Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93154
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑞庭zh_TW
dc.contributor.advisorAnthony J. T. Leeen
dc.contributor.author黃俞翎zh_TW
dc.contributor.authorYu-Ling Huangen
dc.date.accessioned2024-07-19T16:09:34Z-
dc.date.available2024-07-20-
dc.date.copyright2024-07-19-
dc.date.issued2024-
dc.date.submitted2024-07-09-
dc.identifier.citationAtaman B, Ülengin B (2003) A note on the effect of brand image on sales. Journal of Product & Brand Management 12(4):237–250.
Chen W, Huang C, Yuan W, Chen X, Hu W, Zhang X, Zhang Y (2022) Title-and-tag contrastive vision-and-language transformer for social media popularity prediction. Proceedings of the 30th ACM International Conference on Multimedia. 7008–7012.
Chen YC, Lai KT, Liu D, Chen MS (2021) TAGNet: Triplet-attention graph networks for hashtag recommendation. IEEE Transactions on Circuits and Systems for Video Technology 32(3):1148–1159.
Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
Devlin J, Chang MW, Lee K, Toutanova K (2018) BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Du J, Ye Z, Yao L, Guo B, Yu Z (2022) Socially-aware dual contrastive learning for cold-start recommendation. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. 1927–1932.
Elwood A, Gasparin A, Rozza A (2021) Ranking micro-influencers: A novel multi-task learning and interpretable framework. Proceedings of the IEEE International Symposium on Multimedia. 130–137.
Farseev A, Lepikhin K, Schwartz H, Ang EK, Powar K (2018) SoMin.ai: Social multimedia influencer discovery marketplace. Proceedings of the 26th ACM International Conference on Multimedia. 1234–1236.
Gan T, Wang S, Liu M, Song X, Yao Y, Nie L (2019) Seeking micro-influencers for brand promotion. Proceedings of the 27th ACM International Conference on Multimedia. 1933–1941.
Gelli F, Uricchio T, He X, Del Bimbo A, Chua TS (2018) Beyond the product: Discovering image posts for brands in social media. Proceedings of the 26th ACM International Conference on Multimedia. 465–473.
Graves A, Wayne G, Reynolds M, Harley T, Danihelka I, Grabska-Barwińska A, Colmenarejo SG, Grefenstette E, Ramalho T, Agapiou J (2016) Hybrid computing using a neural network with dynamic external memory. Nature 538(7626):471–476.
Hughes C, Swaminathan V, Brooks G (2019) Driving brand engagement through online social influencers: An empirical investigation of sponsored blogging campaigns. Journal of Marketing 83(5):78–96.
Keller KL (1993) Conceptualizing, measuring, and managing customer-based brand equity. Journal of Marketing 57(1):1–22.
Kim JH, On KW, Lim W, Kim J, Ha JW, Zhang BT (2016) Hadamard product for low-rank bilinear pooling. arXiv preprint arXiv:1610.04325.
Koehn P, Monz C (2006) Manual and automatic evaluation of machine translation between european languages. Proceedings of the Workshop on Statistical Machine Translation. 102–121.
Kweon W, Kang S, Yu H (2021) Bidirectional distillation for top-k recommender system. Proceedings of the Web Conference. 3861–3871.
Lee D, Hosanagar K, Nair HS (2018) Advertising content and consumer engagement on social media: Evidence from Facebook. Management Science 64(11):5105–5131.
Leung FF, Gu FF, Palmatier RW (2022) Online influencer marketing. Journal of the Academy of Marketing Science 50(2):226–251.
Li J, Yang C, Ye G, Nguyen QVH (2024) Graph neural networks with deep mutual learning for designing multi-modal recommendation systems. Information Sciences 654:119815.
Likert R (1932) A technique for the measurement of attitudes. Archives of Psychology 22(140):55.
Liu Y, Li KJ, Chen H, Balachander S (2017) The effects of products’ aesthetic design on demand and marketing-mix effectiveness: The role of segment prototypicality and brand consistency. Journal of Marketing 81(1):83–102.
Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF International Conference on Computer Vision. 10012–10022.
Lou C, Yuan S (2019) Influencer marketing: How message value and credibility affect consumer trust of branded content on social media. Journal of Interactive Advertising 19(1):58–73.
Mallipeddi RR, Kumar S, Sriskandarajah C, Zhu Y (2022) A framework for analyzing influencer marketing in social networks: Selection and scheduling of influencers. Management Science 68(1):75–104.
