2020), Laws & Regulations Database of The Republic of China. Retrieved from: https://law.moj.gov.tw/
Agricultural Research Institute. (2017). Detailed Soil Map. Retrieved from: https://data.coa.gov.tw/ Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., . . . Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143-147. doi:10.1038/nclimate2470 Basso, B., Liu, L., & Ritchie, J. T. (2016). A Comprehensive Review of the CERES-Wheat, -Maize and -Rice Models' Performances. In Advances in agronomy (Vol. 136, pp. 27-132). San Diego: Elsevier Academic Press Inc. Betts, R. A., Alfieri, L., Bradshaw, C., Caesar, J., Feyen, L., Friedlingstein, P., . . . Wyser, K. (2018). Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5°C and 2°C global warming with a higher-resolution global climate model. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 376(2119), 27. doi:10.1098/rsta.2016.0452 Billaud, O., Vermeersch, R. l., & Porcher, E. (2021). Citizen science involving farmers as a means to document temporal trends in farmland biodiversity and relate them to agricultural practices. Journal of Applied Ecology, 58(2), 261-273. Boote, K. J., Jones, J. W., Hoogenboom, G., & Pickering, N. B. (1998). The CROPGRO model for grain legumes. In G. Y. Tsuji, G. Hoogenboom, & P. K. Thornton (Eds.), Understanding options for agricultural production (pp. 99-128). Dordrecht: Springer Netherlands. Boote, K. J., Rybak, M. R., Scholberg, J. M., & Jones, J. W. (2012). Improving the CROPGRO-tomato model for predicting growth and yield response to temperature. HortScience, 47(8), 1038-1049. Boyd, M., Porth, B., Porth, L., Tan, K. S., Wang, S., & Zhu, W. J. (2020). The design of weather index insurance using principal component regression and partial least squares regression: The case of forage crops. North American Actuarial Journal, 24(3), 355-369. doi:10.1080/10920277.2019.1669055 Brooker, R. W., Bennett, A. E., Cong, W. F., Daniell, T. J., George, T. S., Hallett, P. D., . . . White, P. J. (2015). Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 206(1), 107-117. doi:10.1111/nph.13132 Carriquiry, M. A., Babcock, B. A., & Hart, C. E. (2008). Using a farmer's beta for improved estimation of expected yields. Journal of Agricultural and Resource Economics, 33(1), 52-68. Central Weather Bureau. (2023). Taiwan’s Climate in 2022. Retrieved from https://www.cwa.gov.tw/ Cheema, S. S., Singh, A., & Gritli, H. (2021). Optimal Crop Selection Using Gravitational Search Algorithm. Mathematical Problems in Engineering, 2021, 14. doi:10.1155/2021/5549992 Chen, C.-T. (2004). An efficient irrigation water distribution model in water short environment. (Doctor's Degree). National Taiwan University, Chen, C. S., & Chen, Y. L. (2003). The rainfall characteristics of Taiwan. Monthly Weather Review, 131(7), 1323-1341. Chenu, K., Cooper, M., Hammer, G. L., Mathews, K. L., Dreccer, M. F., & Chapman, S. C. (2011). Environment characterization as an aid to wheat improvement: interpreting genotype-environment interactions by modelling water-deficit patterns in North-Eastern Australia. Journal of Experimental Botany, 62(6), 1743-1755. doi:10.1093/jxb/erq459 Conway, D., & Schipper, E. L. F. (2011). Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Global Environmental Change-Human and Policy Dimensions, 21(1), 227-237. doi:10.1016/j.gloenvcha.2010.07.013 Cooper, M., Voss-Fels, K. P., Messina, C. D., Tang, T., & Hammer, G. L. (2021). Tackling G x E x M interactions to close on-farm yield-gaps: creating novel pathways for crop improvement by predicting contributions of genetics and management to crop productivity. Theoretical and Applied Genetics, 134(6), 1625-1644. doi:10.1007/s00122-021-03812-3 Cruz-Bautista, F., López-Cruz, I. L., Rodríguez, J. C., Ochoa-Meza, A., Ruíz-García, A., & Er-Raki, S. (2024). Irrigation optimization in green asparagus using the AquaCrop model and evolutionary strategy algorithms. Irrigation and Drainage, 73(1), 136-150. doi:10.1002/ird.2853 Dai, A. G. (2011). Drought under global warming: a review. Wiley Interdisciplinary Reviews-Climate Change, 2(1), 45-65. doi:10.1002/wcc.81 Dai, A. G. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3(1), 52-58. doi:10.1038/nclimate1633 Diaz, H. F., & Murnane, R. J. (2008). Climate extremes and society. Cambridge: Cambridge University Press. Ding, Y., Hayes, M. J., & Widhalm, M. (2011). Measuring economic impacts of drought: a review and discussion. Disaster Prevention and Management, 20(4), 434-446. doi:10.1108/09653561111161752 Feleke, H. G., Savage, M. J., & Tesfaye, K. (2021). Calibration and validation of APSIM-Maize, DSSAT CERES-Maize and AquaCrop models for Ethiopian tropical environments. South African Journal of Plant and Soil, 38(1), 36-51. doi:10.1080/02571862.2020.1837271 Fischer, G., Tubiello, F. N., Van Velthuizen, H., & Wiberg, D. A. (2007). Climate change impacts on irrigation water requirements: Effects of mitigation, 1990-2080. Technological Forecasting and Social Change, 74(7), 1083-1107. doi:10.1016/j.techfore.2006.05.021 Gao, S. K., Gu, Q. Q., Gong, X. W., Li, Y. B., Yan, S. F., & Li, Y. Y. (2023). Optimizing water-saving irrigation schemes for rice (Oryza sativa L.) using DSSAT-CERES-Rice model. International Journal of Agricultural and Biological Engineering, 16(2), 142-151. doi:10.25165/j.ijabe.20231602.7361 Gao, Y. J., Wallach, D., Liu, B., Dingkuhn, M., Boote, K. J., Singh, U., . . . Hoogenboom, G. (2020). Comparison of three calibration methods for modeling rice phenology. Agricultural and Forest Meteorology, 280, 12. doi:10.1016/j.agrformet.2019.107785 Hakim, G. J., & Patoux, J. (2018). Weather : a concise introduction. Cambridge, United Kingom: Cambridge University Press. Hilty, J., Muller, B., Pantin, F., & Leuzinger, S. (2021). Plant growth: the What, the How, and the Why. New Phytologist, 232(1), 25-41. doi:10.1111/nph.17610 Holzworth, D. P., Huth, N. I., Devoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., . . . Keating, B. A. (2014). APSIM - Evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 62, 327-350. doi:10.1016/j.envsoft.2014.07.009 Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the National Academy of Sciences, 104(50), 19691-19696. Retrieved from https://www.pnas.org/doi/abs/10.1073/pnas.0701890104 Hsiao, C.-h. (2017). Cabbage industry characteristics and variety types. Taichung: Taichung District Agricultural Research and Extension Station. Retrieved from https://www.tcdares.gov.tw/ Hu, S., Shi, L. S., Huang, K., Zha, Y. Y., Hu, X. L., Ye, H., & Yang, Q. (2019). Improvement of sugarcane crop simulation by SWAP-WOFOST model via data assimilation. Field Crops Research, 232, 49-61. doi:10.1016/j.fcr.2018.12.009 Huang, M. X., Wang, J., Wang, B., Liu, D. L., Feng, P. Y., Yu, Q., . . . Jiang, T. C. (2022). Dominant sources of uncertainty in simulating maize adaptation under future climate scenarios in China. Agricultural Systems, 199, 9. doi:10.1016/j.agsy.2022.103411 Huang, T.-Z. (2022). Using DSSAT to simulate the impact of irrigation scenario on rice yield and produce risk map in Taiwan. (Master's Degree). National Taiwan University, Huntington, T. G. (2006). Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrology, 319(1-4), 83-95. doi:10.1016/j.jhydrol.2005.07.003 IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Retrieved from Geneva, Switzerland: Janni, M., Maestri, E., Gulli, M., Marmiroli, M., & Marmiroli, N. (2024). Plant responses to climate change, how global warming may impact on food security: a critical review. Frontiers in Plant Science, 14, 13. doi:10.3389/fpls.2023.1297569 Jiang, J., & Zhou, T. J. (2023). Agricultural drought over water-scarce Central Asia aggravated by internal climate variability. Nature Geoscience, 16(2), 154. doi:10.1038/s41561-022-01111-0 Jiang, Z. W., Chen, Z. X., Chen, J., Liu, J., Ren, J. Q., Li, Z. N., . . . Li, H. (2014). Application of crop model data assimilation with a particle filter for estimating regional winter wheat yields. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(11), 4422-4431. doi:10.1109/jstars.2014.2316012 Jones, H. G. (2013). Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology (3 ed.). Cambridge: Cambridge University Press. Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., . . . Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3-4), 235-265. doi:10.1016/s1161-0301(02)00107-7 Jumrani, K., & Bhatia, V. S. (2018). Impact of combined stress of high temperature and water deficit on growth and seed yield of soybean. Physiology and Molecular Biology of Plants, 24(1), 37-50. doi:10.1007/s12298-017-0480-5 Kaohsiung District Agricultural Research and Extension Station. (2023). Key points of taro cultivation and management. Kaohsiung: Kaohsiung District Agricultural Research and Extension Station. Retrieved from https://www.kdais.gov.tw/ Karthikeyan, L., Chawla, I., & Mishra, A. K. (2020). A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. Journal of Hydrology, 586, 22. doi:10.1016/j.jhydrol.2020.124905 Kumar, S. V., Mocko, D. M., Wang, S. G., Peters-Lidard, C. D., & Borak, J. (2019). Assimilation of remotely sensed leaf area index into the Noah-MP Land Surface Model: Impacts on water and carbon fluxes and states over the continental United States. Journal of Hydrometeorology, 20(7), 1359-1377. doi:10.1175/jhm-d-18-0237.1 Lana, M. A., Eulenstein, F., Schlindwein, S., Guevara, E., Meira, S., Wurbs, A., . . . Bonatti, M. (2016). Regionalization of climate scenarios impacts on maize production and the role of cultivar and planting date as an adaptation strategy. Regional Environmental Change, 16(5), 1319-1331. doi:10.1007/s10113-015-0860-8 Lin, J.-C., Wu, Y.-J., Huang, J.-C., & Lin, C.-W. (2005). Rational fertilization technology for sweet corn. Tainan: Tainan District Agricultural Research and Extension Station. Retrieved from https://www.tndais.gov.tw/ Liu, H., Pequeno, D. N. L., Hernández-Ochoa, I. M., Krupnik, T. J., Sonder, K., Xiong, W., & Xu, Y. L. (2020). A consistent calibration across three wheat models to simulate wheat yield and phenology in China. Ecological Modelling, 430, 16. doi:10.1016/j.ecolmodel.2020.109132 Lobell, D. B., Bänziger, M., Magorokosho, C., & Vivek, B. (2011). Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 1(1), 42-45. doi:10.1038/nclimate1043 Malik, W., Isla, R., & Dechmi, F. (2019). DSSAT-CERES-maize modelling to improve irrigation and nitrogen management practices under Mediterranean conditions. Agricultural Water Management, 213, 298-308. Marek, G. W., Marek, T. H., Xue, Q., Gowda, P. H., Evett, S. R., & Brauer, D. K. (2017). Simulating evapotranspiration and yield response of selected corn varieties under full and limited irrigation in the Texas High Plains using DSSAT-CERES-Maize. Transactions of the ASABE, 60(3), 837-846. Martin, S. W., Barnett, B. J., & Coble, K. H. (2001). Developing and pricing precipitation insurance. Journal of Agricultural and