請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93137完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 連豊力 | zh_TW |
| dc.contributor.advisor | Feng-Li Lian | en |
| dc.contributor.author | 陳芳緯 | zh_TW |
| dc.contributor.author | Fang-Wei Chen | en |
| dc.date.accessioned | 2024-07-18T16:11:03Z | - |
| dc.date.available | 2024-07-19 | - |
| dc.date.copyright | 2024-07-18 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-11 | - |
| dc.identifier.citation | [1: Biela-Weyenberg 2023] Amber Biela-Weyenberg. “What is a smart factory and smart manufacturing?” (2023),[Online]. Available: https://www.oracle.com/industrial-manufacturing/smart-factory-and-smart-manufacturing/.
[2: 郭茵娜 and 黃麗秋 2017] 郭茵娜 and 黃麗秋. “智慧農業是什麼?工業 4.0 又怎麼幫助台灣農業?.”(2017), [Online]. Available: https://www.inside.com.tw/article/9052-intelligent-agriculture-in-taiwan. [3: Thakar et al. 2023] Shantanu Thakar, Srivatsan Srinivasan, Sarah Al-Hussaini, Prahar M Bhatt, Pradeep Rajendran, Yeo Jung Yoon, Neel Dhanaraj, Rishi K Malhan, Matthias Schmid, Venkat N Krovi, et al., “A survey of wheeled mobile manipulation: A decision-making perspective,” J. Mech. Robot., vol. 15, no. 2, p. 020 801, 2023. [4: Dang and Ebert-Uphoff 2004]Anh XH Dang and Imme Ebert-Uphoff, “Active acceleration compensation for transport vehicles carrying delicate objects,” IEEE Trans. Robot., vol. 20, no. 5,pp. 830–839, 2004. [5: Rayguru et al. 2021] Madan Mohan Rayguru, Mohan Rajesh Elara, Rizuwana Parween, Balakrishnan Ramalingam, Raihan Enjikalayil Abdulkader, and Lim Yi, “A robust output feedback strategy for liquid handling using reconfigurable robots,” Automation in Construction, vol. 130, p. 103 800, 2021, ISSN: 0926-5805. DOI: 10.1016/j.autcon. 2021.103800. [6: Sueki and Noda 2017] Yuta Sueki and Yoshiyuki Noda, “Falling position control of outflow liquid from ladle in automatic pouring machine with manipulatable flow rate,” in 2017 IEEE/SICE International Symposium on System Integration (SII), 2017, pp. 632–637. DOI: 10.1109/SII.2017.8279292. [7: Sueki and Noda 2017] Yuta Sueki and Yoshiyuki Noda, “Optimal positioning of ladle in automatic pouring machine in consideration of pouring liquid accurately into sprue,” in 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2017, pp. 897–903. DOI: 10.1109/AIM.2017.8014132. [8: Weld2Cast Co. 2021] Weld2Cast Co. “Sand casting.” (2021), [Online]. Available: https://www.weld2cast.com/sand-casting/. [9: Sinoway Industry Co. 2021] Sinoway Industry Co. “11 steps of the investment casting process.” (2021), [Online]. Available: https://sinowayindustry.com/. [10: Easy West Co. 2018] Easy West Co. “Investment casting vs. die casting: 7 considerations when choosing a process.” (2018), [Online]. Available: https://news.ewmfg.com/. [11: Li et al. 2009] Zhijun Li, Pey Yuen Tao, Shuzhi Sam Ge, Martin Adams, and Wijerupage Sardha Wijesoma, “Robust adaptive control of cooperating mobile manipulators with relative motion,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 1, pp. 103–116, 2009. DOI: 10.1109/TSMCB.2008.2002853. [12: Li et al. 2010] Zhijun Li, Yipeng Yang, and Jianxun Li, “Adaptive motion/force control of mobile under-actuated manipulators with dynamics uncertainties by dynamic coupling and output feedback,” IEEE Transactions on Control Systems Technology, vol. 18, no. 5, pp. 1068–1079, 2010. DOI: 10.1109/TCST.2009.2033573. [13: Kang et al. 2012] Yu Kang, Zhijun Li, Yifan Dong, and Hongsheng Xi, “Markovian-based fault-tolerant control for wheeled mobile manipulators,” IEEE Transactions on Control Systems Technology, vol. 20, no. 1, pp. 266–276, 2012. DOI: 10.1109/TCST.2011.2109062. [14: Serón et al. 2014] Javier Serón, Jorge L. Martínez, Anthony Mandow, Antonio J. Reina, Jesús Morales, and Alfonso