Martínez-López FJ, Anaya-Sánchez R, Esteban-Millat I, Torrez-Meruvia H, D’Alessandro S, Miles M (2020) Influencer marketing: Brand control, commercial orientation and post credibility. Journal of Marketing Management 36(17–18):1805–1831.
Oord A van den, Li Y, Vinyals O (2018) Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748.
Park CW, Jaworski BJ, MacInnis DJ (1986) Strategic brand concept-image management. Journal of Marketing 50(4):135–145.
Rutter R, Chalvatzis KJ, Roper S, Lettice F (2018) Branding instead of product innovation: A study on the brand personalities of the UK’s electricity market. European Management Review 15(2):255–272.
Schouten AP, Janssen L, Verspaget M (2020) Celebrity vs. influencer endorsements in advertising: The role of identification, credibility, and product-endorser fit. International Journal of Advertising 39(2):258–281.
Serban I, Klinger T, Tesauro G, Talamadupula K, Zhou B, Bengio Y, Courville A (2017) Multiresolution recurrent neural networks: An application to dialogue response generation. Proceedings of the AAAI Conference on Artificial Intelligence. 3288–3294.
Shuai J, Zhang K, Wu L, Sun P, Hong R, Wang M, Li Y (2022) A review-aware graph contrastive learning framework for recommendation. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. 1283–1293.
Smith DC, Park CW (1992) The effects of brand extensions on market share and advertising efficiency. Journal of Marketing Research 29(3):296–313.
Song G, Chai W (2018) Collaborative learning for deep neural networks. Advances in Neural Information Processing Systems 31.
Sweet T, Rothwell A, Luo X (2019) Machine learning techniques for brand-influencer matchmaking on the instagram social network. arXiv preprint arXiv:1901.05949.
Wang S, Gan T, Liu Y, Wu J, Cheng Y, Nie L (2022) Micro-influencer recommendation by multi-perspective account representation learning. IEEE Transactions on Multimedia 25:2749–2760.
Wang S, Gan T, Liu Y, Zhang L, Wu J, Nie L (2021) Discover micro-influencers for brands via better understanding. IEEE Transactions on Multimedia 24:2595–2605.
Wardana INK, Gardner JW, Fahmy SA (2024) Collaborative learning at the edge for air pollution prediction. IEEE Transactions on Instrumentation and Measurement 73:1–12.
Wei Y, Cheng Z, Yu X, Zhao Z, Zhu L, Nie L (2019) Personalized hashtag recommendation for micro-videos. Proceedings of the 27th ACM International Conference on Multimedia. 1446–1454.
Wu D, Ye M, Lin G, Gao X, Shen J (2021) Person re-identification by context-aware part attention and multi-head collaborative learning. IEEE Transactions on Information Forensics and Security 17:115–126.
Ye T, Hu L, Zhang Q, Lai ZY, Naseem U, Liu DD (2023) Show me the best outfit for a certain scene: A scene-aware sashion recommender system. Proceedings of the ACM Web Conference. 1172–1180.
Zhang Q, Wang J, Huang H, Huang X, Gong Y (2017) Hashtag recommendation for multimodal microblog using co-attention network. Proceedings of 26th International Joint Conference on Artificial Intelligence. 3420–3426.
Zhang S, Yao Y, Xu F, Tong H, Yan X, Lu J (2019) Hashtag recommendation for photo sharing services. Proceedings of the AAAI Conference on Artificial Intelligence. 5805–5812.
Zhang Y, Yamasaki T (2021) Style-aware image recommendation for social media marketing. Proceedings of the 29th ACM International Conference on Multimedia. 3106–3114.