Resource Economics, 26(1), 261-274. McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Paper presented at the Proceedings of the 8th Conference on Applied Climatology. Millet, E. J., Welcker, C., Kruijer, W., Negro, S., Coupel-Ledru, A., Nicolas, S. D., . . . Tardieu, F. (2016). Genome-Wide analysis of yield in Europe: allelic effects vary with drought and heat scenarios. Plant Physiology, 172(2), 749-764. doi:10.1104/pp.16.00621 Miranda, M. J., & Glauber, J. W. (1997). Systemic risk, reinsurance, and the failure of crop insurance markets. American Journal of Agricultural Economics, 79(1), 206-215. doi:10.2307/1243954 Peng, S. B., Huang, J. L., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X. H., . . . Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 9971-9975. doi:10.1073/pnas.0403720101 Perondi, D., Boote, K., de Souza Nóia Júnior, R., Mulvaney, M., Iboyi, J., & Fraisse, C. (2022). Assessment of soybean yield variability in the southeastern US with the calibration of genetic coefficients from variety trials using CROPGRO‐Soybean. Agronomy Journal, 114(2), 1100-1114. Pietola, K., Myyrä, S., Jauhiainen, L., & Peltonen-Sainio, P. (2011). Predicting the yield of spring wheat by weather indices in Finland: implications for designing weather index insurances. Agricultural and Food Science, 20(4), 269-286. doi:10.23986/afsci.6024 Qiu, R. A., Li, X., Han, G., Xiao, J. F., Ma, X., & Gong, W. (2022). Monitoring drought impacts on crop productivity of the US Midwest with solar-induced fluorescence: GOSIF outperforms GOME-2 SIF and MODIS NDVI, EVI, and NIRv. Agricultural and Forest Meteorology, 323, 13. doi:10.1016/j.agrformet.2022.109038 Rosenzweig, C., & Iglesias, A. (1998). The use of crop models for international climate change impact assessment. Understanding options for agricultural production, 267-292. Ryan, S. F., Adamson, N. L., Aktipis, A., Andersen, L. K., Austin, R., Barnes, L., . . . Dunn, R. R. (2018). The role of citizen science in addressing grand challenges in food and agriculture research. Proceedings of the Royal Society B-Biological Sciences, 285(1891), 10. doi:10.1098/rspb.2018.1977 Shih, K.-C. (2021). Assessment of feasibility to combine DSSAT model and gridded soil information for rice yield prediction. (Master's Degree). National Taiwan University, Singels, A., Jones, M., & van Den Berg, M. (2008). DSSAT v4. 5-canegro sugarcane plant module. South African Sugarcane Research Institute. Singh, U., Tsuji, G., Goenaga, R., & Prasad, H. (1992). Modeling growth and development of taro and tanier. Paper presented at the Proceedings of the workshop on taro and tanier modeling. Honolulu, Hawaii: College of Tropical Agriculture and Human Resources. Skees, J. R. (2000). A role for capital markets in natural disasters: a piece of the food security puzzle. Food Policy, 25(3), 365-378. Sobejano-Paz, V., Mikkelsen, T. N., Baum, A., Mo, X. G., Liu, S. X., Köppl, C. J., . . . García, M. (2020). Hyperspectral and thermal sensing of stomatal conductance, transpiration, and photosynthesis for soybean and maize under drought. Remote Sensing, 12(19), 32. doi:10.3390/rs12193182 Solomon, S., Plattner, G. K., Knutti, R., & Friedlingstein, P. (2009). Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1704-1709. doi:10.1073/pnas.0812721106 Srivastav, A. L., Dhyani, R., Ranjan, M., Madhav, S., & Sillanpää, M. (2021). Climate-resilient strategies for sustainable management of water resources and agriculture. Environmental Science and Pollution Research, 28(31), 41576-41595. doi:10.1007/s11356-021-14332-4 Statistics Office of Agriculture and Food Agency. (2024). Background description of the preview release material project. Retrieved from https://www.stat.gov.tw/ Stöckle, C. O., Donatelli, M., & Nelson, R. (2003). CropSyst, a cropping systems simulation model. European Journal of Agronomy, 18(3-4), 289-307. doi:10.1016/s1161-0301(02)00109-0 Tainan District Agricultural Research and Extension Station. (2016). Facility cultivation and cultivation management technology of cherry tomato. Tainan: Tainan District Agricultural Research and Extension Station. Retrieved from https://www.tndais.gov.tw/ Tainan District Agricultural Research and Extension Station. (2017). Soybean cultivation and management technology. Tainan: Tainan District Agricultural Research and Extension Station. Retrieved from https://www.tndais.gov.tw/ Tang, Q. H., Peterson, S., Cuenca, R. H., Hagimoto, Y., & Lettenmaier, D. P. (2009). Satellite-based near-real-time estimation of irrigated crop water consumption. Journal of Geophysical Research-Atmospheres, 114, 14. doi:10.1029/2008jd010854 TCCIP. (2022). Taiwan ReAnalysis Downscaling data. Retrieved from: https://tccip.ncdr.nat.gov.tw/ Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8245-8250. doi:10.1073/pnas.0409902102 Timsina, J., Godwin, D., Humphreys, E., Kukal, S., & Smith, D. (2008). Evaluation of options for increasing yield and water productivity of wheat in Punjab, India using the DSSAT-CSM-CERES-Wheat model. Agricultural Water Management, 95(9), 1099-1110. Tolhurst, T. N., & Ker, A. P. (2015). On technological change in crop yields. American Journal of Agricultural Economics, 97(1), 137-158. doi:10.1093/ajae/aau082 Tseng, S.-H., Sheen, S., & Chen, Y.-H. (2003). Varietal improvement of special crops and newly line election of fresh edible sugarcane. Taichung District Agricultural Research and Extension Station(60), 49-60. doi:10.29563/zhwhgx.200306.0031 Übelhör, A., Munz, S., Graeff-Hönninger, S., & Claupein, W. (2015). Evaluation of the CROPGRO model for white cabbage production under temperate European climate conditions. Scientia Horticulturae, 182, 110-118. Vanuytrecht, E., Raes, D., Steduto, P., Hsiao, T. C., Heng, L. K., Vila, M. G., . . . Moreno, P. M. (2014). AquaCrop: FAO's crop water productivity and yield response model. Environmental Modelling & Software, 62, 351-360. doi:10.1016/j.envsoft.2014.08.005 Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23(7), 1696-1718. doi:10.1175/2009jcli2909.1 Wang, Y. Q., Huang, D. H., Zhao, L., Shen, H. Z., Xing, X. G., & Ma, X. Y. (2022). The distributed CERES-Maize model with crop parameters determined through data assimilation assists in regional irrigation schedule optimization. Computers and Electronics in Agriculture, 202, 17. doi:10.1016/j.compag.2022.107425 Water Resources Agency. (2023). Statistic of Water Resources 2022. Ministry of Economic Affairs. Retrieved from https://wuss.wra.gov.tw/ Water Resources Agency. (2024). Drought hazard during 2020 to 2021. Retrieved from https://web.wra.gov.tw/ Williams, J. R., Jones, C. A., Kiniry, J. R., & Spanel, D. A. (1989). The EPIC crop growth model. Transactions of the Asae, 32(2), 497-511. World Meteorological Organization. (2017). WMO guidelines on the calculation of climate normals. Genava. World Meteorological Organization. (2024). State of the global climate 2023. Geneva. Wu, C.-S. (2022). Set the DSSAT rice genetic parameters and establish models for temperature and water shortage warnings. (Master's Degree). National Taiwan University, Wu, Y.-P., Liao, D.-J., & Chou, S.-Y. (2020). High-quality rice cultivation and management technology. Agricultural Research Institute. Retrieved from https://www.tari.gov.tw/ Yang, C.-M. (2007). Potential effects of global climate change on crop production. Journal of the Weed Science Society of the Republic of China, 28(1), 112-130. doi:10.6274/wssroc-2007-028(1)-112 Yang, C.-M. (2010). The responsive strategies to agricultural meteorological disasters. Crop, Environment & Bioinformatics, 7(1), 63-71. doi:10.30061/ceb.201003.0005 Yao, M.-H., Li, T.-Y., Leou, T.-M., Chen, Y.-M., & Lu, C.-T. (2022). Agricultural disaster prevention system and early warning platform for crop disasters. Journal of Disaster Management, 11(2), 75-87. doi:10.6149/jdm.202209_11(2).0005 Yeh, Y.-H. (2012). Key points of wheat field cultivation and management. Taoyuan District Agricultural Research and Extension Station. Retrieved from https://www.tydares.gov.tw/ Yuan, W. A., Li, J. T., Bhatta, M., Shi, Y. Y., Baenziger, P. S., & Ge, Y. F. (2018). Wheat height estimation using LiDAR in comparison to ultrasonic sensor and UAS. Sensors, 18(11), 20. doi:10.3390/s18113731 Zhang, X., Hao, Z. C., Singh, V. P., Zhang, Y., Feng, S. F., Xu, Y., & Hao, F. H. (2022). Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors. Science of the Total Environment, 838, 19. doi:10.1016/j.scitotenv.2022.156021 Zhang, Y. L., Wu, Z. Y., Singh, V. P., Lin, Q. X., Ning, S. W., Zhou, Y. L., . . . Ma, Q. (2023). Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts. Agricultural Water Management, 282, 15. doi:10.1016/j.agwat.2023.108266 Zhao, H. Y., Gao, G., Yan, X. D., Zhang, Q., Hou, M. T., Zhu, Y. Y., & Tian, Z. (2011). Risk assessment of agricultural drought using the CERES-Wheat model: a case study of Henan Plain, China. Climate Research, 50(2-3), 247-256. doi:10.3354/cr01060 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93182 | - |
dc.description.abstract | 農業乾旱是危害作物產量的環境風險之一。隨著氣候變遷的問題日益嚴重,農業乾旱風險的提升對於農業而言實屬挑戰。當作物生產面臨乾旱的問題時,轉作可能是調適策略的方法之一。然而,以農業試驗分析乾旱情境之適栽作物會有時空上的侷限性,不易進行長年期且大範圍的評估。本研究之目的在於應用農業技術轉讓決策輔助系統(Decision Support System for Agrotechnology Transfer, DSSAT),藉由不同灌溉模式之下的模擬作物產量來評估乾旱風險。透過自動灌溉和無灌溉兩種灌溉模式,DSSAT可以平行地模擬出作物面對兩種情境的結果。為了分析長年期的生產結果,本研究結合臺灣歷史氣候重建資料 (Taiwan Reanalysis Downscaling data, TReAD)、農地土壤資訊與各作物的栽培管理進行模擬,並利用乾旱情境指數歸納特定土壤取樣點的適栽度,最後利用地圖呈現出適栽度的空間分佈。
研究結果顯示,在自動灌溉情境下,農作物的平均產量確實顯著地高於無灌溉情境,說明無灌溉對於作物產量會有明顯影響;乾旱情境指數除了評估模擬情境的差距之外,也能夠針對產量進行比較,能同時反映出乾旱影響與產量大小的地區變化。此外,利用地圖顯示了特定區域與作物類型在乾旱期間的脆弱性差異,提供了重要的區域性風險評估資料。此工具可以做為農民選擇適合該區域栽種作物種類的參考指數,評估各作物的優勢環境,規劃適應乾旱的栽種調適策略,協助利害關係人設計更具效益與穩定性的農業栽培制度。 | zh_TW |
dc.description.abstract | Agricultural drought is one of the significant hazards leading to a substantial reduction in crop yields. Under the impact of climate change, the increasingly severe drought issues pose a challenge to agriculture. When crop production faces drought problems, substituting crops may be one of the adaptive strategies. However, using agricultural experiments to analyze suitable crops under drought scenarios has spatial and temporal limitations, making it difficult to conduct long-term and large-scale assessments. Therefore, this research aims to employ the Decision Support System for Agrotechnology Transfer (DSSAT) to evaluate drought risk by simulating crop yields under different irrigation schemes. Through both automatic irrigation and no irrigation schemes, DSSAT can parallelly simulate the crop yields under these two scenarios. To analyze long-term performance, this research integrates Taiwan Reanalysis Downscaling data (TReAD), field soil information, and the cultivation management of various crops for simulation. A drought scenario index is defined to summarize the suitability of specific soil sampling points, and maps are employed to present the spatial distribution of suitability.
The results of the research indicate that, under the automatic irrigation scenario, the average yield of crops is significantly higher than that under the no irrigation scenario, demonstrating the significant impact of no irrigation on crop yields. The drought scenario index not only evaluates the differences in simulated scenarios but also allows for a comparison of yields, reflecting changes in regions with both drought impact and yield amount. The use of maps shows the differences in vulnerability of specific areas and crop types during drought periods, providing important regional risk assessment data. The drought scenario index can serve as a reference index for farmers to select suitable crop types for the region, evaluate the favorable environments for each selected crop, plan adaptive strategies for drought-resilient agriculture, and assist policy-makers in designing more efficient and stable agricultural cultivation systems. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-23T16:10:18Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-23T16:10:18Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Contents vi List of Figures viii List of Tables ix Chapter 1 Introduction 1 1.1 Climate Challenge on Crop Production 1 1.2 Impact of Drought Stress in Agriculture 4 1.3 Agricultural Water Use in Taiwan 5 1.4 Adaptation Strategy 7 1.5 Cropping System Model 10 1.6 Drought Index 12 1.7 Research Purpose 14 Chapter 2 Methods 16 2.1 Study Area 16 2.1.1 Weather data 17 2.1.2 Soil Data 18 2.1.3 Matching Weather Data and Soil Data 19 2.2 DSSAT Simulation 20 2.2.1 Cultivar and Planting Date 20 2.2.2 Irrigation Scheme 22 2.2.3 Simulation Execution 22 2.3 Index Integrated Yield Magnitude and Drought Impact 24 Chapter 3 Results 26 3.1 Weather Pattern Analysis 26 3.2 Crop Yield in Two Irrigation Schemes 30 3.3 Relative Change and Drought Scenario Index 32 3.4 Suitable Cropping Areas 36 Chapter 4 Discussion 38 4.1 Crop Cultivation Patterns in Taiwan 38 4.2 Calibration for Variety of Crops 46 4.3 Perspectives on Future Applications 50 Chapter 5 Conclusion 53 References 55 Appendix 68 | - |
dc.language.iso | en | - |
dc.title | 應用DSSAT評估乾旱情境下臺灣農地之作物適栽區 | zh_TW |
dc.title | Assessing Suitable Cropping Areas of Farmlands in Taiwan under Drought Scenarios using DSSAT | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 楊純明;莊愷瑋 | zh_TW |
dc.contributor.oralexamcommittee | Chwen-Ming Yang;Kai-Wei Juang | en |
dc.subject.keyword | 氣候變遷,DSSAT,臺灣歷史氣候重建資料,乾旱風險,乾旱情境指數,作物適栽區, | zh_TW |
dc.subject.keyword | Climate Change,DSSAT,TReAD,Drought Risk,Drought Scenario Index,Cropping Areas, | en |
dc.relation.page | 78 | - |
dc.identifier.doi | 10.6342/NTU202401850 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-07-22 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 農藝學系 | - |
dc.date.embargo-lift | 2026-12-31 | - |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 4.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。