J. García-Cerezo, “Automation of the arm-aided climbing maneuver for tracked mobile manipulators,” IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3638–3647, 2014. DOI: 10.1109/TIE.2013.2272275. [15: Gao et al. 2019] Haibo Gao, Changyou Ma, Liang Ding, Haitao Yu, Kerui Xia, Hongjun Xing, and Zongquan Deng, “Dynamic modeling and experimental validation of door-opening process by a mobile manipulator,” IEEE Access, vol. 7, pp. 80 916–80 927, 2019. DOI: 10.1109/ACCESS.2019.2919964. [16: Xing et al. 2020] Hongjun Xing, Ali Torabi, Liang Ding, Haibo Gao, Zongquan Deng, and Mahdi Tavakoli, “Enhancement of force exertion capability of a mobile manipulator by kinematic reconfiguration,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5842–5849, 2020. DOI: 10.1109/LRA.2020.3010218. [17: Zhang et al. 2021] Zhijun Zhang, Siyuan Chen, Jinhua Xie, and Song Yang, “Two hybrid multiobjective motion planning schemes synthesized by recurrent neural networks for wheeled mobile robot manipulators,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 5, pp. 3270–3281, 2021. DOI: 10.1109/TSMC.2019.2920778. [18: Xing et al. 2022] Hongjun Xing, Liang Ding, Haibo Gao, Weihua Li, and Mahdi Tavakoli, “Dual-user haptic teleoperation of complementary motions of a redundant wheeled mobile manipulator considering task priority,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 10, pp. 6283–6295, 2022. DOI: 10.1109/TSMC. 2022.3144009. [19: Jang et al. 2023] Keunwoo Jang, Sanghyun Kim, and Jaeheung Park, “Motion planning of mobile manipulator for navigation including door traversal,” IEEE Robotics and Automation Letters, vol. 8, no. 7, pp. 4147–4154, 2023. DOI: 10 . 1109 / LRA . 2023.3279612. [20: Pankert and Hutter 2020] Johannes Pankert and Marco Hutter, “Perceptive model predictive control for continuous mobile manipulation,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6177–6184, 2020. DOI: 10.1109/LRA.2020.3010721. [21: Ruggiero et al. 2018] Fabio Ruggiero, Vincenzo Lippiello, and Bruno Siciliano, “Nonprehensile dynamic manipulation: A survey,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1711–1718, 2018. DOI: 10.1109/LRA.2018.2801939. [22: Shanthi and Hermans 2024] Mohanraj Devendran Shanthi and Tucker Hermans, “Pick and place planning is better than pick planning then place planning,” IEEE Robotics and Automation Letters, vol. 9, no. 3, pp. 2790–2797, 2024. DOI: 10.1109/LRA.2024.3360892. [23: Xie et al. 2024] Gregory Xie, Rachel Holladay, Lillian Chin, and Daniela Rus, “In-hand manipulation with a simple belted parallel-jaw gripper,” IEEE Robotics and Automation Letters, vol. 9, no. 2, pp. 1334–1341, 2024. DOI: 10.1109/LRA.2023.3346750. [24: Higashimori et al. 2009] Mitsuru Higashimori, Keisuke Utsumi, Yasutaka Omoto, and Makoto Kaneko, “Dynamic manipulation inspired by the handling of a pizza peel,” IEEE Transactions on Robotics, vol. 25, no. 4, pp. 829–838, 2009. DOI: 10.1109/TRO.2009.2017085. [25: Morlando et al. 2022] Viviana Morlando, Mario Selvaggio, and Fabio Ruggiero, “Nonprehensile object transportation with a legged manipulator,” in 2022 IEEE Int. Conf. on Robot. and Autom. ICRA, 2022, pp. 6628–6634. DOI: 10.1109/ICRA46639.2022.9811810. [26: Djavareshkian and Khalili 2006] Mohammad Hassan Djavareshkian and M Khalili, “Simulation of sloshing with the volume of fluid method,” Fluid Dynamics & Materials Processing, vol. 2, no. 4, pp. 299–308, 2006 [27: Reinhold et al. 2019] Jan Reinhold, Manuel Amersdorfer, and Thomas Meurer, “A dynamic optimization approach for sloshing free transport of liquid filled containers using an industrial robot,” in 2019 IEEE/RSJ Int. Conf. Intell. Robots Syst. IROS, 2019, pp. 2336–2341. DOI: 10.1109/IROS40897.2019.8968144. [28: Maderna et al. 2018] Riccardo Maderna, Andrea Casalino, Andrea Maria Zanchettin, and Paolo Rocco, “Robotic handling of liquids with spilling avoidance: A constraint-based control approach,” in 2018 IEEE Int. Conf. on Robot. and Autom. ICRA, 2018, pp. 7414–7420. DOI: 10.1109/ICRA.2018.8460927. [29: Feddema et al. 1996] John Feddema, C Dohrmann, G Parker, R Robinett, V Romero, and D Schmitt, “Robotically controlled slosh-free motion of an open container of liquid,” in Proceedings of IEEE Int. Conf. on Robot. and Autom. ICRA, vol. 1, 1996, pp. 596–602. [30: Nayeem et al. 2023] Rashida Nayeem, Salah Bazzi, Mohsen Sadeghi, Reza Sharif Razavian, and Dagmar Sternad, “Multi-modal interactive perception in human control of complex objects,” in 2023 IEEE Int. Conf. on Robot. and Autom. ICRA, 2023, pp. 12 500–12 506. DOI: 10.1109/ICRA48891.2023.10160375. [31: Thakar et al. 2017] Parth S. Thakar, Prasiddh K. Trivedi, Bijnan Bandyopadhyay, and Prasanna S. Gandhi, “A new nonlinear control for asymptotic stabilization of a class of underactuated systems: An implementation to slosh-container problem,” IEEE/ASME Trans. Mechatron., vol. 22, no. 2, pp. 1082–1092, 2017. DOI: 10.1109/TMECH.2016.2636251. [32: Moriello et al. 2018] Lorenzo Moriello, Luigi Biagiotti, Claudio Melchiorri, and Andrea Paoli, “Manipulating liquids with robots: A sloshing-free solution,” Control Eng. Pract., vol. 78,pp. 129–141, 2018, ISSN: 0967-0661. DOI: 10.1016/j.conengprac.2018.06.018. [33: Muchacho et al. 2022] Rafael I. Cabral Muchacho, Riddhiman Laha, Luis F.C. Figueredo, and Sami Haddadin, “A solution to slosh-free robot trajectory optimization,” in 2022 IEEE/RSJ Int. Conf. Intell. Robots Syst. IROS, 2022, pp. 223–230. DOI: 10.1109/IROS47612.2022.9981173. [34: Yin et al. 2021] Hang Yin, Anastasia Varava, and Danica Kragic, “Modeling, learning, perception, and control methods for deformable object manipulation,” Science Robotics, vol. 6, no. 54, 2021. DOI: 10.1126/scirobotics.abd8803. [35: Macklin et al. 2014] Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim, “Unified particle physics for real-time applications,” ACM Trans. Graph., vol. 33, no. 4, Jul. 2014, ISSN: 0730-0301. DOI: 10.1145/2601097.2601152. [36: Noda and Terashima 2007] Yoshiyuki Noda and Kazuhiko Terashima, “Modeling and feedforward flow rate control of automatic pouring system with real ladle,” Journal of Robotics and Mechatronics, vol. 19, no. 2, pp. 205–211, 2007. DOI: 10.20965/jrm.2007.p0205. [37: NVIDIA 2019] NVIDIA, “NVIDIA PhysX SDK,” 2019, Accessed on 25 September 2019. [38: Li et al. 2014] Yinxiao Li, Yan Wang, Michael Case, Shih-Fu Chang, and Peter K. Allen, “Real-time pose estimation of deformable objects using a volumetric approach,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 1046–1052. DOI: 10.1109/IROS.2014.6942687. [39: Bodenhagen et al. 2014] Leon Bodenhagen, Andreas R. Fugl, Andreas Jordt, Morten Willatzen, Knud A. Andersen, Martin M. Olsen, Reinhard Koch, Henrik G. Petersen, and Norbert Krüger,“An adaptable robot vision system performing manipulation actions with flexible objects,” IEEE Transactions on Automation Science and Engineering, vol. 11, no. 3, pp. 749–765, 2014. DOI: 10.1109/TASE.2014.2320157. [40: Lopez-Guevara et al. 2020] Tatiana Lopez-Guevara, Rita Pucci, Nicholas K. Taylor, Michael U. Gutmann, Suhramanian Ramamoorthy, and Kartic Suhr, “Stir to pour: Efficient calibration of liquid properties for pouring actions,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, pp. 5351–5357. DOI: 10.1109/IROS45743.2020.9340852. [41: Kennedy et al. 2019] Monroe Kennedy, Karl Schmeckpeper, Dinesh Thakur, Chenfanfu Jiang, Vijay Kumar, and Kostas Daniilidis, “Autonomous precision pouring from unknown containers,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2317–2324, 2019. DOI: 10.1109/LRA.2019.2902075. [42: Zhang et al. 2022] Dandan Zhang, Qiang Li, Yu Zheng, Lei Wei, Dongsheng Zhang, and Zhengyou Zhang, “Explainable hierarchical imitation learning for robotic drink pouring,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 4, pp. 3871–3887, 2022. DOI: 10.1109/TASE.2021.3138280. [43: Farshidian et al. ] Farbod Farshidian et al., “OCS2: An open source library for optimal control of switched systems,” [Online]. Available: https://github.com/leggedrobotics/ocs2. [44: Neunert et al. 2016] Michael Neunert, Cédric de Crousaz, Fadri Furrer, Mina Kamel, Farbod Farshidian, Roland Siegwart, and Jonas Buchli, “Fast nonlinear model predictive control for unified trajectory optimization and tracking,” in 2016 IEEE Int. Conf. on Robot. and Autom. ICRA, 2016, pp. 1398–1404. DOI: 10.1109/ICRA.2016.7487274 [45: Chiu et al. 2022] Jia-Ruei Chiu, Jean-Pierre Sleiman, Mayank Mittal, Farbod Farshidian, and Marco Hutter, “A collision-free mpc for whole-body dynamic locomotion and manipulation,” in 2022 IEEE Int. Conf. on Robot. and Autom. ICRA, 2022, pp. 4686–4693. DOI: 10.1109/ICRA46639.2022.9812280. [46: Feller and Ebenbauer 2017] Christian Feller and Christian Ebenbauer, “Relaxed logarithmic barrier function based model predictive control of linear systems,” IEEE Trans. Automat. Control, vol. 62, no. 3, pp. 1223–1238, 2017. DOI: 10.1109/TAC.2016.2582040. [47: Brown and Hwang 1992] Robert Grover Brown and Patrick Y.C. Hwang, Introduction to Random Signals and Applied Kalman Filtering. John Wiley & Sons, 1992. [48: Jaimez et al. 2016] Mariano Jaimez, Javier G. Monroy, and Javier Gonzalez-Jimenez, “Planar odometry from a radial laser scanner. a range flow-based approach,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 4479–4485. DOI: 10.1109/ICRA.2016.7487647. [49: Robot Operating System (ROS) Community 2020] Robot Operating System (ROS) Community. “Ros amcl package.” (2020), [Online]. Available: https://wiki.ros.org/amcl. [50: Dellaert et al. 1999] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization for mobile robots,” in Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), vol. 2, 1999, 1322–1328 vol.2. DOI: 10.1109/ROBOT.1999.772544. [51: Bongard 2008] Josh Bongard, “Probabilistic robotics. sebastian thrun, wolfram burgard, and dieter fox. (2005, mit press.) 647 pages,” Artificial Life, vol. 14, no. 2, pp. 227–229, 2008. DOI: 10.1162/artl.2008.14.2.227. [52: Robot Operating System (ROS) Community 2020] Robot Operating System (ROS) Community. “Ros navigation package.” (2020),[Online]. Available: https://wiki.ros.org/navigation. [53: Hart et al. 1968] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968. DOI: 10.1109/TSSC.1968.300136. [54: Fox et al. 1997] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robotics and Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997. DOI: 10.1109/100.580977. [55: Kohlbrecher et al. 2011] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flexible and scalable slam system with full 3d motion estimation,” in Proc. IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), IEEE, Nov. 2011. [56: Kang et al. 2023] Dongho Kang, Jin Cheng, Miguel Zamora, Fatemeh Zargarbashi, and Stelian Coros, “Rl + model-based control: Using on-demand optimal control to learn versatile legged locomotion,” IEEE Robotics and Automation Letters, vol. 8, no. 10, pp. 6619–6626, 2023. DOI: 10.1109/LRA.2023.3307008. [57: Karafyllis and Krstic 2022] Iasson Karafyllis and Miroslav Krstic, “Spill-free transfer and stabilization of viscous liquid,” IEEE Transactions on Automatic Control, vol. 67, no. 9, pp. 4585–4597, 2022. DOI: 10.1109/TAC.2022.3162551. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93137 | - |
| dc.description.abstract | 在工業自動化領域,雖然處理剛性物體已經取得了成功,但是操控像液體這樣可變形的物體仍然是一項挑戰。本論文專注於利用移動式機械手臂(mobile manipulator)提出創新的解決方案,以應對液體運輸和澆注任務。為應對液體運輸挑戰,我們利用全身模型預測控制(whole-body MPC)將機械手臂和移動底座的運動進行同步。同時提出了基於模型預測控制(MPC)的架構以生成最佳參考無濺擾軌跡,利用濺擾抑制的模擬驗證展示於移動機械手臂的適用性,並且優於現有基於軌跡最佳化(TO)的方法,成功減少了44%的方均根誤差(RMSE)。對於澆注任務,我們將複雜的導航和定位算法整合到自定義移動底座中,利用視覺補償來校正低導航精度引起的基座偏移。實現了一個前饋補償器來達成澆注位置控制任務,通過影像處理技術驗證,取得了令人滿意的結果。這些進展為智慧機器人中的液體操作任務提供了有希望的解決方案,增強了工業自動化能力。 | zh_TW |
| dc.description.abstract | In industrial automation, while handling rigid objects has seen success, manipulating deformable objects like liquids remains challenging. This thesis focuses on introducing innovative solutions for liquid transport and pouring tasks using a mobile manipulator (MM).To address liquid transport challenges, we synchronize the manipulator and mobile base using whole-body Model Predictive Control (MPC). The proposed slosh-free MPC framework generates optimal reference trajectories, outperforming existing Trajectory Optimization (TO) methods. It demonstrates its suitability for MM with slosh suppression through validation simulations, achieving a 44% reduction in Root Mean Square Error (RMSE). For pouring tasks, we integrate well-established navigation algorithms into a customized mobile base, utilizing visual compensation to correct the base shift due to the inherent uncertainties. A feedforward compensator is implemented to achieved pouring position control task, yielding a satisfactory result validated through image processing techniques. These advancements offer promising solutions for liquid manipulation tasks in intelligent robotics. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-18T16:11:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-18T16:11:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
ABSTRACT ii CONTENTS iii LIST OF FIGURES vii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 Fast Replanning Slosh-free Trajectory for Mobile Manipulation us ing Model Predictive Control . . . . . . . . . . . . . . . . . . . . 5 1.3.2 Feedforward Compensation Controller for Pouring Position . . . . 5 1.3.3 Implementation of Existing Navigation Algorithms on a Custom built Mobile Base . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 2 Background and Literature Survey 7 2.1 Mobile Manipulator: Control Methodologies . . . . . . . . . . . . . 7 2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Existing Works on Motion Planning of Mobile Manipulator . . . . 8 2.2 Liquid Transportation (Nonprehensile Dynamic Manipulation): Slosh free Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Liquid Pouring: Deformable Object Manipulation . . . . . . . . . . 14 Chapter 3 Related Algorithms and Mathematical Preliminaries 17 3.1 Mobile Manipulator System Model . . . . . . . . . . . . . . . . . . 17 3.2 Whole-Body MPC Formulation . . . . . . . . . . . . . . . . . . . . 18 3.3 Liquid Sloshing Dynamics . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.1 Spherical Pendulum Model-Moroccan Tea Tray Mechanism . . . . 19 3.3.2 Damped Spherical Pendulum Model- Sloshing Dynamics . . . . . 20 3.3.3 Slosh-free Trajectory Optimization . . . . . . . . . . . . . . . . . 21 3.4 Liquid Dynamics from Pouring Motion . . . . . . . . . . . . . . . . 23 3.4.1 Pouring Process Model . . . . . . . . . . . . . . . . . . . . . . . 23 3.4.2 Model of Outflow Liquid with Parabolic Motion . . . . . . . . . . 25 3.5 Localization and Navigation in the Structured Environment . . . . . 26 3.5.1 Extended Kalman Filter (EKF) . . . . . . . . . . . . . . . . . . . 26 3.5.1.1 Wheel Odometry . . . . . . . . . . . . . . . . . . . . . . . 28 3.5.1.2 Laser Odometry: RF2O . . . . . . . . . . . . . . . . . . . 29 3.5.2 Adaptive Monte Carlo Localization (AMCL) . . . . . . . . . . . . 30 3.5.3 A* Path Planner and DWA local Planner . . . . . . . . . . . . . . 32 Chapter 4 Proposed Methods 35 4.1 Slosh-free MPC for Mobile Manipulation . . . . . . . . . . . . . . . 35 4.1.1 Slosh-free MPC Formulation . . . . . . . . . . . . . . . . . . . . 35 4.1.2 Feedforward Slosh-free MPC . . . . . . . . . . . . . . . . . . . . 37 4.1.3 Slosh-free MPC with Feedback Stabilization . . . . . . . . . . . . 38 4.2 Motion Planning for Autonomous Pouring Process . . . . . . . . . . 38 4.2.1 Visual Calibrated Repositioning . . . . . . . . . . . . . . . . . . . 39 4.2.2 Falling Position Feedforward Controller . . . . . . . . . . . . . . 40 4.3 Localization and Navigation in the Structured Environment . . . . . 42 4.3.1 Implementaion of Extended Kalman Filter for Localization and State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3.2 Implementaion of A* and DWA for Path Planning and Motion Com mand Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Chapter 5 Simulations, Experimental Results and Analysis 47 5.1 Simulations of Slosh-free MPC . . . . . . . . . . . . . . . . . . . . 47 5.1.1 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.1.2 MPC Parameters Tuning for Feedforward Slosh-free MPC . . . . . 48 5.1.2.1 Time Horizons . . . . . . . . . . . . . . . . . . . . . . . . 48 5.1.2.2 Input Constraints . . . . . . . . . . . . . . . . . . . . . . . 48 5.1.3 Whole Body MPC Tracking Results . . . . . . . . . . . . . . . . . 49 5.1.3.1 Sinusoidal Motion Planning . . . . . . . . . . . . . . . . . 49 5.1.3.2 Point-to-point Motion Planning . . . . . . . . . . . . . . . 51 5.1.4 Slosh Suppression Simulations . . . . . . . . . . . . . . . . . . . 52 5.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2 Pouring Falling Position . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2.2 PTP versus LINE motion planning . . . . . . . . . . . . . . . . . 57 5.2.3 Feedforward Compensation Controller . . . . . . . . . . . . . . . 58 5.3 Localization and Navigation in the Structured Environment . . . . . 60 5.3.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.2 Comparison in Localization Algorithms . . . . . . . . . . . . . . . 60 5.3.3 Naivgation in Structured Environment . . . . . . . . . . . . . . . 62 Chapter 6 Conclusions and Future Works 65 References 67 Appendix A Slosh-free TO Implementation Results 77 A.1 Velocity Reference and Waypoint Constraints for the Trajectory Op timization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 A.2 Finetuining of the Parameters: Time and Length of the Rod . . . . . 79 Appendix B Whole-body MPC Testing Results 81 B.1 End Effector Tracking Results . . . . . . . . . . . . . . . . . . . . . 81 B.2 Control Input Planned by Whole-body MPC . . . . . . . . . . . . . . 82 | - |
| dc.language.iso | en | - |
| dc.subject | 模型預測控制 | zh_TW |
| dc.subject | 無濺擾軌跡 | zh_TW |
| dc.subject | 澆注位置控制 | zh_TW |
| dc.subject | 導航與操作 | zh_TW |
| dc.subject | Slosh-Free | en |
| dc.subject | Pouring Control | en |
| dc.subject | Model Predictive Control | en |
| dc.subject | Navigation and Manipulation | en |
| dc.title | 快速重新規劃無濺擾軌跡與流出液體動態補償控制於移動機械臂應用 | zh_TW |
| dc.title | Fast Replanning for Slosh-Free Trajectories and Compensation Control with Outflow Liquid Dynamics in a Mobile Manipulator | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林沛群;顏炳郎 | zh_TW |
| dc.contributor.oralexamcommittee | Pei-Chun Lin;Ping-Lang Yen | en |
| dc.subject.keyword | 模型預測控制,無濺擾軌跡,澆注位置控制,導航與操作, | zh_TW |
| dc.subject.keyword | Model Predictive Control,Slosh-Free,Pouring Control,Navigation and Manipulation, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202401502 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-11 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 14.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