Zhao S, Jiang H, Tao H, Zha R, Zhang K, Xu T, Chen E (2023) PEDM: A multi-task Learning model for persona-aware emoji-embedded dialogue generation. ACM Transactions on Multimedia Computing, Communications, and Applications 19(3s):1–21.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93154-
dc.description.abstract隨著社交媒體平台的日益普及,越來越多品牌僱用網紅提升產品的知名度和 品牌形象。多數品牌偏好與自身品牌形象相似的網紅合作,然而,就我們所知,現有網紅推薦模型都未曾考慮網紅風格與品牌形象的一致性。所以我們於本研究提出一個基於品牌形象的研究框架 BIARec,用以推薦網紅給品牌。此框架包含 三個模組,首先,我們開發一個特徵萃取模組,包含四個編碼模型:類型、喜好、 影響力和獨特性,藉此從品牌及網紅的社群媒體資料中萃取品牌和網紅特徵;接 著,我們採用對比學習模組學習更好的品牌和網紅特徵向量;然後,我們運用推 薦模組推薦網紅給品牌;最後,我們利用協作學習框架組合這三個模組,以增強 研究框架的泛化能力,並提高對抗噪聲數據的強度。實驗結果顯示,本研究提出的框架 BIARec 在曲線下面積、平均精確度均值、平均倒數排名、中位數排名、 精確率、召回率、F1 分數等方面優於最先進的模型,我們的推薦模型可以幫助 品牌找到風格一致的網紅,以推廣其產品和品牌形象。zh_TW
dc.description.abstractWith the surging popularity of social media platforms, an increasing number of brands employ influencers to boost their product visibility and brand image. Most brands tend to favor partnerships with the influencers whose styles are consistent with their brand image. However, to the best of our knowledge, there are no previous studies offering influencer recommendations to brands based on the alignment of influencer styles with their brand image. Therefore, in this study, we propose a brand-image-aware framework, called BIARec, to recommend influencers to brands. The proposed framework contains three modules. First, we develop a feature extraction module containing four encoders, namely type, favorability, strength, and uniqueness, to extract the brand and influencer feature vectors from the posts collected from Instagram. Second, we employ the contrastive learning module to better learn the representations of brands and influencers. Third, we apply a recommendation module to recommend influencers to brands. In addition, we utilize the collaborative learning framework to enhance model generalization and robustness. The experimental results show that our proposed framework outperforms the state-of-the-art models in terms of area under curve (AUC), mean average precision (mAP), mean reciprocal ranking (MRR), median rank (MedR), precision, recall, and F1-score. Our framework assists brands in identifying influencers whose styles align with their brand image, enabling effective promotion of their products and enhancing their brand image.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-19T16:09:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-19T16:09:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents............................................................................................................i
List of Figures................................................................................................................ii
List of Tables ............................................................................................................... iii
Chapter 1 Introduction...................................................................................................1
Chapter 2 Related Work.................................................................................................3
2.1 Brand Image and Influencer Marketing...........................................................3
2.2 Recommendations for Brands..........................................................................4
2.3 Attention Mechanism.......................................................................................4
2.4 Contrastive Learning........................................................................................5
2.5 Collaborative Learning ....................................................................................5
Chapter 3 The Proposed Framework .............................................................................7
3.1 Brand Feature Extraction.................................................................................9
3.1.1 Type feature vector ...............................................................................9
3.1.2 Favorability feature vector..................................................................11
3.1.3 Strength feature vector........................................................................12
3.1.4 Uniqueness feature vector...................................................................13
3.2 Influencer Feature Extraction ........................................................................14
3.2.1 Type feature vector .............................................................................14
3.2.2 Favorability feature vector..................................................................15
3.2.3 Strength feature vector........................................................................15
3.2.4 Uniqueness feature vector...................................................................15
3.3 Contrastive Learning Module ........................................................................15
3.4 Recommendation Module..............................................................................16
Chapter 4 Experimental Results...................................................................................17
4.1 Dataset and Evaluation Metrics .....................................................................17
4.2 Performance Evaluation.................................................................................18
4.3 Ablation Study ...............................................................................................19
4.4 Effects of the Feature Fusing and Triplet Attention Mechanisms .................20
4.5 Human Evaluation .........................................................................................22
4.6 Recommendation Examples...........................................................................24
4.7 Training and Testing Time.............................................................................30
Chapter 5 Conclusions and Future Work.....................................................................31
References .................................................................................................................... 33
Appendix A..................................................................................................................37
Appendix B..................................................................................................................39
-
dc.language.isoen-
dc.titleInstagram 社群平台基於品牌形象之網紅推薦zh_TW
dc.titleBrand-Image-Aware Influencer Recommendation on Instagramen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳怡瑾;戴敏育zh_TW
dc.contributor.oralexamcommitteeI-CHIN Nancy Wu;Min-Yuh Dayen
dc.subject.keyword網紅推薦,注意力機制,對比學習,協作學習,zh_TW
dc.subject.keywordInfluencer Recommendation,Attention mechanism,Contrastive learning,Collaborative learning,en
dc.relation.page40-
dc.identifier.doi10.6342/NTU202401596-
dc.rights.note未授權-
dc.date.accepted2024-07-09-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
10.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved